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ABSTRACT

Ball tracking is a fundamental problem in computer vision, particularly in sports analytics, where it underpins
tasks such as analyzing ball movement in soccer and basketball or detecting bounce locations in tennis and
table tennis. Most existing methods are developed and evaluated on resource-rich, commercial sports footage
with ideal camera angles, high-resolution imagery, and multiple viewpoints. In contrast, many other sports
contexts, including semi-professional leagues, local amateur competitions, and Paralympic sports, lack these
resources. Footage in these settings often comes from single, fixed, and suboptimal viewpoints, where occlusion
becomes a dominant challenge for automated tracking. Existing methods frequently fall short in such conditions
because their architectures and training strategies do not explicitly account for prolonged or full occlusion.
To address this gap, we present the Table Tennis Australia (TTA) dataset, the first professionally annotated
Paralympic table tennis benchmark with dense visibility labels, captured under realistic single-view conditions.
With 2,396 occluded instances (including 998 fully occluded), TTA is the most occlusion-rich publicly available
dataset to date. Alongside the dataset, we propose the Temporal Occlusion Tracking Network (TOTNet),
a novel tracking system designed to maintain localization accuracy even under extended occlusion. Through
comprehensive experiments on four sports tracking datasets, TOTNet achieves state-of-the-art performance,
with substantial gains in full-occlusion scenarios. We release the dataset, code, and evaluation scripts to foster
reproducibility and future research in occlusion robust tracking for low resource sports; all materials are
available at https://github.com/AugustRushG/TOTNet.

1. Introduction

Automated ball tracking is a core capability in sports analytics,

We address this gap by introducing the task of visibility-aware
occlusion-robust ball tracking for racket sports. This task explicitly mea-
sures tracking robustness across varying visibility levels and prolonged

enabling downstream tasks such as possession analysis, trajectory pre-
diction, and event detection (Naik et al., 2022; Kamble et al., 2019a).
While existing research has achieved strong performance on broadcast-
quality, multi-camera footage in sports like tennis, basketball, and
soccer, most methods and benchmarks assume ideal capture conditions:
high-resolution video, optimal viewing angles, and minimal occlusion.
In contrast, many real world settings, including Paralympic compe-
tition, semi-professional tournaments, and amateur leagues, operate
under single-view, fixed-angle capture with frequent, prolonged oc-
clusions. These conditions severely limit the effectiveness of existing
approaches and reduce the reliability of analytics in contexts where
they could have the greatest practical impact.

occlusions, a setting largely ignored in current literature. To support
research in this domain, we present TTA (Table Tennis Australia),
the first professionally annotated Paralympic table tennis dataset with
dense frame level visibility labels. TTA contains 12,414 samples, in-
cluding 2396 occlusion cases (998 fully occluded). Over 19% of frames
are captured under realistic single-view conditions This high occlusion
density makes TTA uniquely suited for benchmarking robustness, where
other datasets provide little to no occlusion coverage (Huang et al.,
2019; Sun et al., 2020; Tarashima et al., 2023). Examples of the dataset
are shown in Fig. 1. TTA reflects the true constraints of low-resource
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Fig. 1. TTA dataset examples including different tournaments such as Paralympics Pairs, World Para Elite, World Para Future.

sports analytics and is intended as a benchmark for visibility-aware
evaluation in practical settings.

Previous ball tracking approaches struggle under these conditions.
Frame-based object detectors such as YOLO (Redmon, 2016), Faster R-
CNN (Ren et al., 2016), and SSD (Liu et al., 2016) rely heavily on spatial
cues from a single frame, making them brittle when the ball is invisible
due to occlusion (Saleh et al., 2021). Temporal CNN approaches (Liu
and Wang, 2022; Huang et al., 2019; Sun et al., 2020; Tarashima
et al., 2023; Voeikov et al., 2020; Raj et al., 2025; Chen and Wang,
2023) improve robustness by stacking frames, but this treats temporal
information as static features, losing dynamic motion patterns critical
for predicting the ball’s location when occluded. Kalman filter-based
methods (Naik and Hashmi, 2023; Hu et al., 2024; Li et al., 2023)
offer motion prediction but are limited to linear dynamics and cannot
capture the complex trajectories caused by spin, sudden deflections, or
rapid velocity changes common in racket sports.

Alongside the dataset, we define a visibility-specific evaluation
protocol that reports performance across visibility tiers, enabling sys-
tematic benchmarking of occlusion robustness. We further provide
TOTNet (Temporal Occlusion Tracking Network) as a strong reference
baseline for this benchmark. TOTNet integrates motion modeling with
occlusion targeted data augmentation and is explicitly designed for
offline sports analytics applications such as post-match analysis, referee
support, and tactical review, where inference speed is secondary to
accuracy and robustness.

Contributions. The main contributions of this work are:

1. A new task: visibility-aware occlusion-robust ball tracking
for racket sports — Formalizing a benchmark problem setting
not addressed in existing literature.

2. TTA: a new occlusion-rich benchmark dataset — First profes-
sionally annotated Paralympic table tennis dataset with dense
visibility labels, including 2396 occlusion cases (998 fully oc-

cluded) — the highest occlusion density among racket-sport
benchmarks.
3. Visibility-specific evaluation protocol - Enabling fine-

grained, tiered evaluation of robustness under different occlu-
sion severities.

4. TOTNet as a strong reference system — Motion-aware tempo-
ral tracking baseline achieving SOTA performance across four
racket-sport datasets, particularly under occlusion.

5. Real-world deployment evidence — Integrated into an elite-
level Paralympic table tennis analytics workflow, reducing an-
notation time per match from 3-4 h to under 6-7 min.

2. Related work
2.1. Sports tracking datasets

Existing sports ball tracking datasets can be broadly grouped into
those for large-field team sports (e.g., soccer, basketball) and racket

sports (e.g., tennis, badminton, table tennis). In team sports, prolonged
occlusions and large playing areas make ball position prediction far
more ambiguous, whereas in racket sports, short-term motion cues
and player context often allow occluded trajectories to be estimated
reliably. Most existing racket sports datasets share common traits:
broadcast-quality footage with optimal viewing angles, limited or inci-
dental occlusions rarely annotated explicitly, and no visibility-specific
evaluation protocol. Table 1 summarizes representative datasets, show-
ing that none combine dense visibility annotations with a large number
of full occlusions in realistic single-view capture. Our proposed TTA
dataset fills this gap, offering the first benchmark for visibility-aware
ball tracking in low-resource racket sports.

2.2. Single object tracking in sports videos

The development of deep learning-based image detectors such as
YOLO (Redmon, 2016), SSD (Liu et al., 2016), and R-CNN (Girshick
et al., 2014) has significantly advanced ball tracking in sports videos.
These methods follow the tracking-by-detection (TBD) paradigm, where
detections are obtained from individual frames and subsequently linked
to form trajectories (Naik and Hashmi, 2023; Buric et al., 2018;
Teimouri et al.,, 2019; Reno et al., 2018; Komorowski et al., 2019).
However, TBD methods process frames independently, which limits
their ability to leverage temporal information and results in temporally
inconsistent tracking, especially during partial or full occlusions.

To overcome these limitations, recent works have explored the
integration of temporal information. Methods like TrackNet (Huang
et al., 2019), TrackNetV2 (Sun et al., 2020), and MonoTrack (Liu
and Wang, 2022) incorporate multiple consecutive frames as inputs
to CNNs, capturing short-term motion patterns. Other approaches use
advanced temporal modeling techniques, such as optical flow (Doso-
vitskiy et al., 2015), Recurrent Neural Networks (RNNs), convolutional
LSTMs (Patraucean et al., 2015), and temporal convolutions (Lea et al.,
2017), to better model object motion over time (Kukleva et al., 2019;
Li et al., 2023). Additionally, transformers (Vaswani, 2017) have intro-
duced spatiotemporal attention mechanisms, enabling models to learn
correlations within and across frames and predict object movements
more effectively (Yu et al., 2024; Chao et al., 2024). Distinct from end-
to-end deep learning paradigms, a separate category of methods relies
on global optimization to ensure trajectory coherence. Maksai et al.
(2016) formulated ball tracking as a Mixed Integer Program (MIP),
effectively capturing long-term dependencies by jointly optimizing ball
and player interactions over the entire video sequence. Similarly, Zou
et al. (2024) recently employed a graph-based message-passing frame-
work to refine candidate detections extracted via classical computer
vision heuristics. While these approaches demonstrate high tracking
precision by leveraging global temporal context (offline processing),
they differ fundamentally from online, causal trackers which must oper-
ate in real-time without access to future frames. Despite these advances,
current approaches still struggle with occlusion handling, particularly
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Comparison of representative racket-sports ball tracking datasets. TTA is the only dataset with dense occlusion labeling, including a large number of fully occluded

frames, captured under realistic single-view conditions.

Dataset Sport Capture setup FPS Resolution #Samples #0Occ. Cases #Full Occ. Occ. Rate (%)
TrackNet (Huang et al., 2019) Tennis Broadcast 30 1280 x 720 19,835 1474 82 7.43
TrackNetV2 (Sun et al., 2020) Badminton Broadcast 30 1280 x 720 68,763 0 0 0.00

TT (Voeikov et al., 2020) Table tennis Broadcast 120 1920 x 1080 52,061 0 0 0.00

TTA (Ours) Table tennis Handheld 25 1920 x 1080 12,414 2396 998 19.30

in sports where the ball frequently disappears due to rapid motions and
interactions with players. This highlights the need for methods that
can effectively leverage both temporal and contextual information to
improve tracking consistency and its robustness to occlusion challenges.

2.3. Occluded object tracking

Occluded object tracking remains a significant challenge in video-
based object detection, despite advancements in the field (Saleh et al.,
2021). The difficulty lies in collecting and labeling datasets with suffi-
cient occlusion diversity, as creating comprehensive real-world datasets
for all occlusion scenarios is nearly impossible. As a result, many studies
are based on synthetic datasets or automatically generated occluded
samples (Saleh et al., 2021). To address this, Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014) have been employed to
generate occluded data. For instance, Wang et al. (2017) augmented
the COCO dataset with occluded objects using GANs, improving model
robustness through enhanced training data. Similarly, Li and Malik
(2016) created synthetic occlusions by overlaying object masks from
one image onto another, producing amodal data to improve occlusion
handling.

Compositional models also show promise. These models detect par-
tially occluded objects by leveraging a generative, modular approach.
For example, Kortylewski et al. (2020) used a differentiable generative
compositional layer instead of the fully connected layer in a CNN,
enabling robust classification of occluded objects and accurate local-
ization of occluders. In another approach, Cui et al. (2021) framed
object tracking as a Markov decision process within a deep reinforce-
ment learning framework. Their AD-OHNet tracker utilized temporal
and spatial contexts from action-state histories prior to occlusion, en-
abling accurate tracking even during complete occlusion. For multiper-
son tracking, Zhou et al. (2018) proposed a deep alignment network
that combines an appearance model with a Kalman filter-based mo-
tion model. This hybrid approach effectively handles occlusions and
improves motion reasoning during tracking.

Occlusion is a common challenge in sports scenarios, significantly
impacting ball and player detection. For instance, Halbinger and Met-
zler (2015) introduced a two-stage approach for detecting soccer balls
under occlusion. The first stage detects the ball when fully visible, while
the second stage identifies occluded parts as “bumps” on player silhou-
ettes using a Hough transform for circular shape detection, followed by
Freeman Chain Code analysis to confirm the ball’s dimensions. In Kam-
ble et al. (2019b), the authors tackled ball occlusion by tracking the
player occluding the ball, maintaining continuity in the tracking pro-
cess. However, this post-processing approach is less effective in sports
with frequent and complex occlusions that demand precise, real-time
localization. To address occlusions, Naik and Hashmi (2023) integrated
YOLOv3 with a Kalman filter to predict the ball’s position during
occlusion. This hybrid approach demonstrated improved robustness in
challenging scenarios by combining detection and prediction. In racket
sports, leveraging temporal information is critical due to frequent
occlusions of fast-moving objects. For example, Huang et al. (2019)
demonstrated that by stacking multiple consecutive frames as input en-
ables CNN models to capture trajectory patterns, aiding in the detection
and tracking of occluded objects. However, the mechanisms by which
trajectory patterns are learned remain unexplored and the occlusion
samples in the dataset is too small to show its effectiveness. Building

on this, Sun et al. (2020) improved prediction accuracy by adopting
a U-Net architecture combined with a multiple-input, multiple-output
(MIMO) framework. Although this design introduced a slight reduction
in processing speed, it significantly enhanced overall performance.
Extending the TrackNet family, Chen and Wang (2023) and Raj et al.
(2025) further boosted performance by incorporating motion features
through frame differencing. Additional progress was achieved by Liu
and Wang (2022), who incorporated residual connections within U-Net
blocks to improve tracking accuracy in badminton videos.

Contrasting with encoder—decoder architectures, Tarashima et al.
(2023) argued that such designs often lack sufficient feature diversity
for effective tracking. They employed high-resolution feature extrac-
tion methods from HRNet (Wang et al., 2020; Yu et al., 2021), com-
bined with position-aware model training and temporal consistency,
achieving SOTA results across multiple sports datasets.

Most existing approaches leverage temporal information by stacking
multiple frames along the channel dimension for 2D convolutions.
However, this method limits the ability to fully capture the rich tem-
poral dynamics inherent in video data. Stacking frames treats temporal
information as static features rather than dynamic sequences, failing to
explicitly model the evolution of object motion over time. As a result,
these approaches struggle to track objects accurately during occlusion,
where the model must rely on contextual information from preceding
and succeeding frames to predict the occluded object’s position.

3. Methodology
3.1. Datasets

To evaluate performance across varied racket sports, we use four
datasets: three existing ones for table tennis, tennis, and badminton,
and a newly introduced TTA dataset designed to emphasize occlusion
scenarios. The TT dataset from Voeikov et al. (2020) includes five train-
ing and seven testing videos, yielding 36,224 training, 3232 validation,
and 3720 test samples. Captured at 120 fps (1920 x 1080) from a
side view, it features minimal occlusion and lacks visibility labels. The
tennis dataset, accessed via (Tarashima et al., 2023) from Huang et al.
(2019), contains 10 clips (30 fps, 1080 x 720) with ball coordinates
and visibility labels: 0 (out-of-frame), 1 (visible), 2 (partially visible),
3 (fully occluded). We created balanced splits detailed in Table 2. The
badminton dataset (Sun et al., 2020) has 26 training and 3 testing
matches (30 fps, 1280 x 720) with binary visibility labels (0 = not
visible, 1 = visible). It contains a higher proportion of invisible frames
than other datasets.

The TTA dataset, manually annotated for this study, contains
12,414 samples (25 fps, 1920 x 1080) from 17 professional-level Para
table tennis matches across major tournaments including the Para-
lympics Pairs, World Para Elite (WPE), and World Para Future (WPF).
Each frame is annotated with both ball coordinates and a visibility
label. The dataset includes 2396 occlusion samples — substantially
more than any existing benchmark — arising from challenging camera
angles, the small ball size, and highly dynamic gameplay. All annota-
tions were reviewed by national team analysts to ensure reliability and
correctness.

Annotation Protocol: We annotate each frame using three visibility
levels: (i) fully visible, where the ball is completely unobstructed and
easily identifiable; (ii) partially occluded, where the ball is partially
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Fig. 2. Examples of partially occluded cases (Columns 1-2) and fully occluded cases (Column 3). The approximate ball location in each frame is zoomed in.

Table 2
Visibility-level distribution across Tennis, TTA, and Badminton datasets.
Dataset Visibility level Train Val Test
Out of frame 587 107 135
Tennis Fully visible 11,641 2940 3054
Partially occluded 861 193 338
Fully occluded 55 22 5
Fully visible 6787 1692 1539
TTA (ours) Partially occluded 976 252 168
Fully occluded 689 177 132
Badminton Out of frame 8052 2022 2188
Fully visible 54,794 13,690 10,468

hidden by a player, racket, or other object but still provides local visual
cues; and (iii) fully occluded, where the ball is completely hidden from
view yet remains in play. Examples of partially and fully occluded is
shown in Fig. 2.

For fully visible and partially occluded frames, annotators mark the
ball center directly. For fully occluded frames, where no pixel-level
evidence exists, the ball location is inferred through trajectory-consistent
interpolation: annotators reference the ball positions in preceding and
subsequent visible frames to estimate a physically plausible continu-
ation of its motion, respecting table geometry, player contact timing,
and feasible speed changes. When an occlusion extends beyond three
consecutive frames, annotators additionally estimate instantaneous ve-
locity and direction to maintain temporal coherence. All long-occlusion
annotations are reviewed by a second annotator to ensure reliability.

This procedure ensures that fully occluded labels are not arbitrary
but reflect the most probable continuation of the ball’s true trajectory.

Design Rationale: While TTA is comparable in overall scale to
existing broadcast-based datasets, it is uniquely curated for challenge
density. More than 19% of its frames involve occlusions, including
998 fully occluded cases—orders of magnitude higher than previous
datasets. This concentration of difficult samples minimizes redundancy,
enables more efficient occlusion-specific learning, and establishes TTA
as the most focused benchmark for evaluating single-view tracking
under realistic, low-resource sports conditions.

3.2. Occlusion augmentation

We propose a novel augmentation technique to enhance perfor-
mance in occlusion scenarios. For a sequence of frames, we simulate
occlusion by masking the ball area in the target frame with a randomly
sized shape filled with the surrounding mean pixel values. Examples are
shown in Fig. 3. This augmentation forces the model to rely on temporal
information from adjacent frames and the spatial context surrounding
the occluded region rather than solely depending on the current frame’s
spatial features.

To prevent the model from adapting too strongly to this augmenta-
tion, we introduce additional noise by randomly selecting areas in the
other frames and filling them with mean pixel values. This ensures that
the model learns to generalize better and robustly utilize both temporal
and spatial features across all frames.

3.3. BCE loss with visibility-based weighting

We employ a visibility-aware weighted binary cross-entropy (BCE)
loss to account for the imbalance and inherent uncertainty present in
occlusion-heavy ball tracking. Prior works (Huang et al., 2019; Sun
et al., 2020; Tarashima et al., 2023; Voeikov et al., 2020) typically
supervise ball locations using 2D Gaussian target maps for all frames.
Our formulation follows this consistent strategy: all annotated ball posi-
tions — visible, partially occluded, and fully occluded — are represented as
normalized Gaussian heatmaps. This provides smooth spatial gradients,
avoids unstable one-hot targets, and leads to more stable optimization.

Our loss design therefore ensures:

+ Consistent Gaussian supervision across all annotated visibility
levels.
+ Balanced learning through visibility-dependent weighting.

Target definition. Let P € R¥*W denote the predicted heatmap ob-
tained after applying a spatial softmax over all H x W logits. For any
annotated ball position (T, T,), the target heatmap Ty, € [0, 117>V is
defined as a normalized 2D Gaussian:

(i-T)+( —Tx)2>

ap

@

. 1
Tmap[l,]] = E exp<_ 752

where the normalization term is:
H-1W-1 2 2
wu—=T) +(@w-T,)
Z= Z Z exp<—y—2x . 2)
u=0 v=0 20

Visibility-based weighting. Each visibility level v € {0, 1,2,3} is assigned
a scalar weight. We define the visibility-weight vector as:

W = [Woof, Wyis, Wpartia> Wocel- 3)

For a frame with visibility label v, the corresponding weight is the
scalar:

w, = w[v]. @

Final loss. The final loss for a frame is:
L=w, BCE(P, Tpyy). (5)

where BCE(-) returns a scalar loss between the predicted heatmap P
and the Gaussian target Tp,,, (if present).
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Fig. 3. Augmentation examples for three different datasets where the ball is circled in red.
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Fig. 4. Overview of the proposed TOTNet architecture. TOTNet preserves the temporal dimension throughout the encoder-decoder pipeline by combining 2D
spatial convolutions with 3D temporal convolutions. Residual connections ensure spatial detail retention, while skip connections between encoder and decoder
layers support both spatial and temporal feature reconstruction. The final output is a visibility-aware heatmap representing the predicted ball position.

3.4. Architecture

Our model extends prior work (Huang et al., 2019; Sun et al., 2020)
by explicitly preserving the temporal dimension throughout the net-
work, enabling richer motion-aware feature learning. Unlike earlier ap-
proaches that collapse temporal information by stacking frames along
the channel axis, TOTNet maintains a structured temporal pathway that
captures frame-to-frame dynamics.

Motion is modeled through lightweight shortcut 3D convolutional
blocks integrated into both the encoder and decoder. These 3D con-
volutions operate over short temporal windows to extract local mo-
tion cues — such as instantaneous velocity and direction changes —
which are then fused with spatial features via residual connections.
This spatio-temporal fusion helps maintain trajectory continuity dur-
ing rapid movement or occlusions, where visual evidence alone is
insufficient.

The overall architecture builds upon a U-Net backbone (Ronneberger
et al.,, 2015), using encoder—decoder blocks with skip connections
to preserve spatial detail while propagating temporal context. An
overview of the full architecture is provided in Fig. 4.

3.4.1. Encoder

Each encoder block integrates spatial and temporal convolutions,
where the spatial convolution is implemented as a 2D convolution, and
the temporal convolution is implemented as a 3D convolution. Initially,
spatial convolutions are applied to each frame independently to ex-
tract spatial features. These features are then passed through temporal
convolutions, keeping the temporal dimension intact, to capture de-
pendencies across frames and effectively combine spatial and temporal

information for better object localization. A 3D max pooling operation
is then applied to reduce both the spatial size and temporal frame
size while preserving the most valuable information. Additionally, a
residual connection is included within each encoder block, where the
output from the spatial convolution is added to the output of the
temporal convolution to ensure that spatial information is not lost. A
detailed flow of the encoder block is specified in Fig. 5.

As the model deepens on the encoder side, the number of channels
increases while the spatial resolution and temporal sequence decrease.
The kernel size for spatial convolutions becomes smaller to focus
on finer details in smaller spatial regions, whereas the kernel size
for temporal convolutions decreases as the temporal dimension gets
reduced.

3.4.2. Bottleneck

The bottleneck block processes the highly abstracted information
from the encoder. By the time the input reaches the bottleneck block,
the temporal dimension has been reduced to 1, and the spatial dimen-
sions have been significantly downsized. This block contains more spa-
tial layers than the other blocks, focusing on extracting the most critical
features. Since the temporal dimension is reduced to 1, the kernel size
for temporal convolution is set to (1,1,1), effectively performing point-
wise convolution. This operation facilitates mixing information across
all channels, enabling the block to generate rich feature representations
that combine temporal and spatial information effectively.

3.4.3. Decoder
After passing through the bottleneck block, the decoder blocks begin
the 3D upsampling process to restore both the temporal and spatial
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Fig. 5. Detailed structure of the first encoder block in TOTNet. Each frame is first processed by a 2D convolution to extract spatial features, followed by a 3D
temporal convolution to capture inter-frame dependencies. A 3D max-pooling layer reduces both spatial and temporal dimensions, while a residual connection
from the spatial path to the temporal path ensures preservation of fine-grained spatial details.
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Fig. 6. Structure of the last decoder block in TOTNet. Features are upsampled using trilinear interpolation, followed by 2D spatial and 3D temporal convolutions.
Skip connections from earlier encoder layers provide both spatial and temporal context, enabling accurate reconstruction. A final temporal convolution reduces
the channel dimension, and a softmax is applied to produce the visibility-aware probability heatmap of the ball location.

dimensions. Features are upsampled using the trilinear method, as the
model focuses on generating a heatmap for the object’s likely position
rather than precise segmentation. Each decoder block mirrors the layers
of the encoder block, and skip connections are utilized for both spatial
and temporal convolutions. These skip connections concatenate the
encoder features along the channel dimension, allowing the decoder
to leverage information from earlier layers for enhanced feature recon-
struction both spatially and temporally. A detailed decoder structure is
in Fig. 6. In the final stage, a temporal convolutional block is employed
to reduce the channel dimension to one, retaining the most critical
information. A softmax activation is applied to the resulting heatmap
to ensure it represents a normalized probability distribution.

4. Experiments
4.1. Implementation details

For all datasets, video frames and corresponding ball coordinates
are resized to 288 x 512 pixels. The number of input frames is treated
as a hyperparameter, with five frames selected as the optimal balance
between temporal context and computational efficiency. Alongside oc-
clusion augmentation, we apply standard data augmentations, includ-
ing color jittering, random cropping/resizing, and horizontal or vertical
flipping. Models are trained using the AdamW optimizer (Loshchilov,

2017) with a learning rate of 5x 1074, weight decay of 5x 107>, a batch
size of 8, and a cosine learning-rate scheduler. Training is performed
for 30 epochs, with the best checkpoint selected based on validation
performance. The default weighting for BCE loss is set to [1,2,2,3]. All
experiments are conducted on a single NVIDIA A100 GPU.

4.2. Evaluation

We evaluate performance using RMSE and Percentage of Correct
Keypoints (PCK). RMSE is the square root of the mean of the squared
distances between predicted and ground truth coordinates, while PCK
measures the proportion of predictions that fall within a defined dis-
tance threshold from the ground truth:

dist = \/(xpred = Xlabel)? + (Vpred — Viabe)?- ©

Predictions within this threshold are treated as correct. For fully
visible and partially occluded balls, we adopt a 4-pixel threshold, con-
sistent with the ball’s approximate 4-5 pixel diameter at a resolution
of 288 x 512. For fully occluded frames, we relax the threshold to
10 pixels — roughly twice the ball’s physical size — to account for
the inherent uncertainty in annotating invisible objects and the vari-
ation introduced by trajectory-based interpolation. This avoids over-
penalizing predictions when even human annotators cannot reliably
localize the ball.



H. Xu, A.A. Baniya, S. Wells et al.

Table 3

Computer Vision and Image Understanding 264 (2026) 104657

Performance comparison across Tennis, TTA, Badminton and TT datasets. RMSE and PCK are reported separately for each visibility level. For fully visible and
partially occluded cases, PCK is computed at a 4-pixel threshold, while for fully occluded cases a 10-pixel threshold is used. Because the TT datasets includes
only visible frames and does not distinguish visibility levels, the TT (overall) column reports performance across all TT frames. The rightmost column reports
model efficiency in terms of parameter count (M) and average inference speed (FPS).

Model Metric Tennis TTA Badminton TT (Overall) Parameters M/FPS
Visible  Partial Occ. Full Occ.  Visible  Partial Occ.  Full Occ.  Visible  Not visible

TTNet (Voeikov et al., RMSE 25.40 72.70 48.77 34.28 36.33 39.61 40.76 43.31 4.02 7.62/40.75

2020) PCK 0.23 0.19 0.17 0.39 0.26 0.21 0.23 0.74 0.85

TrackNetV2 (Sun et al., RMSE 24.48 109.93 232.70 4.47 19.15 35.22 34.32 32.95 2.43 11.34/52.34

2020) PCK 0.84 0.49 0.00 0.93 0.71 0.57 0.86 0.88 0.91

TrackNetV4 (Raj et al., RMSE 9.51 71.43 175.68 3.71 14.21 26.63 17.99 284.34 0.93 11.34/49.88

2025) PCK 0.95 0.64 0.17 0.91 0.74 0.56 0.92 0.39 0.99

MonoTrack (Liu and RMSE 43.28 138.39 227.71 3.83 10.07 32.45 40.13 27.67 2.23 2.84 /139.75

Wang, 2022) PCK 0.78 0.42 0.00 0.92 0.74 0.45 0.84 0.90 0.95

WASB (Tarashima RMSE 16.58 105.73 264.45 4.18 20.11 37.67 27.17 56.50 3.11 1.48/68.27

et al., 2023) PCK 0.92 0.52 0.17 0.93 0.70 0.42 0.88 0.79 0.84

TOTNet RMSE 6.07 63.41 27.98 2.55 10.95 17.17 23.43 44.55 1.67 8.65/28.50
PCK 0.95 0.61 0.67 0.94 0.68 0.60 0.89 0.84 0.97

We do not report precision or recall because, for the Tennis, TTA,
and TT datasets, every frame in the benchmark is assumed to contain
exactly one valid ball annotation. These datasets are rally-centric and
comprise only ball-in-play segments in which out-of-frame occurrences
are effectively negligible. As a result, each model prediction is matched
directly to a single ground-truth coordinate, and binary classification
metrics (e.g., true negatives, multiple detections) are not meaningful.
Under this evaluation protocol, precision and recall reduce to the
information already conveyed by localization metrics such as PCK and
RMSE, and thus offer no additional insight.

In contrast, the badminton dataset contains a substantial number of
out-of-frame instances. For such frames, we assign the ball a canonical
coordinate of (0,0) and compute RMSE and PCK accordingly.

4.3. Other models

In this work, we used official implementations whenever available;
otherwise, we re-implemented the models following the original de-
scriptions. The set of baselines includes TrackNetV2 (Sun et al., 2020),
TrackNetV4 (Raj et al., 2025), MonoTrack (Liu and Wang, 2022),
WASB (Tarashima et al., 2023), and TTNet (Voeikov et al., 2020).
Among these, only TrackNetV2 was re-implemented, as its original
codebase is written in TensorFlow while our framework is built in
PyTorch, requiring a reproduction for consistent evaluation. All other
methods were used through their official or publicly released PyTorch
implementations. Implementation details, adaptations, and resolution
settings are provided in our GitHub repository. WASB (Tarashima et al.,
2023) and TrackNetV4 (Raj et al., 2025) represent the most recent and
advanced approaches, serving as strong baselines for comparison.

4.4. Results

The results across all four datasets are summarized in Table 3. Our
proposed model, TOTNet, consistently outperforms existing state-of-
the-art methods, particularly under occlusion. On the tennis dataset,
TOTNet reduced the RMSE for partially occluded objects from 105.73
to 63.41. More notably, for fully occluded cases, it achieved an RMSE of
27.98 and improved PCK to 0.67, demonstrating its ability to recover
ball trajectories even under complete occlusion. On the TTA dataset,
which features the highest density of occlusion, TOTNet again outper-
formed all other models. In the fully occluded setting, it achieved an
PCK of 0.60 and an RMSE of 17.17, underscoring its robustness in chal-
lenging real-world conditions. Similar improvements were observed on
the TT and badminton datasets, where TOTNet matched or surpassed

state-of-the-art performance across all visibility levels. These results
highlight the effectiveness of leveraging temporal and spatial context
for accurate tracking in both clear and occluded scenarios.

Although TOTNet achieves state-of-the-art performance across all
benchmarks, we observe several recurring failure modes. First, dur-
ing extended full occlusions (>5-6 frames), the predicted trajectory
may drift when neither short-term motion cues nor contextual fea-
tures provide sufficient constraints. Second, in a small number of fast
rallies, motion blur combined with visually ambiguous backgrounds
(e.g., white advertising boards or spectator clothing) can temporarily
cause loss of the ball as shown in Fig. 7. Third, in the badminton
dataset, occasional out-of-frame sequences lead to temporary track-
ing discontinuities despite the model’s ability to re-acquire the object
once it re-enters the frame. These cases are rare but highlight the
fundamental limits of single-view tracking under extreme occlusion and
appearance ambiguity.

4.5. Ablation studies

4.5.1. Online vs. Offline

We conducted an ablation study on the TTA dataset to analyze the
effect of temporal context length (N frames) and inference direction-
ality. To clarify the mechanism, we define our two inference modes as
follows:

» Online (uni-directional): This mode simulates real-time predic-
tion. To predict the ball’s position in a target frame ¢, the model is
given a sequence of N consecutive frames ending with the target
frame: [r — N + 1, ...,7]. This approach is causal, using only past
and present information.

Offline (bi-directional): This mode is designed for post-
processing applications where the entire video is available. To
predict for a target frame 7, the model uses a centered sliding
window of N frames, accessing both past and future context:
[t — % U RN %]. This requires access to future frames
relative to the target, making it non-causal but allowing for more
robust predictions, especially during occlusion.

The results of this study are shown in Table 4. As expected, offline infer-
ence, which leverages both past and future context, outperforms online
inference when the number of input frames is moderate. However, we
observe a decline in offline performance as the input length increases
to 9 frames, suggesting that excessive context may introduce noise or
reduce temporal precision.



H. Xu, A.A. Baniya, S. Wells et al.

- \

TOYOTA  Zriocestone )

Computer Vision and Image Understanding 264 (2026) 104657

EDF  Allanz@

¥ TOYOTA  Zriocestone

Fig. 7. Failure cases observed in fast rally sequences, where motion blur combined with occlusion leads to temporary tracking errors. Pink circles indicate the

predicted ball positions, and black circles denote the ground-truth locations.

Fig. 8. Tracking examples from trained TOTNet including TTA, Tennis, Badminton.

Table 4

Ablation study on temporal context length (N frames) and directionality.
Results are reported as RMSE and PCK. For fully visible and partially occluded
cases, PCK is computed at a 4-pixel threshold, while for fully occluded cases
a 10-pixel threshold is used. FPS is measured on an A100. Online = uni-
directional (real-time), Offline = bi-directional (offline).

Frames N Direction Metric Visible Part. Occ. Full Occ. FPS
Online RMSE 2.80 11.47 29.56
3 PCK 0.93 0.71 0.52 35.37
Offline RMSE 2.28 8.72 16.02
PCK 0.93 0.87 0.52
Online RMSE 2.55 10.95 17.17
5 PCK 0.94 0.68 0.60 28.50
Offline RMSE 2.21 9.78 17.49
PCK 0.95 0.75 0.57
Online RMSE 2.87 13.54 18.90
7 PCK 0.93 0.69 0.53 18.81
Offline RMSE 2.03 24.41 21.90
PCK 0.94 0.76 0.65
Online RMSE 3.84 12.53 18.36
9 PCK 0.93 0.68 0.59 13.16
Offline RMSE 3.57 23.72 22.65
PCK 0.93 0.79 0.64

4.5.2. Component isolation

To validate each component’s effectiveness, we conducted an abla-
tion study on the TTA datasets using TOTNet as the base model. Table
5 shows how each progressive modification improved performance.
First, the visibility-weighted BCE loss prioritized occluded and low-
visibility frames, enhancing robustness under occlusion. Next, occlusion
augmentation simulated diverse scenarios, forcing the model to rely
on temporal and spatial context, significantly boosting accuracy in
challenging conditions. Finally, integrating optical flow did not im-
prove performance. Instead, it introduced additional noise that led

to unstable predictions, particularly under rapid motion. Moreover,
the inclusion of optical flow significantly reduced inference speed —
dropping the model to 22 FPS — making it impractical for real-world
deployment where real-time operation is required. These components
complementarily enhanced TOTNet’s performance, with the base model
already outperforming the best existing methods (Tarashima et al.,
2023), highlighting its superior architecture.

5. Deployment workflow

TOTNet, trained on the TTA dataset, has been deployed within an
elite-level Paralympic table tennis analytics workflow as an automated
ball-position detection system as shown in Fig. 8. Previously, profes-
sional sports analysts manually annotated ball positions — particularly
bounce locations — for every rally, a process that could take 3-4 h
for a single match. With our approach, a complete match can now
be processed in approximately 6-7 min. When combined with an
event-detection module, bounce locations relative to the table can be
extracted in under 30 s for a single game. This integration not only
reduces annotation time by over 90% but also enables rapid turnaround
for post-match analysis, tactical review, and performance feedback.

6. Conclusion

We introduce the task of visibility-aware occlusion-robust ball tracking
for racket sports, addressing a gap in current sports analytics where
most benchmarks lack dense occlusion annotation and visibility-specific
evaluation. To support research in this domain, we present the TTA
dataset — the first professionally annotated benchmark from Para-
lympic table tennis with 2396 occlusion cases (998 fully occluded),
over 19% of total frames, captured under realistic single-view condi-
tions. Alongside the dataset, we define an evaluation protocol that mea-
sures performance across visibility levels, enabling systematic bench-
marking of occlusion robustness.
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Ablation study on the TTA dataset across different visibility levels. RMSE and Accuracy are reported separately for
each method. WBCE = Weighted Binary Cross Entropy, Aug. = Occlusion Augmentation, OF. = Optical Flow.

Method WBCE Aug. OF. Visible Part. Occ. Full Occ.
RMSE

TOTNet (Baseline) - - - 3.20 14.36 24.82
TOTNet (WBCE) v - - 2.75 13.51 20.74
TOTNet (Aug.) - v - 2.83 11.26 17.89
TOTNet (WBCE + Aug.) v v - 2.55 10.95 17.17
TOTNet (WBCE + Aug. + OF.) v v v 2.78 13.25 27.46
PCK

TOTNet (Baseline) - - - 0.926 0.667 0.508
TOTNet (WBCE) v - - 0.945 0.671 0.546
TOTNet (Aug.) - v - 0.927 0.682 0.591
TOTNet (WBCE + Aug.) v v - 0.936 0.685 0.599
TOTNet (WBCE + Aug. + OF.) v v v 0.925 0.732 0.561

To establish a strong baseline, we propose TOTNet — a system
integrating temporal preservation, motion modeling, and occlusion-
targeted augmentation — and evaluate it across four racket-sport
datasets. Results show that TTA exposes substantial performance gaps
in existing methods and that TOTNet significantly improves tracking
under challenging occlusion scenarios.

Beyond Paralympic table tennis, this problem formulation, dataset,
and protocol can generalize to other low-resource and adaptive sports
where broadcast-quality footage is unavailable and occlusions are fre-
quent. This work enables reproducible benchmarking and provides
the sports analytics community with tools to advance fair officiat-
ing, performance analysis, and technology access in underrepresented
domains.

Future work will expand the current dataset to a larger scale with
additional matches from different tournaments and varied camera an-
gles, enhancing its value as a comprehensive benchmark. We also plan
to explore lighter architectures and more recent models, including
transformer-based approaches, to establish stronger and more diverse
baselines for benchmarking.
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