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 A B S T R A C T

Ball tracking is a fundamental problem in computer vision, particularly in sports analytics, where it underpins 
tasks such as analyzing ball movement in soccer and basketball or detecting bounce locations in tennis and 
table tennis. Most existing methods are developed and evaluated on resource-rich, commercial sports footage 
with ideal camera angles, high-resolution imagery, and multiple viewpoints. In contrast, many other sports 
contexts, including semi-professional leagues, local amateur competitions, and Paralympic sports, lack these 
resources. Footage in these settings often comes from single, fixed, and suboptimal viewpoints, where occlusion 
becomes a dominant challenge for automated tracking. Existing methods frequently fall short in such conditions 
because their architectures and training strategies do not explicitly account for prolonged or full occlusion. 
To address this gap, we present the Table Tennis Australia (TTA) dataset, the first professionally annotated 
Paralympic table tennis benchmark with dense visibility labels, captured under realistic single-view conditions. 
With 2,396 occluded instances (including 998 fully occluded), TTA is the most occlusion-rich publicly available 
dataset to date. Alongside the dataset, we propose the Temporal Occlusion Tracking Network (TOTNet), 
a novel tracking system designed to maintain localization accuracy even under extended occlusion. Through 
comprehensive experiments on four sports tracking datasets, TOTNet achieves state-of-the-art performance, 
with substantial gains in full-occlusion scenarios. We release the dataset, code, and evaluation scripts to foster 
reproducibility and future research in occlusion robust tracking for low resource sports; all materials are 
available at https://github.com/AugustRushG/TOTNet.
. Introduction

Automated ball tracking is a core capability in sports analytics, 
nabling downstream tasks such as possession analysis, trajectory pre-
iction, and event detection (Naik et al., 2022; Kamble et al., 2019a). 
hile existing research has achieved strong performance on broadcast-
uality, multi-camera footage in sports like tennis, basketball, and 
occer, most methods and benchmarks assume ideal capture conditions: 
igh-resolution video, optimal viewing angles, and minimal occlusion. 
n contrast, many real world settings, including Paralympic compe-
ition, semi-professional tournaments, and amateur leagues, operate 
nder single-view, fixed-angle capture with frequent, prolonged oc-
lusions. These conditions severely limit the effectiveness of existing 
pproaches and reduce the reliability of analytics in contexts where 
hey could have the greatest practical impact.
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We address this gap by introducing the task of visibility-aware 
occlusion-robust ball tracking for racket sports. This task explicitly mea-
sures tracking robustness across varying visibility levels and prolonged 
occlusions, a setting largely ignored in current literature. To support 
research in this domain, we present TTA (Table Tennis Australia), 
the first professionally annotated Paralympic table tennis dataset with 
dense frame level visibility labels. TTA contains 12,414 samples, in-
cluding 2396 occlusion cases (998 fully occluded). Over 19% of frames 
are captured under realistic single-view conditions This high occlusion 
density makes TTA uniquely suited for benchmarking robustness, where 
other datasets provide little to no occlusion coverage (Huang et al., 
2019; Sun et al., 2020; Tarashima et al., 2023). Examples of the dataset 
are shown in Fig.  1. TTA reflects the true constraints of low-resource 
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Fig. 1. TTA dataset examples including different tournaments such as Paralympics Pairs, World Para Elite, World Para Future.
sports analytics and is intended as a benchmark for visibility-aware 
evaluation in practical settings.

Previous ball tracking approaches struggle under these conditions. 
Frame-based object detectors such as YOLO (Redmon, 2016), Faster R-
CNN (Ren et al., 2016), and SSD (Liu et al., 2016) rely heavily on spatial 
cues from a single frame, making them brittle when the ball is invisible 
due to occlusion (Saleh et al., 2021). Temporal CNN approaches (Liu 
and Wang, 2022; Huang et al., 2019; Sun et al., 2020; Tarashima 
et al., 2023; Voeikov et al., 2020; Raj et al., 2025; Chen and Wang, 
2023) improve robustness by stacking frames, but this treats temporal 
information as static features, losing dynamic motion patterns critical 
for predicting the ball’s location when occluded. Kalman filter-based 
methods (Naik and Hashmi, 2023; Hu et al., 2024; Li et al., 2023) 
offer motion prediction but are limited to linear dynamics and cannot 
capture the complex trajectories caused by spin, sudden deflections, or 
rapid velocity changes common in racket sports.

Alongside the dataset, we define a visibility-specific evaluation 
protocol that reports performance across visibility tiers, enabling sys-
tematic benchmarking of occlusion robustness. We further provide
TOTNet (Temporal Occlusion Tracking Network) as a strong reference 
baseline for this benchmark. TOTNet integrates motion modeling with 
occlusion targeted data augmentation and is explicitly designed for
offline sports analytics applications such as post-match analysis, referee 
support, and tactical review, where inference speed is secondary to 
accuracy and robustness.

Contributions. The main contributions of this work are:

1. A new task: visibility-aware occlusion-robust ball tracking 
for racket sports – Formalizing a benchmark problem setting 
not addressed in existing literature.

2. TTA: a new occlusion-rich benchmark dataset – First profes-
sionally annotated Paralympic table tennis dataset with dense 
visibility labels, including 2396 occlusion cases (998 fully oc-
cluded) — the highest occlusion density among racket-sport 
benchmarks.

3. Visibility-specific evaluation protocol – Enabling fine-
grained, tiered evaluation of robustness under different occlu-
sion severities.

4. TOTNet as a strong reference system – Motion-aware tempo-
ral tracking baseline achieving SOTA performance across four 
racket-sport datasets, particularly under occlusion.

5. Real-world deployment evidence – Integrated into an elite-
level Paralympic table tennis analytics workflow, reducing an-
notation time per match from 3–4 h to under 6–7 min.

2. Related work

2.1. Sports tracking datasets

Existing sports ball tracking datasets can be broadly grouped into 
those for large-field team sports (e.g., soccer, basketball) and racket 
2

sports (e.g., tennis, badminton, table tennis). In team sports, prolonged 
occlusions and large playing areas make ball position prediction far 
more ambiguous, whereas in racket sports, short-term motion cues 
and player context often allow occluded trajectories to be estimated 
reliably. Most existing racket sports datasets share common traits: 
broadcast-quality footage with optimal viewing angles, limited or inci-
dental occlusions rarely annotated explicitly, and no visibility-specific 
evaluation protocol. Table  1 summarizes representative datasets, show-
ing that none combine dense visibility annotations with a large number 
of full occlusions in realistic single-view capture. Our proposed TTA 
dataset fills this gap, offering the first benchmark for visibility-aware 
ball tracking in low-resource racket sports.

2.2. Single object tracking in sports videos

The development of deep learning-based image detectors such as 
YOLO (Redmon, 2016), SSD (Liu et al., 2016), and R-CNN (Girshick 
et al., 2014) has significantly advanced ball tracking in sports videos. 
These methods follow the tracking-by-detection (TBD) paradigm, where 
detections are obtained from individual frames and subsequently linked 
to form trajectories (Naik and Hashmi, 2023; Buric et al., 2018; 
Teimouri et al., 2019; Reno et al., 2018; Komorowski et al., 2019). 
However, TBD methods process frames independently, which limits 
their ability to leverage temporal information and results in temporally 
inconsistent tracking, especially during partial or full occlusions.

To overcome these limitations, recent works have explored the 
integration of temporal information. Methods like TrackNet (Huang 
et al., 2019), TrackNetV2 (Sun et al., 2020), and MonoTrack (Liu 
and Wang, 2022) incorporate multiple consecutive frames as inputs 
to CNNs, capturing short-term motion patterns. Other approaches use 
advanced temporal modeling techniques, such as optical flow (Doso-
vitskiy et al., 2015), Recurrent Neural Networks (RNNs), convolutional 
LSTMs (Patraucean et al., 2015), and temporal convolutions (Lea et al., 
2017), to better model object motion over time (Kukleva et al., 2019; 
Li et al., 2023). Additionally, transformers (Vaswani, 2017) have intro-
duced spatiotemporal attention mechanisms, enabling models to learn 
correlations within and across frames and predict object movements 
more effectively (Yu et al., 2024; Chao et al., 2024). Distinct from end-
to-end deep learning paradigms, a separate category of methods relies 
on global optimization to ensure trajectory coherence. Maksai et al. 
(2016) formulated ball tracking as a Mixed Integer Program (MIP), 
effectively capturing long-term dependencies by jointly optimizing ball 
and player interactions over the entire video sequence. Similarly, Zou 
et al. (2024) recently employed a graph-based message-passing frame-
work to refine candidate detections extracted via classical computer 
vision heuristics. While these approaches demonstrate high tracking 
precision by leveraging global temporal context (offline processing), 
they differ fundamentally from online, causal trackers which must oper-
ate in real-time without access to future frames. Despite these advances, 
current approaches still struggle with occlusion handling, particularly 
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Table 1
Comparison of representative racket-sports ball tracking datasets. TTA is the only dataset with dense occlusion labeling, including a large number of fully occluded 
frames, captured under realistic single-view conditions.
 Dataset Sport Capture setup FPS Resolution #Samples #Occ. Cases #Full Occ. Occ. Rate (%) 
 TrackNet (Huang et al., 2019) Tennis Broadcast 30 1280 × 720 19,835 1474 82 7.43  
 TrackNetV2 (Sun et al., 2020) Badminton Broadcast 30 1280 × 720 68,763 0 0 0.00  
 TT (Voeikov et al., 2020) Table tennis Broadcast 120 1920 × 1080 52,061 0 0 0.00  
 TTA (Ours) Table tennis Handheld 25 1920 × 1080 12,414 2396 998 19.30  
in sports where the ball frequently disappears due to rapid motions and 
interactions with players. This highlights the need for methods that 
can effectively leverage both temporal and contextual information to 
improve tracking consistency and its robustness to occlusion challenges.

2.3. Occluded object tracking

Occluded object tracking remains a significant challenge in video-
based object detection, despite advancements in the field (Saleh et al., 
2021). The difficulty lies in collecting and labeling datasets with suffi-
cient occlusion diversity, as creating comprehensive real-world datasets 
for all occlusion scenarios is nearly impossible. As a result, many studies 
are based on synthetic datasets or automatically generated occluded 
samples (Saleh et al., 2021). To address this, Generative Adversarial 
Networks (GANs) (Goodfellow et al., 2014) have been employed to 
generate occluded data. For instance, Wang et al. (2017) augmented 
the COCO dataset with occluded objects using GANs, improving model 
robustness through enhanced training data. Similarly, Li and Malik 
(2016) created synthetic occlusions by overlaying object masks from 
one image onto another, producing amodal data to improve occlusion 
handling.

Compositional models also show promise. These models detect par-
tially occluded objects by leveraging a generative, modular approach. 
For example, Kortylewski et al. (2020) used a differentiable generative 
compositional layer instead of the fully connected layer in a CNN, 
enabling robust classification of occluded objects and accurate local-
ization of occluders. In another approach, Cui et al. (2021) framed 
object tracking as a Markov decision process within a deep reinforce-
ment learning framework. Their AD-OHNet tracker utilized temporal 
and spatial contexts from action-state histories prior to occlusion, en-
abling accurate tracking even during complete occlusion. For multiper-
son tracking, Zhou et al. (2018) proposed a deep alignment network 
that combines an appearance model with a Kalman filter-based mo-
tion model. This hybrid approach effectively handles occlusions and 
improves motion reasoning during tracking.

Occlusion is a common challenge in sports scenarios, significantly 
impacting ball and player detection. For instance, Halbinger and Met-
zler (2015) introduced a two-stage approach for detecting soccer balls 
under occlusion. The first stage detects the ball when fully visible, while 
the second stage identifies occluded parts as ‘‘bumps’’ on player silhou-
ettes using a Hough transform for circular shape detection, followed by 
Freeman Chain Code analysis to confirm the ball’s dimensions. In Kam-
ble et al. (2019b), the authors tackled ball occlusion by tracking the 
player occluding the ball, maintaining continuity in the tracking pro-
cess. However, this post-processing approach is less effective in sports 
with frequent and complex occlusions that demand precise, real-time 
localization. To address occlusions, Naik and Hashmi (2023) integrated 
YOLOv3 with a Kalman filter to predict the ball’s position during 
occlusion. This hybrid approach demonstrated improved robustness in 
challenging scenarios by combining detection and prediction. In racket 
sports, leveraging temporal information is critical due to frequent 
occlusions of fast-moving objects. For example, Huang et al. (2019) 
demonstrated that by stacking multiple consecutive frames as input en-
ables CNN models to capture trajectory patterns, aiding in the detection 
and tracking of occluded objects. However, the mechanisms by which 
trajectory patterns are learned remain unexplored and the occlusion 
samples in the dataset is too small to show its effectiveness. Building 
3

on this, Sun et al. (2020) improved prediction accuracy by adopting 
a U-Net architecture combined with a multiple-input, multiple-output 
(MIMO) framework. Although this design introduced a slight reduction 
in processing speed, it significantly enhanced overall performance. 
Extending the TrackNet family, Chen and Wang (2023) and Raj et al. 
(2025) further boosted performance by incorporating motion features 
through frame differencing. Additional progress was achieved by Liu 
and Wang (2022), who incorporated residual connections within U-Net 
blocks to improve tracking accuracy in badminton videos.

Contrasting with encoder–decoder architectures, Tarashima et al. 
(2023) argued that such designs often lack sufficient feature diversity 
for effective tracking. They employed high-resolution feature extrac-
tion methods from HRNet (Wang et al., 2020; Yu et al., 2021), com-
bined with position-aware model training and temporal consistency, 
achieving SOTA results across multiple sports datasets.

Most existing approaches leverage temporal information by stacking 
multiple frames along the channel dimension for 2D convolutions. 
However, this method limits the ability to fully capture the rich tem-
poral dynamics inherent in video data. Stacking frames treats temporal 
information as static features rather than dynamic sequences, failing to 
explicitly model the evolution of object motion over time. As a result, 
these approaches struggle to track objects accurately during occlusion, 
where the model must rely on contextual information from preceding 
and succeeding frames to predict the occluded object’s position.

3. Methodology

3.1. Datasets

To evaluate performance across varied racket sports, we use four 
datasets: three existing ones for table tennis, tennis, and badminton, 
and a newly introduced TTA dataset designed to emphasize occlusion 
scenarios. The TT dataset from Voeikov et al. (2020) includes five train-
ing and seven testing videos, yielding 36,224 training, 3232 validation, 
and 3720 test samples. Captured at 120 fps (1920 × 1080) from a 
side view, it features minimal occlusion and lacks visibility labels. The 
tennis dataset, accessed via (Tarashima et al., 2023) from Huang et al. 
(2019), contains 10 clips (30 fps, 1080 × 720) with ball coordinates 
and visibility labels: 0 (out-of-frame), 1 (visible), 2 (partially visible), 
3 (fully occluded). We created balanced splits detailed in Table  2. The 
badminton dataset (Sun et al., 2020) has 26 training and 3 testing 
matches (30 fps, 1280 × 720) with binary visibility labels (0 = not 
visible, 1 = visible). It contains a higher proportion of invisible frames 
than other datasets.

The TTA dataset, manually annotated for this study, contains 
12,414 samples (25 fps, 1920 × 1080) from 17 professional-level Para 
table tennis matches across major tournaments including the Para-
lympics Pairs, World Para Elite (WPE), and World Para Future (WPF). 
Each frame is annotated with both ball coordinates and a visibility 
label. The dataset includes 2396 occlusion samples — substantially 
more than any existing benchmark — arising from challenging camera 
angles, the small ball size, and highly dynamic gameplay. All annota-
tions were reviewed by national team analysts to ensure reliability and 
correctness.

Annotation Protocol: We annotate each frame using three visibility 
levels: (i) fully visible, where the ball is completely unobstructed and 
easily identifiable; (ii) partially occluded, where the ball is partially 
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Fig. 2. Examples of partially occluded cases (Columns 1–2) and fully occluded cases (Column 3). The approximate ball location in each frame is zoomed in.
Table 2
Visibility-level distribution across Tennis, TTA, and Badminton datasets.
 Dataset Visibility level Train Val Test  
 
Tennis

Out of frame 587 107 135  
 Fully visible 11,641 2940 3054  
 Partially occluded 861 193 338  
 Fully occluded 55 22 5  
 
TTA (ours)

Fully visible 6787 1692 1539  
 Partially occluded 976 252 168  
 Fully occluded 689 177 132  
 Badminton Out of frame 8052 2022 2188  
 Fully visible 54,794 13,690 10,468 

hidden by a player, racket, or other object but still provides local visual 
cues; and (iii) fully occluded, where the ball is completely hidden from 
view yet remains in play. Examples of partially and fully occluded is 
shown in Fig.  2.

For fully visible and partially occluded frames, annotators mark the 
ball center directly. For fully occluded frames, where no pixel-level 
evidence exists, the ball location is inferred through trajectory-consistent 
interpolation: annotators reference the ball positions in preceding and 
subsequent visible frames to estimate a physically plausible continu-
ation of its motion, respecting table geometry, player contact timing, 
and feasible speed changes. When an occlusion extends beyond three 
consecutive frames, annotators additionally estimate instantaneous ve-
locity and direction to maintain temporal coherence. All long-occlusion 
annotations are reviewed by a second annotator to ensure reliability.

This procedure ensures that fully occluded labels are not arbitrary 
but reflect the most probable continuation of the ball’s true trajectory.

Design Rationale: While TTA is comparable in overall scale to 
existing broadcast-based datasets, it is uniquely curated for challenge 
density. More than 19% of its frames involve occlusions, including 
998 fully occluded cases—orders of magnitude higher than previous 
datasets. This concentration of difficult samples minimizes redundancy, 
enables more efficient occlusion-specific learning, and establishes TTA 
as the most focused benchmark for evaluating single-view tracking 
under realistic, low-resource sports conditions.

3.2. Occlusion augmentation

We propose a novel augmentation technique to enhance perfor-
mance in occlusion scenarios. For a sequence of frames, we simulate 
occlusion by masking the ball area in the target frame with a randomly 
sized shape filled with the surrounding mean pixel values. Examples are 
shown in Fig.  3. This augmentation forces the model to rely on temporal 
information from adjacent frames and the spatial context surrounding 
the occluded region rather than solely depending on the current frame’s 
spatial features.
4

To prevent the model from adapting too strongly to this augmenta-
tion, we introduce additional noise by randomly selecting areas in the 
other frames and filling them with mean pixel values. This ensures that 
the model learns to generalize better and robustly utilize both temporal 
and spatial features across all frames.

3.3. BCE loss with visibility-based weighting

We employ a visibility-aware weighted binary cross-entropy (BCE) 
loss to account for the imbalance and inherent uncertainty present in 
occlusion-heavy ball tracking. Prior works (Huang et al., 2019; Sun 
et al., 2020; Tarashima et al., 2023; Voeikov et al., 2020) typically 
supervise ball locations using 2D Gaussian target maps for all frames. 
Our formulation follows this consistent strategy: all annotated ball posi-
tions — visible, partially occluded, and fully occluded — are represented as 
normalized Gaussian heatmaps. This provides smooth spatial gradients, 
avoids unstable one-hot targets, and leads to more stable optimization.

Our loss design therefore ensures:

• Consistent Gaussian supervision across all annotated visibility 
levels.

• Balanced learning through visibility-dependent weighting.

Target definition. Let 𝑃 ∈ R𝐻×𝑊  denote the predicted heatmap ob-
tained after applying a spatial softmax over all 𝐻 ×𝑊  logits. For any 
annotated ball position (𝑇𝑥, 𝑇𝑦), the target heatmap 𝑇map ∈ [0, 1]𝐻×𝑊  is 
defined as a normalized 2D Gaussian: 

𝑇map[𝑖, 𝑗] =
1
𝑍

exp

(

−
(𝑖 − 𝑇𝑦)2 + (𝑗 − 𝑇𝑥)2

2𝜎2

)

, (1)

where the normalization term is: 

𝑍 =
𝐻−1
∑

𝑢=0

𝑊 −1
∑

𝑣=0
exp

(

−
(𝑢 − 𝑇𝑦)2 + (𝑣 − 𝑇𝑥)2

2𝜎2

)

. (2)

Visibility-based weighting. Each visibility level 𝑣 ∈ {0, 1, 2, 3} is assigned 
a scalar weight. We define the visibility-weight vector as: 

𝐰 = [𝑤oof, 𝑤vis, 𝑤partia, 𝑤occ]. (3)

For a frame with visibility label 𝑣, the corresponding weight is the 
scalar: 
𝑤𝑣 = 𝐰[𝑣]. (4)

Final loss. The final loss for a frame is: 
𝐿 = 𝑤𝑣 ⋅ BCE

(

𝑃 , 𝑇map
)

, (5)

where BCE(⋅) returns a scalar loss between the predicted heatmap 𝑃
and the Gaussian target 𝑇  (if present).
map
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Fig. 3. Augmentation examples for three different datasets where the ball is circled in red.
Fig. 4. Overview of the proposed TOTNet architecture. TOTNet preserves the temporal dimension throughout the encoder–decoder pipeline by combining 2D 
spatial convolutions with 3D temporal convolutions. Residual connections ensure spatial detail retention, while skip connections between encoder and decoder 
layers support both spatial and temporal feature reconstruction. The final output is a visibility-aware heatmap representing the predicted ball position.
 

3.4. Architecture

Our model extends prior work (Huang et al., 2019; Sun et al., 2020) 
by explicitly preserving the temporal dimension throughout the net-
work, enabling richer motion-aware feature learning. Unlike earlier ap-
proaches that collapse temporal information by stacking frames along 
the channel axis, TOTNet maintains a structured temporal pathway that 
captures frame-to-frame dynamics.

Motion is modeled through lightweight shortcut 3D convolutional 
blocks integrated into both the encoder and decoder. These 3D con-
volutions operate over short temporal windows to extract local mo-
tion cues — such as instantaneous velocity and direction changes — 
which are then fused with spatial features via residual connections. 
This spatio-temporal fusion helps maintain trajectory continuity dur-
ing rapid movement or occlusions, where visual evidence alone is 
insufficient.

The overall architecture builds upon a U-Net backbone (Ronneberger
et al., 2015), using encoder–decoder blocks with skip connections 
to preserve spatial detail while propagating temporal context. An 
overview of the full architecture is provided in Fig.  4.

3.4.1. Encoder
Each encoder block integrates spatial and temporal convolutions, 

where the spatial convolution is implemented as a 2D convolution, and 
the temporal convolution is implemented as a 3D convolution. Initially, 
spatial convolutions are applied to each frame independently to ex-
tract spatial features. These features are then passed through temporal 
convolutions, keeping the temporal dimension intact, to capture de-
pendencies across frames and effectively combine spatial and temporal 
5

information for better object localization. A 3D max pooling operation 
is then applied to reduce both the spatial size and temporal frame 
size while preserving the most valuable information. Additionally, a 
residual connection is included within each encoder block, where the 
output from the spatial convolution is added to the output of the 
temporal convolution to ensure that spatial information is not lost. A 
detailed flow of the encoder block is specified in Fig.  5.

As the model deepens on the encoder side, the number of channels 
increases while the spatial resolution and temporal sequence decrease. 
The kernel size for spatial convolutions becomes smaller to focus 
on finer details in smaller spatial regions, whereas the kernel size 
for temporal convolutions decreases as the temporal dimension gets 
reduced.

3.4.2. Bottleneck
The bottleneck block processes the highly abstracted information 

from the encoder. By the time the input reaches the bottleneck block, 
the temporal dimension has been reduced to 1, and the spatial dimen-
sions have been significantly downsized. This block contains more spa-
tial layers than the other blocks, focusing on extracting the most critical 
features. Since the temporal dimension is reduced to 1, the kernel size 
for temporal convolution is set to (1,1,1), effectively performing point-
wise convolution. This operation facilitates mixing information across 
all channels, enabling the block to generate rich feature representations 
that combine temporal and spatial information effectively.

3.4.3. Decoder
After passing through the bottleneck block, the decoder blocks begin 

the 3D upsampling process to restore both the temporal and spatial 
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Fig. 5. Detailed structure of the first encoder block in TOTNet. Each frame is first processed by a 2D convolution to extract spatial features, followed by a 3D 
temporal convolution to capture inter-frame dependencies. A 3D max-pooling layer reduces both spatial and temporal dimensions, while a residual connection 
from the spatial path to the temporal path ensures preservation of fine-grained spatial details.
Fig. 6. Structure of the last decoder block in TOTNet. Features are upsampled using trilinear interpolation, followed by 2D spatial and 3D temporal convolutions. 
Skip connections from earlier encoder layers provide both spatial and temporal context, enabling accurate reconstruction. A final temporal convolution reduces 
the channel dimension, and a softmax is applied to produce the visibility-aware probability heatmap of the ball location.
dimensions. Features are upsampled using the trilinear method, as the 
model focuses on generating a heatmap for the object’s likely position 
rather than precise segmentation. Each decoder block mirrors the layers 
of the encoder block, and skip connections are utilized for both spatial 
and temporal convolutions. These skip connections concatenate the 
encoder features along the channel dimension, allowing the decoder 
to leverage information from earlier layers for enhanced feature recon-
struction both spatially and temporally. A detailed decoder structure is 
in Fig.  6. In the final stage, a temporal convolutional block is employed 
to reduce the channel dimension to one, retaining the most critical 
information. A softmax activation is applied to the resulting heatmap 
to ensure it represents a normalized probability distribution.

4. Experiments

4.1. Implementation details

For all datasets, video frames and corresponding ball coordinates 
are resized to 288 × 512 pixels. The number of input frames is treated 
as a hyperparameter, with five frames selected as the optimal balance 
between temporal context and computational efficiency. Alongside oc-
clusion augmentation, we apply standard data augmentations, includ-
ing color jittering, random cropping/resizing, and horizontal or vertical 
flipping. Models are trained using the AdamW optimizer (Loshchilov, 
6

2017) with a learning rate of 5×10−4, weight decay of 5×10−5, a batch 
size of 8, and a cosine learning-rate scheduler. Training is performed 
for 30 epochs, with the best checkpoint selected based on validation 
performance. The default weighting for BCE loss is set to [1, 2, 2, 3]. All 
experiments are conducted on a single NVIDIA A100 GPU.

4.2. Evaluation

We evaluate performance using RMSE and Percentage of Correct 
Keypoints (PCK). RMSE is the square root of the mean of the squared 
distances between predicted and ground truth coordinates, while PCK 
measures the proportion of predictions that fall within a defined dis-
tance threshold from the ground truth: 

dist =
√

(𝑥pred − 𝑥label)2 + (𝑦pred − 𝑦label)2. (6)

Predictions within this threshold are treated as correct. For fully 
visible and partially occluded balls, we adopt a 4-pixel threshold, con-
sistent with the ball’s approximate 4–5 pixel diameter at a resolution 
of 288 × 512. For fully occluded frames, we relax the threshold to 
10 pixels — roughly twice the ball’s physical size — to account for 
the inherent uncertainty in annotating invisible objects and the vari-
ation introduced by trajectory-based interpolation. This avoids over-
penalizing predictions when even human annotators cannot reliably 
localize the ball.
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Table 3
Performance comparison across Tennis, TTA, Badminton and TT datasets. RMSE and PCK are reported separately for each visibility level. For fully visible and 
partially occluded cases, PCK is computed at a 4-pixel threshold, while for fully occluded cases a 10-pixel threshold is used. Because the TT datasets includes 
only visible frames and does not distinguish visibility levels, the TT (overall) column reports performance across all TT frames. The rightmost column reports 
model efficiency in terms of parameter count (M) and average inference speed (FPS).
 Model Metric Tennis TTA Badminton TT (Overall) Parameters M/FPS 
 Visible Partial Occ. Full Occ. Visible Partial Occ. Full Occ. Visible Not visible  
 TTNet (Voeikov et al., 
2020)

RMSE 25.40 72.70 48.77 34.28 36.33 39.61 40.76 43.31 4.02 7.62/40.75  
 PCK 0.23 0.19 0.17 0.39 0.26 0.21 0.23 0.74 0.85  
 TrackNetV2 (Sun et al., 
2020)

RMSE 24.48 109.93 232.70 4.47 19.15 35.22 34.32 32.95 2.43 11.34/52.34  
 PCK 0.84 0.49 0.00 0.93 0.71 0.57 0.86 0.88 0.91  
 TrackNetV4 (Raj et al., 
2025)

RMSE 9.51 71.43 175.68 3.71 14.21 26.63 17.99 284.34 0.93 11.34/49.88  
 PCK 0.95 0.64 0.17 0.91 0.74 0.56 0.92 0.39 0.99  
 MonoTrack (Liu and 
Wang, 2022)

RMSE 43.28 138.39 227.71 3.83 10.07 32.45 40.13 27.67 2.23 2.84 /139.75  
 PCK 0.78 0.42 0.00 0.92 0.74 0.45 0.84 0.90 0.95  
 WASB (Tarashima 
et al., 2023)

RMSE 16.58 105.73 264.45 4.18 20.11 37.67 27.17 56.50 3.11 1.48/68.27  
 PCK 0.92 0.52 0.17 0.93 0.70 0.42 0.88 0.79 0.84  
 TOTNet RMSE 6.07 63.41 27.98 2.55 10.95 17.17 23.43 44.55 1.67 8.65/28.50  
 PCK 0.95 0.61 0.67 0.94 0.68 0.60 0.89 0.84 0.97  
We do not report precision or recall because, for the Tennis, TTA, 
and TT datasets, every frame in the benchmark is assumed to contain 
exactly one valid ball annotation. These datasets are rally-centric and 
comprise only ball-in-play segments in which out-of-frame occurrences 
are effectively negligible. As a result, each model prediction is matched 
directly to a single ground-truth coordinate, and binary classification 
metrics (e.g., true negatives, multiple detections) are not meaningful. 
Under this evaluation protocol, precision and recall reduce to the 
information already conveyed by localization metrics such as PCK and 
RMSE, and thus offer no additional insight.

In contrast, the badminton dataset contains a substantial number of 
out-of-frame instances. For such frames, we assign the ball a canonical 
coordinate of (0,0) and compute RMSE and PCK accordingly.

4.3. Other models

In this work, we used official implementations whenever available; 
otherwise, we re-implemented the models following the original de-
scriptions. The set of baselines includes TrackNetV2 (Sun et al., 2020), 
TrackNetV4 (Raj et al., 2025), MonoTrack (Liu and Wang, 2022), 
WASB (Tarashima et al., 2023), and TTNet (Voeikov et al., 2020). 
Among these, only TrackNetV2 was re-implemented, as its original 
codebase is written in TensorFlow while our framework is built in 
PyTorch, requiring a reproduction for consistent evaluation. All other 
methods were used through their official or publicly released PyTorch 
implementations. Implementation details, adaptations, and resolution 
settings are provided in our GitHub repository. WASB (Tarashima et al., 
2023) and TrackNetV4 (Raj et al., 2025) represent the most recent and 
advanced approaches, serving as strong baselines for comparison.

4.4. Results

The results across all four datasets are summarized in Table  3. Our 
proposed model, TOTNet, consistently outperforms existing state-of-
the-art methods, particularly under occlusion. On the tennis dataset, 
TOTNet reduced the RMSE for partially occluded objects from 105.73 
to 63.41. More notably, for fully occluded cases, it achieved an RMSE of 
27.98 and improved PCK to 0.67, demonstrating its ability to recover 
ball trajectories even under complete occlusion. On the TTA dataset, 
which features the highest density of occlusion, TOTNet again outper-
formed all other models. In the fully occluded setting, it achieved an 
PCK of 0.60 and an RMSE of 17.17, underscoring its robustness in chal-
lenging real-world conditions. Similar improvements were observed on 
the TT and badminton datasets, where TOTNet matched or surpassed 
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state-of-the-art performance across all visibility levels. These results 
highlight the effectiveness of leveraging temporal and spatial context 
for accurate tracking in both clear and occluded scenarios.

Although TOTNet achieves state-of-the-art performance across all 
benchmarks, we observe several recurring failure modes. First, dur-
ing extended full occlusions (>5–6 frames), the predicted trajectory 
may drift when neither short-term motion cues nor contextual fea-
tures provide sufficient constraints. Second, in a small number of fast 
rallies, motion blur combined with visually ambiguous backgrounds 
(e.g., white advertising boards or spectator clothing) can temporarily 
cause loss of the ball as shown in Fig.  7. Third, in the badminton 
dataset, occasional out-of-frame sequences lead to temporary track-
ing discontinuities despite the model’s ability to re-acquire the object 
once it re-enters the frame. These cases are rare but highlight the 
fundamental limits of single-view tracking under extreme occlusion and 
appearance ambiguity.

4.5. Ablation studies

4.5.1. Online vs. Offline
We conducted an ablation study on the TTA dataset to analyze the 

effect of temporal context length (𝑁 frames) and inference direction-
ality. To clarify the mechanism, we define our two inference modes as 
follows:

• Online (uni-directional): This mode simulates real-time predic-
tion. To predict the ball’s position in a target frame 𝑡, the model is 
given a sequence of 𝑁 consecutive frames ending with the target 
frame: [𝑡 − 𝑁 + 1,… , 𝑡]. This approach is causal, using only past 
and present information.

• Offline (bi-directional): This mode is designed for post-
processing applications where the entire video is available. To 
predict for a target frame 𝑡, the model uses a centered sliding 
window of 𝑁 frames, accessing both past and future context: 
[𝑡 − 𝑁−1

2 ,… , 𝑡,… , 𝑡 + 𝑁−1
2 ]. This requires access to future frames 

relative to the target, making it non-causal but allowing for more 
robust predictions, especially during occlusion.

The results of this study are shown in Table  4. As expected, offline infer-
ence, which leverages both past and future context, outperforms online 
inference when the number of input frames is moderate. However, we 
observe a decline in offline performance as the input length increases 
to 9 frames, suggesting that excessive context may introduce noise or 
reduce temporal precision.
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Fig. 7. Failure cases observed in fast rally sequences, where motion blur combined with occlusion leads to temporary tracking errors. Pink circles indicate the 
predicted ball positions, and black circles denote the ground-truth locations.
Fig. 8. Tracking examples from trained TOTNet including TTA, Tennis, Badminton.
Table 4
Ablation study on temporal context length (𝑁 frames) and directionality. 
Results are reported as RMSE and PCK. For fully visible and partially occluded 
cases, PCK is computed at a 4-pixel threshold, while for fully occluded cases 
a 10-pixel threshold is used. FPS is measured on an A100. Online = uni-
directional (real-time), Offline = bi-directional (offline).
 Frames 𝑁 Direction Metric Visible Part. Occ. Full Occ. FPS  
 
3

Online RMSE 2.80 11.47 29.56

35.37

 
 PCK 0.93 0.71 0.52  
 Offline RMSE 2.28 8.72 16.02  
 PCK 0.93 0.87 0.52  
 
5

Online RMSE 2.55 10.95 17.17

28.50

 
 PCK 0.94 0.68 0.60  
 Offline RMSE 2.21 9.78 17.49  
 PCK 0.95 0.75 0.57  
 
7

Online RMSE 2.87 13.54 18.90

18.81

 
 PCK 0.93 0.69 0.53  
 Offline RMSE 2.03 24.41 21.90  
 PCK 0.94 0.76 0.65  
 
9

Online RMSE 3.84 12.53 18.36

13.16

 
 PCK 0.93 0.68 0.59  
 Offline RMSE 3.57 23.72 22.65  
 PCK 0.93 0.79 0.64  

4.5.2. Component isolation
To validate each component’s effectiveness, we conducted an abla-

tion study on the TTA datasets using TOTNet as the base model. Table 
5 shows how each progressive modification improved performance. 
First, the visibility-weighted BCE loss prioritized occluded and low-
visibility frames, enhancing robustness under occlusion. Next, occlusion 
augmentation simulated diverse scenarios, forcing the model to rely 
on temporal and spatial context, significantly boosting accuracy in 
challenging conditions. Finally, integrating optical flow did not im-
prove performance. Instead, it introduced additional noise that led 
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to unstable predictions, particularly under rapid motion. Moreover, 
the inclusion of optical flow significantly reduced inference speed — 
dropping the model to 22 FPS — making it impractical for real-world 
deployment where real-time operation is required. These components 
complementarily enhanced TOTNet’s performance, with the base model 
already outperforming the best existing methods (Tarashima et al., 
2023), highlighting its superior architecture.

5. Deployment workflow

TOTNet, trained on the TTA dataset, has been deployed within an 
elite-level Paralympic table tennis analytics workflow as an automated 
ball-position detection system as shown in Fig.  8. Previously, profes-
sional sports analysts manually annotated ball positions — particularly 
bounce locations — for every rally, a process that could take 3–4 h 
for a single match. With our approach, a complete match can now 
be processed in approximately 6–7 min. When combined with an 
event-detection module, bounce locations relative to the table can be 
extracted in under 30 s for a single game. This integration not only 
reduces annotation time by over 90% but also enables rapid turnaround 
for post-match analysis, tactical review, and performance feedback.

6. Conclusion

We introduce the task of visibility-aware occlusion-robust ball tracking
for racket sports, addressing a gap in current sports analytics where 
most benchmarks lack dense occlusion annotation and visibility-specific 
evaluation. To support research in this domain, we present the TTA 
dataset — the first professionally annotated benchmark from Para-
lympic table tennis with 2396 occlusion cases (998 fully occluded), 
over 19% of total frames, captured under realistic single-view condi-
tions. Alongside the dataset, we define an evaluation protocol that mea-
sures performance across visibility levels, enabling systematic bench-
marking of occlusion robustness.
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Table 5
Ablation study on the TTA dataset across different visibility levels. RMSE and Accuracy are reported separately for 
each method. WBCE = Weighted Binary Cross Entropy, Aug. = Occlusion Augmentation, OF. = Optical Flow.
 Method WBCE Aug. OF. Visible Part. Occ. Full Occ. 
 RMSE
 TOTNet (Baseline) – – – 3.20 14.36 24.82  
 TOTNet (WBCE) ✓ – – 2.75 13.51 20.74  
 TOTNet (Aug.) – ✓ – 2.83 11.26 17.89  
 TOTNet (WBCE + Aug.) ✓ ✓ – 2.55 10.95 17.17  
 TOTNet (WBCE + Aug. + OF.) ✓ ✓ ✓ 2.78 13.25 27.46  
 PCK
 TOTNet (Baseline) – – – 0.926 0.667 0.508  
 TOTNet (WBCE) ✓ – – 0.945 0.671 0.546  
 TOTNet (Aug.) – ✓ – 0.927 0.682 0.591  
 TOTNet (WBCE + Aug.) ✓ ✓ – 0.936 0.685 0.599  
 TOTNet (WBCE + Aug. + OF.) ✓ ✓ ✓ 0.925 0.732 0.561  
To establish a strong baseline, we propose TOTNet — a system 
integrating temporal preservation, motion modeling, and occlusion-
targeted augmentation — and evaluate it across four racket-sport 
datasets. Results show that TTA exposes substantial performance gaps 
in existing methods and that TOTNet significantly improves tracking 
under challenging occlusion scenarios.

Beyond Paralympic table tennis, this problem formulation, dataset, 
and protocol can generalize to other low-resource and adaptive sports 
where broadcast-quality footage is unavailable and occlusions are fre-
quent. This work enables reproducible benchmarking and provides 
the sports analytics community with tools to advance fair officiat-
ing, performance analysis, and technology access in underrepresented 
domains.

Future work will expand the current dataset to a larger scale with 
additional matches from different tournaments and varied camera an-
gles, enhancing its value as a comprehensive benchmark. We also plan 
to explore lighter architectures and more recent models, including 
transformer-based approaches, to establish stronger and more diverse 
baselines for benchmarking.
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