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 a b s t r a c t

Human voice is a rich source of information that can reveal a range of sensitive personal attributes, such as 
age, gender, and country of origin. With advances in Artificial Intelligence (AI), especially in speech processing, 
these personal attributes can now be inferred on a scale with high accuracy, raising serious privacy concerns. 
In fact, the ability to extract demographic or identification information from voice data poses risks related to 
surveillance, profiling, and misuse of personal data, highlighting the urgent need for privacy-preserving so-
lutions in voice-based AI systems. Therefore, this paper proposes Selective Attribute Masking (SAM), a new 
model-agnostic framework that uses gradient-based adversarial perturbations to suppress the inference of specific 
speaker attributes from voice recordings, while preserving the accuracy of non-target attributes and maintaining 
the utility of Automatic Speech Recognition (ASR). Experimental results using CommonVoice dataset demon-
strate that SAM achieves selective masking success rates of up to 74.5% for age, 59.4% for gender, and 54.6%
for accent–substantially outperforming baseline methods. At the same time, voice utility (that is, ASR) remains 
largely unaffected, with the word error rate increasing by less than 3% absolute under moderate perturbations. 
These findings demonstrate the effectiveness of our proposed framework (SAM) in balancing privacy and utility 
in voice-based systems.

1.  Introduction

With the advancement of conversational Human-Computer interac-
tion, voice has emerged as a primary modality for interacting with sys-
tems and intelligent agents. From virtual assistants to voice-enabled ap-
plications, speech-based interfaces are now embedded in everyday tech-
nologies, offering natural, intuitive, and hands-free communication be-
tween humans and machines. Typically, users provide voice input for 
specific tasks–such as issuing spoken commands–under the assumption 
that only the content of their speech will be processed. However, the hu-
man voice encodes much more than linguistic information; even brief 
recordings can inadvertently reveal sensitive personal attributes such as 
age, gender, emotional state, or ethnic background (Singh, 2019). For 
example, Amazon has patented technology for inferring users’ physical 
and emotional characteristics from voice, such as detecting illness or 
stress (Aloufi et al., 2019). Integrated into assistants like Alexa®, such 
systems could enable personalized content delivery–like health-related 
ads during illness or calming products during stress–raising significant 
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concerns about implicit profiling and persuasive targeting. These sec-
ondary inferences highlight the growing privacy risks in voice-driven 
applications.

Conventional privacy-preserving mechanisms for voice data, such as 
anonymization or voice conversion, can mitigate the risk of sensitive at-
tribute inference. However, these approaches are often coarse-grained 
and degrade the utility of the speech signal, negatively impacting down-
stream tasks like automatic speech recognition or speaker verification 
(Cai et al., 2024; Tomashenko et al., 2022). For example, one could 
avoid sharing raw audio or heavily distorting it, which degrades the 
quality and usefulness of the spoken content (Chen et al., 2024). Simi-
larly, techniques such as masking certain frequency ranges in the voice 
signal can obscure identifying characteristics, but this also compromises 
speech intelligibility (i.e., how clearly the speech can be understood by 
a listener or system) and hinders the effectiveness of voice-based appli-
cations.

However, a key limitation of these approaches is that they operate 
in an all-or-nothing manner, anonymizing the entire signal rather than
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Fig. 1. Overview of the proposed privacy-preserving framework.

giving users control over which attributes to conceal. In practice, at-
tributes such as gender, accent, or age may differ in sensitivity de-
pending on the context, making selective, attribute-specific protection 
a more realistic requirement. As a result, existing methods often skew 
the privacy–utility balance too far toward one side—either protecting at-
tributes at the expense of intelligibility or preserving intelligibility while 
leaving attributes exposed. What is needed are solutions that achieve a 
more balanced trade-off, enabling fine-grained control that masks sen-
sitive attributes without unduly compromising system performance.

To address these limitations and enable fine-grained control over 
which voice attributes are shared, we propose a new framework called
Selective Attribute Masking (SAM). As shown in Fig. 1, SAM allows 
users to selectively protect specific voice-based attributes by choosing 
which features they wish to conceal before sharing their speech data. 
This framework offers a more fine-grained method of privacy protec-
tion without compromising the utility of voice interactions. It uses tar-
geted adversarial perturbations that suppress the inference of chosen 
attributes while preserving the intended voice content, such as com-
mands or transcription. This enables a flexible privacy-preserving mech-
anism that operates before cloud transmission. SAM assumes a white-
box threat model (Goodfellow et al., 2015), where the user (defender) 
has complete knowledge of the attribute inference model. Importantly, 
SAM is model-agnostic and can be applied to any differentiable attribute 
classifier, making it adaptable to various deployment scenarios. By com-
puting gradients through this network, SAM generates minimal adver-
sarial perturbations on input speech spectrograms to mask a chosen tar-
get attribute. The perturbation is applied such that the target attribute’s 
predicted class is flipped (or confidence reduced) while the other non-
target attributes’ predictions are ideally preserved. To the best of our 
knowledge, this is the first study to demonstrate selective masking of 
multiple voice attributes using adversarial attacks on real-world speech 
data. The key contributions of this work are summarized as follows:

1. We propose Selective Attribute Masking (SAM), a new framework 
for fine-grained privacy control over speaker attributes in voice data 
using adversarial learning.

2. We propose a consistency-based composite loss function for selec-
tive attribute masking that maximizes misclassification of a target 
attribute while preserving non-target predictions. The formulation 

generalizes to multi-head models with an arbitrary number of at-
tributes.

3. We introduce a new metric – selective masking success rate – to quan-
tify privacy by measuring how often the target attribute is success-
fully hidden without degrading non-target attributes.

4. Finally, we evaluate the utility trade-off by measuring ASR per-
formance on adversarially perturbed audio, showing minimal WER 
degradation under moderate perturbations.

2.  Literature review

In this section, we first highlight the risks of inadvertent disclosure of 
sensitive voice attributes, then explore the use of adversarial machine 
learning for privacy protection, and finally discuss the limitations of 
current privacy methods.

2.1.  Voice attributes and privacy threats

Speech signal carries a wealth of paralinguistic information that can 
be exploited beyond a user’s intent (Pudasaini et al., 2025). Prior stud-
ies have documented that even “benign” voice inputs allow machine 
learning models to infer sensitive traits like the speaker’s demographics, 
emotion (Kröger et al., 2020), or health conditions (Ali et al., 2019; Mo-
hammed et al., 2023). This has spurred research into countermeasures 
that can protect users from unintended information leakage. A conven-
tional line of defense is voice anonymization (Zhang et al., 2023), which 
aims to remove or hide personally identifiable characteristics (usually 
focusing on the identity of the speaker) before data are shared. The 
Voice Privacy Challenge series, formed in 2020, has advanced speaker 
anonymization techniques, often using voice conversion or speech syn-
thesis methods to conceal identity while preserving linguistic content 
(Tomashenko et al., 2024). However, these methods do not offer selec-
tive control over which attributes are hidden. Furthermore, anonymiza-
tion efforts have centered mostly on identity, leaving other attributes 
less explored.

2.2.  Adversarial techniques for voice privacy

Adversarial learning has gained substantial attention in computer 
vision, where carefully crafted perturbations can mislead deep neural 
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classifiers without visibly altering input images. Building on the foun-
dational work of  Goodfellow et al. (2015), subsequent studies have 
examined both the creation and mitigation of such adversarial exam-
ples. In particular,  Muthalagu et al. (2025) conducted a comprehensive 
evaluation of evasion attacks and defense mechanisms, demonstrating 
that even robust vision models remain vulnerable to adaptive pertur-
bations. Although adversarial techniques originated and are most ex-
tensively studied in the image domain, researchers have extended them 
to speech for privacy-preserving applications. Unlike voice-conversion-
based anonymization, adversarial methods add subtle perturbations to 
the input signal with the goal of misleading specific classifiers (Rabhi 
et al., 2024). The Fast Gradient Sign Method (FGSM) and its iterative 
extension, Projected Gradient Descent (PGD) (Madry et al., 2019), are 
commonly used to generate such gradient-based perturbations. Chen 
et al. (2024) applied iterative FGSM to perturb audio and prevent per-
sonalized speech generators (e.g., YourTTS Casanova et al., 2023) from 
cloning a speaker’s voice. Similarly, psychoacoustic masking has been 
used to craft inaudible perturbations that fool x-vector-based speaker 
recognition systems (Wang et al., 2020), while Wang et al. (2024) pro-
posed an “asynchronous” approach that imperceptibly perturbs speaker 
embeddings to disrupt verification systems without affecting human per-
ception. Beyond speaker identity, Testa et al. (2023) introduced DARE-
GP to mask emotional cues using genetic programming, and Jaiswal and 
Provost (Jaiswal & Provost, 2019) adversarially removed demographic 
traits from intermediate features. Collectively, these works demonstrate 
that adversarial noise can effectively conceal specific speaker attributes 
while preserving utility.

2.3.  Gaps in multi-attribute privacy

Despite promising progress in voice privacy, much of the existing 
work focuses on masking a single sensitive attribute at a time. For ex-
ample, several studies train dedicated models to suppress only speaker 
identity (Chen et al., 2022; Patino et al., 2021), emotion (Aloufi et al., 
2019; Testa et al., 2023), or gender (Chouchane et al., 2023; Stoidis & 
Cavallaro, 2022). These attribute-specific approaches often rely on gen-
erative or domain-adversarial training, where the feature extractor is 
optimized to “forget” a particular attribute. While effective in narrow 
settings, these methods are not designed to scale to multiple concurrent 
privacy goals, and naively combining them can lead to interference or 
utility degradation.

There is a growing recognition of the need for multi-attribute privacy 
solutions that can target several attributes jointly or offer user-selectable 
privacy settings (Chen et al., 2024). For example, in computer vision, 
Mirjalili et al. (2020) proposed PrivacyNet to anonymize multiple face 
attributes (gender, age, ethnicity) via adversarial generative modeling.

For speech, Chen et al. (2024) recently proposed MaSS, which learns 
an encoder–decoder transformation to remove specified attributes from 
feature representations while preserving others and overall utility. MaSS 
employs an adversarial game between a suppressor network (trained to 
erase target attributes) and attribute classifiers (trained to detect resid-
ual traces), combined with contrastive losses to retain non-sensitive in-
formation. Their experiments across voice, image, and video domains 
showed that multiple attributes can be suppressed simultaneously with-
out substantially harming downstream performance. However, their 
speech experiments were limited to the AudioMNIST dataset (short, 
fixed-length spoken digits under controlled conditions) and operated at 
the level of fixed-length embeddings (e.g., HuBERT representations Hsu 
et al., 2021) rather than directly on spectrograms or raw audio. This 
design involves training complex encoder–decoder models with adver-
sarial and contrastive objectives, leaving an open gap for lightweight, 
post-hoc methods applicable to more natural, variable-length speech.

Our work addresses this gap by introducing an adversarial, inference-
time approach for attribute-specific privacy control in speech. Rather 
than training a generative model to resynthesize obfuscated au-
dio (Aloufi et al., 2019), we assume access to a pre-trained attribute 

classifier and directly manipulate input spectrograms to confuse specific 
attribute predictions. This design offers a lightweight, model-agnostic 
solution that avoids the complexity and computational overhead of gen-
erative methods, making it suitable for real-time or resource-constrained 
settings. Extending prior work beyond single-attribute masking, our 
method targets gender, age, or accent in real, variable-length speech us-
ing a multi-head classifier. By isolating the impact of each perturbation, 
we ensure minimal interference with non-target attributes—addressing 
a key limitation of existing approaches (Testa et al., 2023; Wang et al., 
2024).

3.  Proposed framework: Selective attribute masking (SAM)

The proposed framework consists mainly of a perturbation genera-
tion module that crafts small, targeted modifications to the input. These 
perturbations are designed to suppress the prediction of a specific at-
tribute while preserving the rest of the speech content and non-target 
attribute predictions. As shown in Fig. 1, an untrusted third-party service 
may exploit machine learning models to infer sensitive attributes–such 
as gender, age, or accent – from users’ voice data during cloud process-
ing. SAM addresses this risk by applying targeted masking of selected 
attributes locally, before the data is transmitted, thereby preventing un-
wanted inference while preserving utility.

3.1.  Model architecture

The proposed framework adopts a multi-task neural network ar-
chitecture designed to jointly predict multiple speaker attributes from 
speech features. The central motivation for this design is to facilitate 
selective masking: by computing adversarial gradients with respect to 
individual output heads, the model can generate perturbations that sup-
press the prediction of a specific attribute while preserving the accuracy 
of others. This mechanism forms the foundation of the SAM method, en-
abling fine-grained, user-controllable privacy during inference.

As shown in Fig. 2, the model comprises three main components: 
input spectrograms, a shared feature extraction backbone, and multiple 
attribute-specific output heads. The input spectrograms are processed 
by a shared feature extractor composed of convolutional layers that 
capture local spectral characteristics, followed by recurrent layers that 
model temporal dependencies in the speech signal. The resulting shared 
representation is then forwarded to parallel classification heads, each 
responsible for predicting a specific attribute such as gender, age, or ac-
cent. This modular structure allows for independent gradient flow from 
each output head, which is essential for generating targeted adversarial 
perturbations during selective masking.

3.2.  Selective attribute masking

Given a trained multi-head model for attribute prediction, our goal 
is to generate adversarial perturbations to input spectrograms that se-
lectively impede the model’s ability to recognize a particular attribute, 
while leaving all other attributes unaffected. Specifically, let 𝑋 denotes 
the original spectrogram (a matrix of time-frequency magnitudes), and 
the model output be a tuple of predictions ̂𝐲 = (𝑦̂1, 𝑦̂2,… , 𝑦̂𝑚) correspond-
ing to 𝑚 speaker attributes (e.g., age, gender, and country of origin). 
Given a target attribute index 𝑘 ∈ {1, 2,… , 𝑚} that the user wishes to 
mask (e.g., age), our goal is to generate a small perturbation Δ𝑘 such 
that, when added to the input 𝑋, the predicted label 𝑦̂𝑘 for the target at-
tribute is altered, while the predictions 𝑦̂𝑗 for all other attributes 𝑗 ≠ 𝑘 re-
main unaffected. Formally, for a target attribute index 𝑘 ∈ {1, 2,… , 𝑚}, 
we define an adversarial example as:
𝑋̃𝑘 = 𝑋 + Δ𝑘, subject to ‖Δ𝑘‖∞ ≤ 𝜖,

such that the model satisfies:
• Target attribute misclassification: 𝑓𝑘(𝑋̃𝑘) ≠ 𝑓𝑘(𝑋), where 𝑓𝑘(⋅) de-
notes the model’s prediction for attribute 𝑘.
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Fig. 2. Block diagram of the proposed multi-head model.

• Non-target attribute preservation: For all 𝑗 ∈ {1, 2,… , 𝑚} ⧵ {𝑘}, 
the predicted class remains unchanged, i.e., 𝑓𝑗 (𝑋̃𝑘) = 𝑓𝑗 (𝑋).

In practice, exactly satisfying all these constraints is challenging 
due to shared representations among the attribute heads. Therefore, 
we approximate this selective behavior using gradient-based adversarial
perturbations, guided by a custom composite loss that balances misclas-
sification of the target attribute and preservation of the others. In this 
paper, this proposed composite loss function encourages misclassifica-
tion of a specific target attribute while discouraging changes to the pre-
dictions of all non-target attributes, which can be defined as follows: 

composite = 𝑘 − 𝜆
∑

𝑗∈{1,2,…,𝑚}⧵{𝑘}
𝑗 (1)

where 𝑘 is the classification loss (e.g., cross-entropy) for the tar-
get attribute 𝑘, and 𝑗 denotes the loss for each non-target attribute 
𝑗 ∈ {1, 2,… , 𝑚} ⧵ {𝑘}. The hyperparameter 𝜆 controls the trade-off be-
tween misclassifying the target and preserving the correctness of the 
remaining attributes. For all main experiments, we fix 𝜆 = 1 (see
Section 5) to maintain balanced weighting between objectives. An ab-
lation study on 𝜆 is reported in Appendix A.1, confirming that larger 
values can further increase masking success but with less consistent util-
ity preservation. The composite loss is specifically designed to enforce 
selectivity in the perturbation process. By maximizing the loss of the tar-
get attribute 𝑘 while simultaneously minimizing the average loss of the 
non-target attributes 𝑗 for all 𝑗 ≠ 𝑘, the optimizer is guided toward 
perturbations that induce misclassification in only the desired head while 
preserving the correctness of others. This stands in contrast to conven-
tional adversarial attacks that optimize a single-head objective and may 
inadvertently disrupt multiple outputs in multi-task models.

The subtractive formulation of Eq. (1) creates a gradient tension be-
tween heads, where the perturbation must deceive the target classifier 
without degrading performance in others. This is particularly impor-
tant in shared-representation architectures like ours, where gradients 
from different heads are entangled. By explicitly penalizing deviations 
in non-target predictions, the composite loss encourages localized and 
purpose-driven changes in the input–an essential requirement for privacy-
preserving interventions that seek to alter one attribute while preserving 
utility across the rest.

To generate perturbations, we adapt two widely used attack algo-
rithms: the Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015) 
and Projected Gradient Descent (PGD) (Madry et al., 2019)–as they offer 
simple and effective mechanisms to optimize our composite loss. FGSM 
is computationally efficient, applying a single-step perturbation:

Δ𝑘 = 𝜖 ⋅ sign
(

∇𝑋composite
)

,

Algorithm 1 Generalized PGD with consistency-based composite loss 
for selective attribute masking.
Input: Input 𝑋; true labels {𝑦1, 𝑦2,… , 𝑦𝑚}; model 𝑓 with 𝑚 outputs; per-
turbation target 𝑘 ∈ {1,… , 𝑚}; number of steps 𝑇 ; step size 𝛼; perturba-
tion bound 𝜖; consistency weight 𝜆; clipping bounds [clipmin, clipmax]
Output: Perturbed input 𝑋̃𝑘

1: Initialize: 𝑋̃𝑘 ← 𝑋
2: for 𝑡 = 1 to 𝑇  do
3:  Forward pass: {𝑦̂1, 𝑦̂2,… , 𝑦̂𝑚} ← 𝑓 (𝑋̃𝑘)
4:  Compute losses: 𝑖(𝑦̂𝑖, 𝑦𝑖) for 𝑖 = 1 to 𝑚
5:  composite = 𝑘 − 𝜆

∑

𝑗∈{1,2,…,𝑚}⧵𝑘 𝑗
6:  Update: 𝑋̃𝑘 ← 𝑋̃𝑘 + 𝛼 ⋅ sign

(

∇𝑋composite
)

7:  Clip to 𝓁∞ ball: 𝑋̃𝑘 ← clip(𝑋̃𝑘, 𝑋 − 𝜖,𝑋 + 𝜖)
8:  Clip to valid range: 𝑋̃𝑘 ← clip(𝑋̃𝑘, clipmin, clipmax)
9: end for
10: Return 𝑋̃𝑘

while PGD performs stronger, iterative updates with projection at each 
step, enabling more precise control over the perturbation:

𝑋̃(𝑡+1)
𝑘 = clip𝑋̃𝑘 ,𝜖

(

𝑋̃(𝑡)
𝑘 + 𝛼 ⋅ sign

(

∇𝑋composite
)

)

,

where 𝛼 is the step size and the projection ensures that the perturbation 
remains within the 𝓁∞ ball around the original input. Algorithm 1 sum-
marizes the customized PGD procedure incorporating the consistency-
based composite loss for SAM.

This formulation represents a subtle but important deviation from 
standard FGSM/PGD attacks, which typically use a single-head loss. By 
leveraging the multi-head structure and penalizing collateral changes, 
we enforce selectivity in the attack. While more complex regularization 
schemes could be used, we find that our framework with modest 𝜖 values 
and a consistency-weighted loss is often sufficient to achieve effective 
and targeted masking.

4.  Experimental setup

4.1.  Dataset and preprocessing

Our experiments use the English subset of the Mozilla Common Voice 
17.0 corpus (Ardila et al., 2020). For comprehensive speaker coverage, 
we apply multiple filters. We select the top five English accent groups 
with over 40,000 samples, keeping utterances with valid accent, gen-
der, and age labels, and at least two upvotes. We group speaker ages 
into three categories–young, adult, and old–based on similar mappings 
from (Tursunov et al., 2021). We removed German-accent samples due 
to gender imbalance (only male speakers). We use this curated subset 
because, to our knowledge, no other open corpus currently provides 
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utterance-level labels for age, gender, and accent at comparable scale; 
Common Voice is the only widely available source where all three at-
tributes are available per clip via contributor metadata.

The dataset contains 22,212 utterances, annotated with accent
(4 classes: United States English, England English, Indian Subconti-
nent English, Canadian English), gender (binary: male/female), and age 
group (3 classes: young, adult, old) for training the multi-head multi-
class (MHMC) model. For the binary formulation (MHBC), we use 8000 
balanced utterances with equal representation across attribute pairs. We 
split each dataset into 80% training and 20% testing, maintaining strat-
ification across attributes. These splits apply to both MHMC and MHBC 
experiments. Audio samples are preprocessed into magnitude spectro-
grams using short-time Fourier transform (STFT) (Gabor, 1946) with 
frame length 256, hop size 128, and FFT size 256.

4.2.  Models and training settings

To evaluate the proposed SAM framework, we first establish pro-
filing models capable of accurately predicting speaker attributes. Two 
multi-task neural architectures were developed in this work and are used 
as profiling backbones to evaluate SAM: a Multi-Head Binary Classifier 
(MHBC) and a Multi-Head Multi-Class Classifier (MHMC). Both share 
a convolutional–recurrent backbone comprising two Conv2D layers fol-
lowed by bidirectional GRUs, which process input spectrograms into 
a shared latent representation. This representation is passed to three 
task-specific dense heads for gender, accent, and age prediction. Each 
head includes a dense layer and an output layer with an activation func-
tion (sigmoid or softmax), depending on whether the binary (MHBC) or 
multi-class (MHMC) formulation is used. The MHBC serves as a simpli-
fied baseline to verify selective attribute masking under controlled con-
ditions, whereas the MHMC reflects a more realistic multi-class config-
uration used for full SAM evaluation and privacy–utility analysis. Both 
backbones differ only in their output head configurations: MHBC em-
ploys binary heads for all attributes, whereas MHMC replaces the accent 
and age heads with multi-class layers.

Both models are trained using the Adam optimizer with a learning 
rate of 0.0001, a commonly adopted setting in audio and speech-related 
deep learning tasks, as it provided stable convergence in preliminary 
experiments. Gradient clipping (clip norm = 1.0) is applied to prevent 
exploding gradients and ensure training stability. To mitigate overfit-
ting, we follow prior work on privacy-preserving speech models (Chan-
drinos et al., 2024) and apply dropout (rate = 0.5) together with L2 
regularization. Training is performed for up to 50 epochs with a batch 
size of 32, values selected based on standard practice and confirmed to 
be computationally feasible for our setup. Loss weights are tuned em-
pirically on the validation set to balance task contributions: gender loss 
weight is set to 1.0, and accent and age losses are weighted at 0.7 each, 
as this combination yielded the best trade-off across heads. Early stop-
ping (patience = 15 epochs) and learning rate reduction (factor = 0.2, 
patience = 4) are applied based on validation accuracy, reflecting com-
monly used strategies for avoiding overfitting while ensuring efficient 
training. The final model is selected as the checkpoint with the lowest 
overall validation loss.

All training is conducted on an NVIDIA RTX 4000 SFF Ada Gener-
ation GPU with 20 GB of graphics memory. Consistent with the SAM 
framework, all adversarial experiments use a white-box threat model 
where the user has full access to model parameters and gradients, en-
abling gradient-based perturbation methods as described in Section 3.2.

4.3.  Evaluation metrics

We evaluate our system using two categories of metrics. First, stan-
dard classification metrics (accuracy, precision, recall, and F1-score) are 
reported in Section 5.1 to validate the performance of the audio profil-
ing models. These ensure that the underlying models are sufficiently 

accurate to serve as meaningful baselines for privacy-preserving exper-
iments. Second, to assess the SAM framework itself, we employ task-
specific privacy and utility metrics described below.

4.3.1.  Privacy metric – selective masking success rate
To evaluate the efficacy of SAM, we introduce a new metric called 

Selective Masking Success Rate (SMSR). This metric quantifies the propor-
tion of test samples for which the perturbation successfully alters the 
target attribute, while all non-target attributes remain unchanged. For-
mally, for a given target attribute 𝑘, we consider an attack on a sample 
𝑋 to be successful if:
𝑓𝑘(𝑋̃) ≠ 𝑓𝑘(𝑋) and 𝑓𝑗 (𝑋̃) = 𝑓𝑗 (𝑋) for all 𝑗 ≠ 𝑘,

We define the overall success rate for attribute 𝑘 under perturbation 
budget 𝜖 as:

SMSR(𝑘, 𝜖) = 1
𝑁

𝑁
∑

𝑖=1
𝟏
[

𝑓𝑘(𝑋̃) ≠ 𝑓𝑘(𝑋) ∧ ∀𝑗≠𝑘 𝑓𝑗 (𝑋̃) = 𝑓𝑗 (𝑋)
]

, (2)

where 𝑁 is the number of test samples, and 𝟏[⋅] is the indicator function 
that returns 1 if the condition holds and 0 otherwise.

4.3.2.  Utility evaluation – speech reconstruction and ASR
Ensuring privacy should not make speech unusable for its primary 

purpose (e.g., command recognition). A core part of our methodology 
is to evaluate the utility of adversarially perturbed audio. After apply-
ing spectrogram perturbation Δ𝑘, we convert the modified spectrogram 
𝑋̃𝑘 back into an audio waveform for utility evaluation. We use the 
Phase Gradient Heap Integration (PGHI) algorithm (Pruša & Sønder-
gaard, 2016), a deterministic spectrogram inversion technique. PGHI 
estimates a phase matrix for 𝑋̃𝑘 and reconstructs time-domain audio 
without needing the original phase of 𝑋. PGHI exploits the relation-
ship between phase gradients and magnitude in the time-frequency do-
main to recover a plausible phase that produces a time waveform when 
combined with the perturbed magnitude. We prefer PGHI over iterative 
Griffin-Lim reconstructions for efficiency and consistency (Holighaus 
et al., 2019). The result is an adversarial audio sample 𝑠̃(𝑡) correspond-
ing to the perturbed spectrogram 𝑋̃. We evaluate the intelligibility and 
utility of 𝑠̃(𝑡) by transcribing it with OpenAI’s Whisper model (Radford 
et al., 2023) (Medium edition). We compute the Word Error Rate (WER) 
between the ASR transcription of the perturbed audio and the refer-
ence transcription. The WER measures how much speech content was 
distorted by our perturbation process. A low WER indicates preserved 
speech intelligibility and linguistic information. We conduct subjective 
checks on random samples to ensure imperceptible perturbations: the 
noise is not noticeable at chosen 𝜖 levels, and listeners cannot detect 
differences in speaker attributes (Wang et al., 2024). All experiments 
use careful calibration of 𝜖 to balance privacy-utility trade-off: we seek 
minimal perturbation that achieves high selective masking success while 
maintaining utility.

Our methodology integrates a multi-task attribute model with adver-
sarial attack techniques for selective voice attribute masking. By mea-
suring privacy gains and utility impact, we provide comprehensive eval-
uation. Together, these evaluations provide a comprehensive framework 
for assessing the privacy–utility trade-off achieved by SAM, as reported 
in the following section.

5.  Result and discussion

This section presents a comprehensive evaluation of the SAM frame-
work. We investigate its effectiveness using two multi-head model vari-
ants: MHBC and MHMC. Our analysis focuses on two key dimensions: 
privacy, measured by the selective masking success rate across varying 
adversarial perturbation strengths (𝜖), and utility, assessed via WER com-
puted after reconstructing perturbed audio signals. The central objective 
is to determine whether adversarial perturbations can reliably suppress 
inference of a targeted attribute while preserving the accuracy of non-
targeted attributes and maintaining utility.
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Table 1 
Performance metrics of MHBC model for gender, accent, and age classifica-
tion.

 Task  Class  Precision  Recall  F1  Accuracy (%)

Gender (Binary)  Female  0.955  0.983  0.969
96.8 Male  0.982  0.954  0.968

Accent (Binary)  British  0.900  0.866  0.883
88.5 Canadian  0.871  0.904  0.887

Age (Binary)  Young  0.918  0.966  0.942
94.0 Old  0.964  0.914  0.938

Table 2 
Performance metrics of MHMC model for gender, accent, and age classifica-
tion.

 Task  Class  Precision  Recall  F1  Accuracy (%)

Gender (Binary)  Female  0.954  0.977  0.965
96.5 Male  0.977  0.954  0.965

Accent (4-Class)
 British  0.720  0.703  0.712

71.3
 Canadian  0.752  0.735  0.743
 US  0.615  0.655  0.634
 IS  0.799  0.777  0.788

Age (3-Class)
 Young  0.640  0.821  0.719

73.5 Adult  0.730  0.598  0.657
 Old  0.920  0.800  0.855

5.1.  Experimental results for audio profiling models

Tables 1 and 2 report detailed per-class performance for MHBC and 
MHMC, evaluated using standard classification metrics (accuracy, pre-
cision, recall, F1-score). The MHBC achieved strong accuracies across 
all attributes (96.8% for gender, 88.5% for accent, 94.0% for age), 
with relatively balanced precision–recall trade-offs across classes. In 
contrast, the MHMC maintained stable performance for gender (96.5%) 
but showed reduced accuracy for accent (71.3%) and age (73.5%). Per-
formance drops were most notable for the U.S. accent and the adult age 
class, where inter-class similarity likely caused confusion. These results 
indicate that MHBC achieves stronger baseline accuracies overall, while 
MHMC provides a more realistic multi-class formulation. Accordingly, 
both models are carried forward as profiling backbones for the SAM 
experiments in the subsequent section.

5.2.  Selective masking success rate

We report the success rate of adversarial attacks targeted at each 
individual attribute (gender, accent, age), under the condition that the 
other two attributes remain correctly classified. Figures and tables il-
lustrate success rates as a function of 𝜖 ∈ [0.0, 0.2] for both MHBC and 
MHMC models. This range is consistent with prior adversarial robust-
ness literature, where small 𝓁∞ perturbation budgets are commonly used 
to ensure imperceptibility and maintain semantic fidelity (Goodfellow 
et al., 2015; Madry et al., 2019; Siedel2024, 2024), and is chosen here to 
minimize degradation in utility, which we quantify using WER. Unless 
otherwise specified, we use a maximum perturbation budget of 𝜖 = 0.2, 
step size 𝛼 = 0.01, number of PGD steps 𝑇 = 15, and clipping bounds 
[clipmin, clipmax] = [−3, 3] to ensure that adversarial examples remain 
within the typical dynamic range of spectrogram inputs, additionally 
we set the number of attributes to 𝑚 = 3 and use 𝜆 = 1 in the composite 
loss function (Eq. (1)), ensuring balanced emphasis between the target 
and averaged non-target loss terms during perturbation generation.

For the MHBC model, the highest success rate is observed in the 
age masking task (up to 74.5% at 𝜖 = 0.2 using PGD), followed by gen-
der (59.4%) and accent (54.6%). MHMC results follow a similar trend, 
though success rates are slightly lower for age (62.3%), followed by gen-
der (47.6%) and higher for accent (58.2%). These outcomes are signif-

icantly better than random perturbation baselines, which yield success 
rates below 20% for all attributes, confirming the selectivity and effec-
tiveness of our framework. Tables  3 and  4 summarize the results across 
the full 𝜖 range.

We further compare the performance of our custom FGSM and cus-
tom PGD implementations. As expected, PGD consistently outperforms 
FGSM across all attributes and both model architectures due to its it-
erative refinement. For MHBC, at 𝜖 = 0.05, FGSM achieves 46.2% suc-
cess for age, 18.5% for gender, and 32.8% for accent, while PGD yields 
49.3%, 31%, and 31.7% respectively. Similarly, for MHMC at the same 
𝜖, FGSM achieves 47.53% for age, 14.06% for gender, and 42.78% for 
accent, compared to PGD values of 48.59%, 16.36%, and 45.41%. De-
spite being a single-step method, FGSM remains competitive at lower 
perturbation levels and offers a computationally efficient alternative to 
PGD.

5.3.  WER-based utility analysis

To evaluate the utility of perturbed speech, we measure WER using 
a Whisper-based transcription system. Our baseline (unperturbed) vali-
dation set yields a WER of 8.2%, and reconstruction from spectrogram 
alone slightly increases this to 8.56% for MHBC, confirming that the 
reconstruction pipeline preserves intelligibility. For custom FGSM (See 
Fig. 3a), WER increases gradually from 10.4% at 𝜖 = 0.01 to 12.17% 
at 𝜖 = 0.2 (rounded values). For PGD (See Fig. 3b), the increase is even 
more controlled, with WER ranging from 10.4% to 10.79%.

Notably, the average WER increase relative to reconstructed audio 
remained under 3% absolute for both FGSM and PGD across all tested 
𝜖 values. PGD results showed remarkable stability, with WER peaking 
around 𝜖 = 0.125 and then plateauing. These results indicate that per-
turbations were applied effectively while distortion remained bounded 
at moderate perturbation strengths.

Importantly, even as WER stabilizes, the success rate of attribute 
masking continues to increase across all heads – from 63.1% to 74.5% 
for age, 45.3% to 59.4% for gender, and 49.4% to 54.6% for accent, 
as 𝜖 increases from 0.125 to 0.2. This indicates that PGD effectively 
converges to regions of the input space that achieve high privacy with 
minimal utility degradation. These findings demonstrate that SAM pre-
serves ASR performance while substantially enhancing privacy. Taken 
together, this positions our framework as a practical solution for balanc-
ing privacy and utility in voice-based systems.

A slight increase in WER is observed when moving from MHBC to 
MHMC, even before adversarial perturbation is applied. Specifically, 
the original WER for MHBC was 8.2% (1600 samples), whereas MHMC 
yielded 8.53% (4443 samples). Similarly, reconstruction WER increased 
from 8.56% to 9.17%. This shift is expected, given the broader and 
more diverse input distribution in the MHMC dataset, which includes 
acoustically varied samples. A key observation emerges when compar-
ing the impact of adversarial attacks across models. For MHBC, PGD 
consistently introduced less transcription distortion than FGSM–e.g., 
at 𝜖 = 0.2, PGD resulted in a WER of 10.79%, compared to FGSM’s 
12.17%. However, for MHMC (See Fig. 4, the difference between FGSM 
and PGD is less pronounced: WERs at 𝜖 = 0.2 are 13.93% (FGSM) and 
14.09% (PGD), a gap of just 0.16% absolute. Both values remain within 
6% absolute error from the unperturbed reconstruction, underscoring 
the robustness of the perturbation design in preserving ASR utility.

This convergence in WER between FGSM and PGD under the MHMC 
setting may be attributed to the model’s increased output complexity. 
Unlike MHBC, which uses binary classification heads, MHMC handles 
multi-class outputs for each attribute, resulting in larger softmax spaces 
and potentially more diffused gradient signals. This complexity could 
limit the degree to which iterative refinement (as in PGD) can fur-
ther optimize perturbations without incurring additional utility cost. 
Nonetheless, despite their similar WER outcomes, PGD significantly out-
performs FGSM in terms of selective masking success. At 𝜖 = 0.2, FGSM 
achieves success rates of 40.0% (age), 19.4% (gender), and 38.4% 
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Table 3 
Selective masking success rates (%) for MHBC using custom FGSM and PGD, compared against random 
baselines.

 Method  Attribute  Epsilon (𝜖)  Baseline
 0.01  0.03  0.05  0.10  0.125  0.15  0.175  0.2

FGSM
 Age  13.81  32.94  46.19  53.86  54.00  52.38  51.50  51.00  05.14
 Gender  10.06  15.06  18.50  25.38  27.31  29.00  29.56  30.44  02.65
 Accent  17.63  30.18  32.75  30.38  30.86  31.19  31.13  30.56  10.47

PGD
 Age  18.69  50.25  49.25  56.13  63.13  68.13  73.13  74.50  05.14
 Gender  14.06  32.13  31.00  39.25  45.31  50.19  56.19  59.38  02.65
 Accent  22.50  37.81  31.69  43.19  49.38  52.94  53.13  54.56  10.47

Table 4 
Selective masking success rates (%) for MHMC using custom FGSM and PGD, compared against random 
baselines.

 Method  Attr  Epsilon 𝜖  Baseline
 0.01  0.03  0.05  0.10  0.125  0.15  0.175  0.20

FGSM
 Age  26.24  43.03  47.53  45.05  43.55  41.93  41.16  40.01  18.28
 Gender  5.69  11.16  14.06  17.62  18.20  18.92  19.06  19.35  1.81
 Accent  26.82  38.44  42.78  40.78  39.50  38.91  38.66  38.35  20.36

PGD
 Age  34.32  52.75  48.59  54.69  59.73  59.62  59.64  62.32  18.28
 Gender  11.41  19.26  16.36  36.43  41.61  44.54  47.19  47.64  1.81
 Accent  34.95  48.57  45.41  52.26  53.02  54.60  55.61  58.20  20.36

(accent), whereas PGD yields 62.3%, 47.6%, and 58.2% respectively–
showing consistent and substantial gains across all attributes. This re-
inforces PGD’s superiority in privacy preservation, even under utility-
constrained settings.

In summary, although MHMC experiences slightly higher transcrip-
tion degradation than MHBC, it maintains acceptable WER under both 
FGSM and PGD. More importantly, PGD offers a more effective privacy–
utility trade-off, achieving high masking success with minimal added 
distortion (See Fig. 5a and b). These results further validate our frame-
work’s generalizability across model architectures and input distribu-
tions, and are further illustrated by joint plots of average WER and SMSR 
as a function of perturbation strength 𝜖, which highlight key trends 
across models, perturbation budgets, and target attributes.

5.4.  Comparative analysis with baselines

5.4.1.  Comparison with random baseline
While a direct comparable study for evaluating multi-head models 

under selective perturbation constraints could not be found, we estab-
lish a conservative baseline for success rates under random perturba-
tions. This baseline corresponds to the joint probability of (i) the target 
attribute being misclassified at its natural error rate, and (ii) all non-
target attributes being preserved at their clean accuracies–an optimistic 
assumption that likely overestimates non-target preservation under ad-
versarial conditions. Following prior work that reports chance-level ref-
erences for comparison (Aloufi et al., 2020; Wu et al., 2024), we adopt 
a random guessing baseline .

Using the MHBC model’s test accuracies (96.81% gender, 88.50% 
accent, 94.00% age), the expected random success rates are computed 
as the product of the target attribute’s natural error rate (1 − Acc𝑘) and 
the clean accuracies of the two non-target attributes, i.e.,

𝑃rand(𝑘) = (1 − Acc𝑘) ×
∏

𝑗≠𝑘
Acc𝑗 .

This yields 2.65% (gender), 10.47% (accent), and 5.14% (age), which 
serve as optimistic upper bounds for success under purely random per-
turbations, as they assume perfect preservation of non-target attributes. 
In contrast, the proposed method achieves significantly higher success 
rates: 59.4% (gender), 54.6% (accent), and 74.5% (age)–representing 
improvements of 22×, 5×, and 14× over random chance, respectively. 

These results provide a conservative lower bound on the attack’s ef-
fectiveness, as adversarial perturbations typically degrade non-target 
performance in practice (Mahmood & Elhamifar, 2024), which would
further reduce the random baseline. The substantial gaps between the 
observed and theoretical success rates confirm the precision of the 
targeted perturbations and, from a privacy perspective, demonstrate 
that the framework can reliably mask the chosen sensitive attribute 
while preserving overall speech utility to a large extent. Additional re-
sults evaluating SMSR using model-predicted labels–rather than ground 
truth—are provided in Fig. 6, further supporting the framework’s appli-
cability in real-world deployment scenarios where true attribute labels 
may not be accessible.

Further evaluation of selective masking performance on the MHMC 
model shows test accuracies of 96.53% (gender), 71.28% (accent), and 
73.46% (age). Under the same random baseline formulation, the ex-
pected success rates are 1.81% (gender), 20.36% (accent), and 18.26% 
(age). SAM significantly outperforms these baselines, achieving selective 
masking success rates of 47.64% (gender), 58.2% (accent), and 62.32% 
(age), corresponding to improvements of 26×, 2.9×, and 3.4×, respec-
tively. Notably, the gender masking success rate exceeds its random 
baseline by more than an order of magnitude, despite the model’s high 
clean accuracy for gender. Interestingly, however, MHMC does not con-
sistently outperform the simpler MHBC variant: MHBC achieves higher 
absolute success rates in most attributes, especially for age (74.5% vs. 
62.32%). In contrast, MHMC occasionally demonstrates stronger rel-
ative improvements over its random baselines, particularly for gender, 
where its natural error rate is lower. These differences may be explained 
by class imbalance, increased label sparsity in the multi-class setting, 
or overfitting challenges associated with higher output dimensionality. 
Collectively, these results validate the scalability of SAM to models with 
greater architectural complexity while also showing that MHBC remains 
a robust and efficient reference baseline under limited data or high-
variance conditions.

5.4.2.  Comparison with single head classifier
This subsection compares the selective masking performance of the 

MHMC architecture with a baseline constructed from three indepen-
dently trained single-head classifiers (SHC). The SHC models achieve 
strong standalone accuracies of 98.2% (gender), 90.1% (accent), and 
94.2% (age), reflecting the benefit of dedicating full model capacity 
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Fig. 3. WER analysis for the MHBC model under different perturbation methods 
and strengths. (a) and (b) show per-attribute and average WER across 𝜖 for FGSM 
and PGD respectively.

to each attribute. While earlier sections included results for MHBC 
and MHMC under both FGSM and PGD attacks, this section compares 
SHC only against MHMC using customized PGD-based perturbations, 
as MHMC is the final model selected for detailed evaluation and PGD 
consistently demonstrated superior masking performance in prior exper-
iments. All results reported in this subsection–both selective masking 
(SMSR) and utility (WER)–were obtained using 4443 utterances from 
the validation split, corresponding to the 20% of the 22,212-utterance 
dataset. This subset was used consistently across all SHC and MHMC 
evaluations to ensure comparability.

To enable a comparable selective masking experiment for SHC, per-
turbations were generated for each masking task (e.g., masking gender) 
by optimizing the same composite loss function defined in Eq. (1). In 
this case, 𝑘 corresponds to the loss from the SHC model for the tar-
get attribute 𝑘, while the consistency terms 𝑗 were computed using 
the predictions from the two other independently trained SHC models 
for the non-target attributes 𝑗 ≠ 𝑘. In contrast, the MHMC configura-
tion computes all loss terms within a single multi-head network, where 
predictions for all attributes are derived from a shared representation.

In both setups, perturbations were constrained under the same 𝓁∞
budget (𝜖) and evaluated using the SMSR. The results demonstrate that 
the SHC architecture consistently achieves higher SMSR across most per-
turbation strengths:

• Accent and Gender masking: SHC outperforms MHMC at all per-
turbation levels. At 𝜖 = 0.2, SHC achieves SMSR of 98.04% for accent 
and 97.93% for gender, compared to 58.20% and 47.64% respec-
tively for MHMC.

Fig. 4. WER analysis for the MHMC model under different perturbation 
methods and strengths. (a) and (b) show per-attribute and average WER across 
𝜖 for FGSM and PGD respectively.

• Age masking: MHMC achieves marginally higher SMSR at very 
small perturbations (𝜖 ≤ 0.05), reflecting greater initial sensitivity, 
but SHC overtakes beyond 𝜖 = 0.1, achieving 92.57% at 𝜖 = 0.2 com-
pared to 62.32% for MHMC.

These findings highlight that SHC provides greater flexibility for 
selective masking, enabling nearly complete suppression of target at-
tributes (See Fig. 7) at moderate perturbation levels–a desirable prop-
erty when maximizing masking effectiveness is the primary objective. 
However, this capability comes without structural constraints to protect 
non-target attributes and requires maintaining separate models for each 
task. By contrast, MHMC’s shared encoder introduces natural constraints 
on perturbations: perturbing one attribute while preserving others is in-
herently more difficult, which limits masking effectiveness but promotes 
consistency and utility preservation for non-target predictions. This con-
strained behavior aligns with MHMC’s design objective of providing an 
integrated and balanced privacy-preserving solution across multiple at-
tributes. Moreover, while SHC achieves higher masking success rates, 
it comes at the cost of training and deploying three independent mod-
els, incurring greater computational and storage overhead. MHMC, on 
the other hand, offers a unified architecture capable of multi-attribute 
prediction and selective masking within a single framework, trading off 
some masking success for better scalability, resource efficiency, and util-
ity retention.

To complement these privacy-focused results, we next examine 
utility. The WER resulting from SHC and MHMC perturbations was
compared across increasing 𝓁∞ budgets. As shown in Fig. 8, MHMC 
consistently produced lower WERs than SHC across all masking tasks 
(accent, age, and gender), particularly at higher 𝜖 values. For example, 
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Fig. 5. Joint analysis of privacy (selective masking success rate) and utility 
(WER) across perturbation strength 𝜖 for MHBC and MHMC models. PGD con-
sistently achieves stronger attribute masking at comparable or lower utility cost 
than FGSM.

at 𝜖 = 0.2, SHC exhibited WERs of 11.89% (accent), 11.56% (age), and 
11.87% (gender), whereas MHMC retained lower values of 10.68%, 
10.89%, and 10.80% respectively.

These results support the interpretation that MHMC’s shared repre-
sentation enforces perturbation constraints that not only limit aggres-
sive masking but also better preserve overall speech intelligibility. In 
contrast, SHC’s independent task-specific perturbations, while more suc-
cessful at attribute masking, cause greater degradation in downstream 
utility. The average WER trend lines across perturbation budgets con-
firm that MHMC achieves a better privacy-utility balance overall, align-
ing with its design goals.

While the average WER shows a rising trend across the 𝜖 ∈ [0.01, 0.2]
range, the relationship is not strictly monotonic. Local fluctuations were 
observed–for instance, WER for SHC age peaked at 𝜖 = 0.175 before de-
creasing at 𝜖 = 0.2, and MHMC gender WER followed a similar pat-
tern. These non-linear trends may occur when stronger perturbations, 
instead of targeting the most ASR-relevant regions of the spectrogram, 
either miss them or diffuse across less important areas. As a result, the 
expected increase in transcription error does not always follow a lin-
ear path. However, when the perturbation budget is extended beyond 
this range (e.g., 𝜖 = 0.4, 0.9), the WER increases significantly and con-
sistently, reinforcing the notion that larger distortions reliably degrade 
speech intelligibility.

Taken together, these comparisons show that while SHC achieves 
stronger attribute suppression, MHMC provides a more balanced trade-
off between privacy and utility, validating SAM as a practical and scal-
able framework for multi-attribute voice privacy. 

Fig. 6. SMSR for age, gender, and accent under PGD perturbations using pre-
dicted labels.

Fig. 7. Comparison of SMSR for MHMC and SHC architectures across varying 
𝜖, for accent, age, and gender attributes.
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Fig. 8. WER comparison of MHMC and SHC architectures across varying 𝜖, for accent, age, and gender masking tasks.

6.  Conclusion

This paper presents Selective Attribute Masking (SAM), a framework 
designed to enhance voice privacy not through complete anonymiza-
tion, but by allowing users to selectively conceal specific attributes–such 
as age, gender, or accent–on demand through adversarial perturbations. 
SAM redefines privacy in speech as a selective, user-driven goal, where 
only sensitive inferences are obstructed while maintaining downstream 
functionalities like ASR. Our findings reveal that this framework is not 
only technically viable but also highly effective: SAM achieves attribute 
masking rates of up to 74.5% with minimal impact on transcription 
quality when evaluated using multi-head classifier architectures. Addi-
tionally, a comparison with SHC baselines demonstrated that while SHC 
models achieved higher masking success–up to 98.04%–this came at a 
notable cost to utility and scalability. In contrast, SAM’s integration with 
a unified MHMC architecture preserved utility more effectively while 
still delivering meaningful masking performance, highlighting its prac-
tical suitability for real-time, post-hoc privacy control.

In future work, we plan to broaden the scope of SAM’s validation 
to include a more diverse range of speaker attributes, such as emo-
tional states, health cues, and environmental contexts, once suitable 
annotated datasets become available. These attributes introduce new 
privacy risks, and the ability to selectively mask them could support 
more adaptive and user-controlled speech interfaces. We also intend to 
evaluate SAM under a black-box threat model, where the adversary has 
limited or no access to model parameters or gradients. This setting bet-
ter reflects realistic deployment scenarios such as third-party inference 
services and poses new challenges for crafting effective perturbations. 
SAM represents a first step toward aligning AI voice technologies with 
real-world privacy needs, where control lies not with the system, but 
with the speaker.
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Appendix A.  Additional experiments

A.1.  Ablation study on 𝜆

As discussed in Section 3.2, the hyperparameter 𝜆 in the compos-
ite loss balances target suppression against preservation of non-target 
attributes. While all main experiments fixed 𝜆 = 1 for balanced weight-
ing, here we report an ablation study to examine the effect of larger 
values at 𝜖 = 0.2.

Fig. A.9 shows SMSR for age, accent, and gender under varying 𝜆 ∈
{1, 5, 10, 15, 20}. The results indicate that increasing 𝜆 improves masking 
effectiveness for age and accent, with age SMSR rising from 62.3% at 
𝜆 = 1 to 80.1% at 𝜆 = 20, and accent improving from 58.2% to 86.5% 
over the same range. Gender shows only modest gains, increasing from 
47.6% to about 57.5%, and then plateauing beyond 𝜆 = 10. These find-
ings show that higher 𝜆 values substantially improve SMSR for age and 
accent, while gains for gender plateau beyond moderate values.

Table A.5 reports the corresponding Word Error Rate (WER) val-
ues for the same settings. WER remains relatively stable across 𝜆 ∈
{1, 5, 10, 15}, fluctuating within a narrow 1–1.5% band. Notably, age 
WER shows a non-monotonic trend–peaking at 𝜆 = 5 (15.2%) before 
decreasing again at 𝜆 = 15 (14.2%). Accent and gender WERs increase 
slightly with larger 𝜆, but remain below 15.1%. This indicates that while 
stronger consistency weighting improves masking success, utility preser-
vation does not follow a strictly monotonic trajectory.

Overall, the ablation confirms that larger 𝜆 values can further in-
crease masking success, but improvements come with diminishing re-
turns and sometimes inconsistent utility preservation. This supports the 
choice of 𝜆 = 1 in the main experiments, which provides a balanced 
privacy–utility trade-off. 
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Fig. A.9. Effect of 𝜆 on SMSR at 𝜖 = 0.2. Larger values enhance masking effec-
tiveness, particularly for age and accent.

Table A.5 
WER results at 𝜖 = 0.2 across different 𝜆 values (lower is bet-
ter).

𝜆  Accent WER (%)  Age WER (%)  Gender WER (%)
 1  13.82  14.14  14.30
 5  14.25  15.22  14.44
 10  14.88  14.46  14.82
 15  15.06  14.20  14.63
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