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Figure 1. High-level overview of training implementation.

Abstract
This paper provides a clear guide for newcomers to Machine
Learning and Visual Question Answering (VQA), focusing
on the Deakin Simpsons Challenge. We detail our approach,
highlighting successful techniques, reflecting on less effec-
tive methods, and providing key insights for future competi-
tors. Techniques discussed include active learning for dataset
creation, hyperparameter optimisation using Optuna, the
use of ensemble learning with pre-trained models, and fine-
tuning of the prediction threshold for model optimisation.
This paper aims to explain the process, offering practical
insights for future competition participants.
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1 Introduction
The Deakin Simpsons Challenge presents a fun challenge:
given an image of characters from The Simpsons and a ques-
tion about the image, how can we generate an accurate
response using machine learning and deep learning tech-
niques? This challenge is addressed through the development
of a Visual Question Answering (VQA) model [5].
VQA is a fusion of visual understanding and language

processing, requiring the computer to assimilate both text
features (derived from the question) and visual features (de-
rived from the image) to formulate an answer. In other words,
VQA is the process of teaching a computer to comprehend
an image and a related question, and to provide an answer
in natural language [2].

Fromhere, wewill dive into themethodology that achieved
the highest accuracy for the challenge. The discussion starts
with the training datasets used, the implementation of the
pre-trained models, the optimisation of hyperparameters
using the Tree-structured Parzen Estimator (TPE) algorithm,
the application of active learning, fine-tuning the prediction
threshold and the process of ensembling models.
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While not introducing novel concepts or tools, this paper
provides a comprehensive case study of effective strategy
development in tackling a specific problem using existing
tools and resources. The objective is to demonstrate how
these methods can be leveraged in similar scenarios, thereby
aiding future endeavors in the world of Machine Learning
competitions. The implementation is available at https://
github.com/brandonsmith301/deakin-ai-challenge.

2 Previous Winner
Looking into the successful strategies of the 2022 Deakin
Simpsons Challenge winner [9] offered valuable insights
for the challenge, showcasing effective machine learning
methods like transfer learning. Acknowledging past attempts
in the same problem domain is not a matter of imitation, but
a means of learning from prior experiences.

Each foray into the field of Machine Learning serves as an
informative stepping stone, shaping the trajectory of future
attempts [13]. This is the essence of iterative progression in
the field, enabling us to stand on the shoulders of those who
have gone before, saving time and refining our efforts.

3 Training Data
The fine-tuning process depend on the utilisation of two
distinctive datasets, corresponding to eachmodel, as depicted
in Figure 1. For the BLIP model, the Binary VQAv2 dataset
[15] was used, a well-recognised and widely used resource
in this field containing 20,629 images, 22,055 questions and
220,550 answers. The ViLT model was fine-tuned using a
newly compiled Simpsons dataset, a collection featuring over
7000 unique images and 10,000 binary-answer questions.
These Simpson images were sourced from Frinkiac [10].

4 Pre-trained Models
In pursuit of the "most" optimal pre-trained ML model, we
explored a few other options, acknowledging the absence
of a single "best" model as per the No Free Lunch theorem
[8]. The testing revealed that among the various models
considered, two emerged as top performers.

• BLIP: Bootstrapping Language-Image Pre-training for
Unified Vision-Language Understanding and Genera-
tion [12].

• ViLT: Vision-and-Language TransformerWithout Con-
volution or Region Supervision [11].

The pre-trained models were utilised through Hugging
Face Transformers, which offers convenient APIs and tools
for downloading and training state-of-the-art pre-trained
models [1]. This transfer learning approach inspired by the
work of the previous winner proved invaluable in the work
for the Deakin Simpsons Challenge, as it saved us a substan-
tial amount of time that would have been otherwise spent
on designing and extensively training a model from scratch.

4.1 BLIP Model
The BLIP model as explained in the paper [12] key compo-
nents are:

• Visual Transformer: Divides an image into patches
and converts these patches into a sequence of numbers.

• Unimodal Encoder: Independently encodes image
and text, with the text encoder similar to the BERT
model.

• Image-grounded Text Encoder: Encodes both text
and visual information, connecting them using a cross-
attention layer.

• Image-groundedTextDecoder:Generates text based
on an image using causal self-attention layers.

4.2 ViLT Model
The ViLT model discussed in the paper [11]. This is the
same model used by the winner for the Deakin Simpsons
Challenge in 2022 [9]. Key aspects of the ViLT model are:

• Initialisation: Initialises transformer weights from a
pre-trained Visual Transformer (ViT).

• Text Embedding: Embeds input text using a word
embedding matrix and a position embedding matrix.

• Image Embedding: Divides input image into patches,
each converted into interpretable form and embedded
with position information.

• Combining Text and Image Embeddings: Sums
text and image embeddings with their correspond-
ing modal-type embedding vectors, then concatenates
them into one sequence.

• Contextualising the Vector: Contextualises the data
by updating the combined sequence through multiple
layers of the transformer model.

• Pooled Representation: Creates a pooled represen-
tation of the entire multimodal input by applying a
linear projection and a hyperbolic tangent function on
the first index of the final sequence.

4.3 Key Differences
ViLT is faster and easier to train because it simplifies the
process of integrating textual and visual information by sim-
ply summing and concatenating the embeddings, therefore
reducing computational complexity [11].
On the other hand, the BLIP model, although it may be

more computationally intensive and time-consuming to train,
achieves higher accuracy, compared in Table 2 and 3. Instead
of simply summing and concatenating the embeddings, BLIP
uses a dedicated Image-grounded Text Encoder to connect
visual and textual information using a cross-attention layer.
[12].
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Table 1. Fine-tuning details for the BLIP and ViLT models.

Model Epochs Dataset Image Size Batch Size Learning Rate Weight Decay

BLIP 0.5 Binary VQAv2 256 × 256 2 2 × 10−5 0.05
ViLT 4 Simpsons Dataset 256 × 256 64 4.81 × 10−5 0.071

5 Fine-tuning Details
As shown in Table 1, the two different models were fine-
tuned on two different datasets. Initially, the training ap-
proach of freezing the weights and only unfreezing the last
layer of each of the models was tested. However, this ap-
proach did not yield successful results. Consequently, all the
weights were fine-tuned.

Both models utilised an AdamW optimiser. However, the
BLIP model differed in its use of a learning rate scheduler,
employing a cosine schedule with hard restarts and warmup.

6 Active Learning
Mid-way through the competition, an active learning-inspired
approach was employed, although it differed slightly from
traditional active learningmethodologies . Rather than query-
ing for labels on uncertain instances [6], this approach in-
volved conducting an error analysis post-training.

Specifically, after training the ViLT model, an error anal-
ysis was performed to identify the areas where the model
struggled the most. Once these areas were identified, new
data was created to specifically address these challenging
aspects.
This approach diverges from classical boosting in an im-

portant way: instead of creating an ensemble of models to
improve on the errors of the previous ones [7], the strategy
here was to iteratively improve a single model (in this case,
ViLT) by effectively targeting its areas of weakness with
specialised training data.

7 Hyperparameter Tuning
We employed Optuna, an automatic hyperparameter optimi-
sation software framework specifically designed for machine
learning [3]. The Optuna framework facilitates the efficient
optimisation of hyperparameters by offering multiple tuning
strategies. For our models, we opted for the Tree-Structured
Parzen Estimator (TPE), which uses a Bayesian optimisation
method for hyperparameter tuning. The hyperparameters
tuned were the learning rate and weight decay.
We configured the TPE sampler with three startup trials,

which refers to the initial number of random explorations of
the hyperparameter space. This approach is beneficial as it
allows the algorithm to balance exploration and exploitation
from the very start [4]. Algorithm 1 presents a very basic
overview of how TPE sampler works, however, for a more
detailed explanation and understanding, refer to the work
cited in [14].

Algorithm 1: Tree-Structured Parzen Estimator
(TPE) - High-level Overview
Result: Hyperparameters in 𝑇 that resulted in the

minimum loss in 𝐿

Phase 1: Initialisation;
Number of iterations, 𝑁 ;
Number of startup trials, 𝑆 ;
Initialise an empty list of trials, 𝑇 ;
Initialise a list of losses, 𝐿;
Phase 2: Iterative Sampling;
for iteration 𝑖 from 1 to 𝑁 do

if 𝑖 < 𝑆 then
Randomly sample hyperparameters, ℎ;

else
Build a probability model, 𝑃 , based on past
trials and their losses;

Sample hyperparameters, ℎ, that are expected
to minimise loss according to 𝑃 ;

end
Run a trial with the selected hyperparameters, ℎ,
and record the loss, 𝑙 ;

Add ℎ to the trial list, 𝑇 , and 𝑙 to the loss list, 𝐿;
end
Phase 3: Result Compilation;
Return the set of hyperparameters that resulted in the
lowest loss;

8 Threshold Tuning
In response to observed correlations between precision and
accuracy, the ViLT model was specifically fine-tuned us-
ing ROC AUC threshold tuning. This was motivated by the
model’s sensitivity to correct positive instance classification,
significantly impacting precision and thus accuracy.

Using the ROC AUC, an optimal threshold was identified
to balance sensitivity and specificity, aiming for maximal
precision. This process facilitated the ViLT model to clas-
sify positive cases optimally, enhancing both precision and
accuracy effectively

9 Ensembling
An ensemble method was used to combine the predictions of
the BLIP and ViLT model. Specifically, a logical disjunction
"OR" was used.
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The final prediction was derived from the outputs of both
models. If 𝑃1 and 𝑃2 are the predictions of Model 1 and Model
2 respectively, the final ensemble prediction 𝑃𝑒 is computed
as follows:

𝑃𝑒 = 𝑃1 ∨ 𝑃2

Various ensemble methods were tested, but the logical
OR operation yielded the highest accuracy. An alternative
approach that showed promise involved averaging the logits
of multiple ViLT models before executing the logical OR
operation. However, this method did not surpass the perfor-
mance of the straightforward logical OR operation between
the predictions from the BLIP and ViLT models.

10 Results

Table 2. ViLT Test Accuracy

Steps ViLT Accuracy (%)
Base 53.6
9000 52.4
10000 56.0
15000 56.4
20000 55.4

Table 3. BLIP Test Accuracy

Steps BLIP Accuracy (%)
Base 55.2
1000 54.8
1500 57.2
2000 56.4
2500 56.4

The results presented above represent the performance of
both ViLT and BLIP models after extensive hyperparameter
tuning. In terms of base accuracy (i.e., without any fine-
tuning), the BLIP model surpasses ViLT, clocking in at 55.2
compared to ViLT’s 53.6. This suggests that BLIP offers a
more accurate base model.

The varying step counts between the two models are due
to the training efficiency of each model. The ViLT model
exhibits impressive training efficiency, allowing for higher
step counts (up to 20,000 steps), while maintaining accuracy.
Although the BLIP model’s training process is slower, this
has not hindered its performance. In fact, it has demonstrated
higher accuracy with fewer steps, reaching an accuracy of
57.2 at 1500 steps.

Table 4. Ensemble Test Accuracy

Method Ensemble Accuracy (%)
10000 ViLT + 1500 BLIP 57.2

15000 ViLT + 1500 BLIP + AL 58.8
25000 ViLT + 1500 BLIP + AL + TT 59.6

The Ensemble model combines the ViLT and BLIP models
for enhanced performance. The configuration where ViLT is
trained to 10,000 steps and BLIP to 1,500 steps results in an
accuracy of 57.2. By further training ViLT to 15,000 steps and
implementing Active Learning (AL) with the BLIP model at
1,500 steps, the accuracy increases to 58.8.

The highest accuracy of 59.6 is achieved when ViLT is
trained to 25,000 steps, and both Active Learning (AL) and
Threshold Tuning (TT) are applied to the 1,500 step BLIP
model.

11 Recommendation
To wrap up this paper, we think it’s fitting to share some
lessons learned from our experience with the Deakin Simp-
sons Challenge 2023. Think of them not as a surefire recipe
for winning next year’s competition, but as practical advice
that could elevate your game and make you a monumental
participant.
Firstly, start by creating a high-quality training dataset

that mirrors the problem you’re tackling. A model is only
as good as the data it learns from, and having data that
reflects your specific challenge can significantly boost your
model’s accuracy. We realised the hard way that we should
have spent less time trying to perfect a model based on the
given template and more time creating a relevant, quality
dataset. This task can be more efficiently and effectively
accomplished in a team.

Secondly, don’t reinvent the wheel; use transfer learning.
Building a model from scratch not only consumes a lot of
time but also may not perform as well as the existing state-
of-the-art models. Utilise what’s already proven successful
and build upon it.
Thirdly, hyperparameter tuning is not to be neglected.

Consider adjusting parameters such as batch size, learning
rate, and weight decay. In our case, employing stratified k-
fold during training to combat data imbalance didn’t yield
significant improvements, but it may be a worthwhile strat-
egy in different circumstances.
Lastly, consider fine-tuning the threshold of your model

and ensembling your models for the final prediction. Al-
though a quality dataset will likely be the primary driver
of success, these strategies can add an extra boost to your
model’s performance.

While our recommendations aren’t a guaranteed blueprint
for winning, they are practical tips forged from our experi-
ence with the competition. For a more in-depth guide, we
do recommend "How to avoid machine learning pitfalls: a
guide for academic researchers" by Michael A. Lones [13].
The cited paper, provides a deeper discussion for each rec-
ommendation.
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