
Neurocomputing 640 (2025) 130334 

A
0
n

 

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom  

Survey Paper

A comprehensive study of audio profiling: Methods, applications, challenges, 
and future directions
Anil Pudasaini a ,∗, Muna Al-Hawawreh a, Mohamed Reda Bouadjenek a, Hakim Hacid b, 
Sunil Aryal a
a School of Information Technology, Deakin University, Geelong, Australia
b Technology Innovation Institute, United Arab Emirates

A R T I C L E  I N F O

Communicated by J. Andreu-Perez
Keywords:
Audio profiling
User profiling
Speaker profiling
Voice privacy
Privacy preservation
Personality detection
Age detection
Emotion detection
Acoustic event detection
Personality traits detection
Voice pathology detection
Mental health inference
Acoustic scene classification
Gender detection

 A B S T R A C T

Audio profiling is at the forefront of a technological breakthrough, offering rich insights into human 
behavior, emotions, physical attributes, and environmental contexts through detailed analysis of voice data. 
As we embrace an era where the integration of smart technologies equipped with the ability to capture 
sound is becoming ubiquitous, the capacity to accurately infer personal traits such as age, gender, height, 
weight, emotional state, personality, and even environmental contexts through voice analysis opens up vast 
opportunities across law enforcement, healthcare, social and commercial services, and entertainment. This 
emerging field promises to enhance our interaction with technology by not only understanding who we are 
but also by interpreting the world around us. However, the remarkable landscape is fraught with challenges, 
including data imbalances, the complexity of predictive models, and significant privacy concerns regarding 
the handling of sensitive paralinguistic information. This survey explores deep into the current landscape 
of audio profiling, examining the techniques and datasets in use, and showcasing its diverse applications 
while highlighting the need for advanced methodologies, enriched dataset development, and robust privacy 
preservation techniques.
1. Introduction

Speech serves as a primary mode of human communication, al-
lowing the expression of thoughts, ideas, information, and emotions. 
Beyond linguistic contents, a speech signal can convey a wealth of in-
formation, such as the speaker’s gender, age group (e.g., senior, youth, 
child), and their emotional and physical state (e.g., tired, stressed, 
intoxicated)–details readily discerned by the human ear. Through an 
innate skill known as speaker profiling, individuals can instantly recog-
nize these aspects and adapt their responses accordingly, enriching the 
communication experience. While humans possess this skill naturally, 
machines have yet to reach the same level of proficiency.

The landscape of voice technology has been transformed with the 
advent of ’Audio Profiling’, a novel concept that marks a significant 
leap in the field of voice analysis. Audio profiling (AP) refers to the 
process of using voice recordings—acquired from sources such as smart 
assistants (e.g., Apple Siri, Google Assistant, Amazon Alexa), voice 
services (e.g., Google search, ChatGPT voice, IBM watsonx), standard 
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phone calls and other recording devices—to infer a range of paralin-
guistic attributes, circumstances, and environmental contexts, which 
are then used to profile the speaker’s identity and context. The profiling 
process aims to extract meaningful insights from human voice signals, 
environmental sounds, and transform them into quantifiable and inter-
pretable representations to understand various aspects of the speaker’s 
background and identity. This practice involves both manual analysis 
and computational techniques, particularly machine learning and arti-
ficial intelligence, to automate the deduction of these parameters from 
voice data. While terms like ‘‘Speaker Profiling’’ and ‘‘User Profiling’’ 
are frequently used, ‘‘Audio Profiling’’ encompasses a broader scope. 
Unlike speaker profiling, which focuses solely on individual speaker 
characteristics, audio profiling includes environmental awareness, cap-
turing a wider spectrum of auditory information. Profiling methods 
include perception-based, parameter-based, and computation-based ap-
proaches [1]. For the scope of this survey, we focus on Computational 
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Profiling for the scope of this survey. This approach uses computa-
tional techniques, particularly machine learning, and deep learning, to 
analyze voice signals and extract patterns or features associated with 
specific characteristics.

The introduction of audio profiling as a term and a concept is 
crucial in the current technological landscape. With voice recording 
technologies becoming ubiquitous in our daily lives, understanding 
the nuances and implications of audio profiling is paramount. Voice 
data, inherently rich in information, extends beyond simple linguistic 
content to include a multitude of paralinguistic features. Features such 
as stress, perturbation, timbre, tempo, pitch, rhythm, and intonation 
range, offer valuable insights into an individual’s emotional state, age, 
gender, mental health, physical health, personality traits and even 
socio-economic status [2]. The ability to infer such sensitive attributes 
from voice analytics has immense potential in applications ranging 
from healthcare to personalized services. The domain of Audio Profiling 
is broad. Several studies study the inference of individual attributes by 
leveraging features extracted from voice recordings [3–5]. However, 
few studies provide a holistic view of the field. Moreover, to the best 
of our knowledge, privacy concerns related to audio profiling have 
not been adequately addressed. Consequently, there exists a substantial 
research gap regarding the multiple paralinguistic features that can be 
inferred from voice and the associated privacy implications. Addressing 
this gap is essential, especially as voice interactions increase exponen-
tially with the rise of new digital technologies, making it imperative to 
understand and resolve privacy concerns.

This literature review aims to dissect the multifaceted nature of 
audio profiling. It intends to scrutinize the methods and effectiveness of 
extracting personal attributes from voice data and explore potential use 
cases. Additionally, the survey presents a comprehensive overview of 
the state-of-the-art machine and deep learning techniques for inferring 
sensitive attributes from voice recordings and performing audio profil-
ing. Furthermore, it aims to shed light on potential key issues associated 
with audio profiling and explore viable solutions. The following are the 
major contributions of this survey article:

1. Comprehensive Literature Review: We present a broad re-
view of literature relating to attributes—age, gender, emotion, 
mental health, personality traits, voice pathology, acoustic scene 
classification, acoustic event detection under a single canopy.

2. Dataset Comparison: A collection of datasets for each attribute 
inference task and their comparison along different aspects.

3. Use Cases: We provide a dedicated section highlighting the 
immense potential applications of Audio Profiling across various 
sectors such as commercial, health, law enforcement, forensics, 
and entertainment.

4. Future Directions: We outline potential research challenges, 
shedding light on promising avenues for exploration, and discuss 
the implementation of privacy measures aimed at protecting 
sensitive attribute inference in voice analytics.

This literature review covers specific attributes, the challenges im-
peding research, unaddressed privacy concerns, and discusses potential 
avenues for workable solutions to address these concerns. It also high-
lights the potential of audio profiling with major use cases within the 
current technological landscape.

We initiated the selection of articles by conducting searches for 
recent research articles using a limited number of keyword seeds 
on prominent platforms such as Scopus, Arxiv, IEEE Xplore, Google 
Scholar, ACM Digital Library, Web of Science, and others platforms. 
On top of that, we also reviewed articles collected in the social and 
behavioral sciences from sources such as APA (American Psychological 
Association) journal. The search queries were formulated by combining 
keywords related to Speaker/User profiling, attributes of interests like 
age, gender, height, weight, emotions, voice pathology, environmen-
tal aspects, personality detection from voice, paralinguistic features 
extraction and privacy preservation.
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To ensure comprehensive coverage, we expanded the initial set of 
articles by including those cited by or citing articles within this set. We 
further augmented our selection by incorporating noteworthy research 
featured in books and media to encompass a broad range of significant 
publications in the field. This iterative process continued until no new 
articles were discovered. We then engaged in discussions to analyze 
the relevance and importance of the selected articles by reviewing 
abstracts and main findings. Papers deviating from the survey’s scope 
were excluded during this evaluation. The chosen papers constitute the 
core of this survey. To maintain currency, we continuously updated 
our selection throughout the survey writing process to include recently 
published works.

The rest of this paper is organized as follows: First, Section 2 
compares our work with other related works. Following this, Sec-
tion 3 discusses background information on Audio Profiling. Next, in 
Section 4, general audio profiling pipeline is discussed. Following it, 
Section 5 discusses in-depth literature, methods and datasets used for 
individual AP tasks. Following it, Section 6 presents information and 
comparisons of prominent datasets on Audio Profiling. Next, Section 7 
showcases various use cases and applications. Following it, Section 8 
discusses critical issues, open research challenges, and future directions. 
Finally, Section 9 concludes the survey.

2. Comparison with other surveys

In the realm of voice inference, the landscape of existing research 
exhibits a scattered mosaic of studies exploring distinct attributes such 
as gender, age, accent, region of geographical origin, emotion, mental 
health, voice pathology, personality traits, and acoustic scene classifi-
cation. Despite the abundance of individual research, a comprehensive 
study that consolidates these distinct aspects under one unified canopy 
is noticeably lacking. Our survey endeavors to bridge this gap by 
providing a holistic overview, integrating various attributes, method-
ologies, and applications that have not been collectively reviewed to 
date. This survey serves as a one-stop resource for understanding audio 
profiling and the various attributes derivable from voice recordings, 
including feature extraction, learning models, and datasets. In addition, 
our survey incorporates a dedicated section on privacy preservation.

Due to the absence of surveys similar to ours, a one-to-one com-
parison is not possible. However, we have selected specific elements 
as the basis for comparison with other surveys/review articles. Table 
1 showcases the comparison of our survey with other studies based on 
the selected criteria.

• Attributes Covered: Refers to the number of attributes discussed 
in the literature. Attributes can either be personal or environmen-
tal.

• Feature Extraction: Examines the various signal domains and 
methods used for feature extraction, shedding light on the tech-
niques employed in audio profiling.

• Use Cases: Involves the detailed exploration of potential use 
cases.

• Datasets: Refers to the comparison of datasets available, based 
on different aspects of the dataset.

• Learning Models: Covers the use of learning models, which 
may include statistical models, machine learning models, or deep 
learning models. These models can either be fully covered (all 
three types are used) or partially covered (only one or two types 
are used).

Differences from Existing Surveys and Reviews: Our compre-
hensive survey spans a wide array of attributes derivable from voice, 
including age, gender, emotion, mental health, voice pathology, and 
more, offering a broad overview that integrates multiple disciplines 
and methodologies. While focused surveys and review papers provide 
valuable insights and methodologies tailored to specific attributes like 
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Table 1
Comparison with other studies.
 Ref. Attributes covered Year Feature extraction Dataset comparison Learning models Use cases 
 Domain Methods  
 [6] Mental health 2018 ○␣ ○␣ � ○ ○␣  
 [7] Emotion 2019 ○␣ ○␣ � ○ �  
 [8] Voice pathology 2019 � � � � ○␣  
 [9] Event detection 2019 ○␣ ○␣ ○ ○ �  
 [10] Scene classification 2020 ○␣ � ○␣ � �  
 [11] Emotion 2021 � ○ � ○ ○␣  
 [12] Personality, Gender 2021 ○␣ ○␣ ○␣ � �  
 [13] Voice pathology 2022 � � � ○ �  
 [14] Age, Gender, Height 2023 ○ � ○␣ � �  
 [15] Emotion 2023 ○ � ○ ○ �  
 Our work All listed attributes 2024 ○ ○ ○ ○ ○  
Notes: ○– Fully Considered; �– Partially Considered; ○␣– Not Considered.
Fig. 1. Overview of attributes evident in voice data.
emotion and voice pathology, our survey connects these diverse strands 
of research. By adopting a broader perspective, we highlight how 
different areas of study intersect and influence one another. These 
connections are not limited to a single discipline but extend across 
various fields. For instance, several studies [16,17] in emotion recogni-
tion rely on gender recognition, as emotion and gender are inextricably 
intertwined.

3. Background

3.1. Overview of audio profiling

Audio profiling encompasses signal processing, machine learning, 
deep learning, and cognitive psychology. The field has evolved from 
early speech recognition research to advanced computational methods 
capable of extracting complex patterns from voice recordings. With 
the advent of machine learning (ML) and deep learning (DL), profiling 
techniques have become significantly more sophisticated. These audio 
profiling-based models can automatically infer speaker attributes, such 
as age, gender, and emotional state, by learning patterns from large-
scale voice datasets, significantly enhancing the accuracy and breadth 
of applications, ranging from improving security and healthcare ser-
vices to enriching user experiences in entertainment and social media, 
as discussed in more detail in Section 7.

Audio profiling is an invaluable tool, and its true potential lies in 
the depth of information that can be extracted from voice recordings. 
3 
These voice recordings usually contain information about the recorded 
speakers and their context, encompassing speech, non-verbal human 
sounds, and environmental background sounds. For instance, the analy-
sis of human voice in these recordings enables the estimation of speaker 
traits, such as age, gender, and physical attributes [18]. ML and DL [19] 
models trained on speech data or voice recording have demonstrated 
impressive accuracy in inferring these characteristics by analyzing 
pitch, formant frequencies, and vocal tract length, as it will be detailed 
in Section 4. Beyond these physical traits, voice profiling also extends to 
psychological and social attributes. Research has shown that voice at-
tractiveness correlates with objective measures of physical appeal, such 
as waist-to-hip ratio in women and shoulder-to-hip ratio in men [20]. 
Furthermore, individuals with more melodious or resonant voices are 
often perceived as having favorable personality traits, influencing social 
interactions [21]. The role of voice in reproductive viability has also 
been explored, with studies linking vocal changes during puberty and 
menopause to cues about sexual maturity and reproductive status [22]. 
These findings highlight the broad applicability of voice analysis in 
understanding human behavior and physiology.

In addition to the human voice, background sounds in voice record-
ings can capture valuable contextual information about the speaker’s 
environment. An active area of research, acoustic scene classification, 
focuses on categorizing sounds to deduce the context [23]. Specific 
applications include detecting distinct sounds within recordings, such 
as heavy machinery operating or running water in the background [9]. 
Additionally, voice recordings often contain non-speech human sounds, 



A. Pudasaini et al.

 

Neurocomputing 640 (2025) 130334 
Fig. 2. Audio profiling pipeline.

such as sniffing or coughing, which can be detected and used to further 
profile the speaker [24]. Fig.  1 provides an overview of the attributes 
evident in voice recordings.

3.2. Rationale and techniques behind audio profiling

The concept of audio profiling holds immense potential for a wide 
range of applications. The ability to infer personal characteristics such 
as age, gender, emotional state, presence of voice pathologies, mental 
health status, and personality traits, as well as contextual factors like in-
door or outdoor environments from audio data, represents a compelling 
area of research. The far-reaching implications of this technology in our 
increasingly technology-driven society underscore the need for further 
exploration and development of audio profiling techniques. Extracting 
such a diverse array of information solely from the audio modal-
ity enables numerous practical applications across various domains, 
highlighting the importance of continued research in this field.

Audio profiling can be utilized for voice forensics, face reconstruc-
tion, or suspect tracking by law enforcement agencies. It can also 
enhance human–machine interaction by enabling systems to better 
understand user characteristics and ambient context. Section 7 explores 
additional use cases, while the inference of personal or environmental 
attributes is thoroughly examined in Section 5.

4. Audio profiling pipeline

The Audio Profiling (AP) pipeline is generally divided into three 
parts, as shown in Fig.  2: Data Acquisition and Pre-processing, Feature 
Extraction, and Learning Model. Our survey is organized around these 
stages of audio profiling. We begin by discussing the preliminary stages 
of audio profiling, starting with Data Acquisition and Pre-processing 
in Section 4.1. Next, we provide a detailed study of feature extraction 
in Section 4.2. The components of feature extraction are illustrated 
in Fig.  4, and we also group the features in different domains and 
the extraction methods employed, as shown in Fig.  4(b). Furthermore, 
in Section 4.3, we examine various learning models used in audio 
profiling. Finally, we explore the literature, methods, datasets, and the 
evolution of research conducted for each AP task in Section 5.

4.1. Data pre-processing

Pre-processing is the first step of audio profiling after collecting the 
relevant data from available sources. It encompasses various techniques 
and steps that depend on the dataset and the nature of the targeted 
task. For instance, audio data collected from different sources may 
have non-uniform recording settings, with variations in audio chan-
nels or sampling frequencies. These variations can be mitigated by 
converting audio signals into a uniform format through down-mixing
to a fixed number of channels and re-sampling to a fixed sampling 
frequency [25]. Additionally, some audio data require noise and inter-
ference reduction, achieved through filtering and denoising, to focus 
on relevant signal aspects. In noisy environments, noise suppression 
methods can dampen the interference of environmental noise during 
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audio analysis [26], while overlapping sounds can be addressed using 
sound source separation methods [27].

To further ensure consistency in audio data processing,
pre-processing may also include the standardization and normalization 
of formats across various sample rates and resolutions. Resampling is 
used to standardize sample rates, enhancing computational efficiency 
and ensuring compatibility with different models. Normalization ad-
justs signal amplitudes to prevent bias, while handling variable lengths 
through segmenting or padding ensures uniform inputs for models that 
require fixed-length data. These steps are critical in preparing audio 
data for subsequent analysis, ensuring consistent and optimized inputs 
for the best performance of profiling algorithms.

Beyond these core techniques, the pre-processing phase can in-
clude additional methods, such as applying windowing functions, pre-
emphasis, resampling, dBA weighting of the magnitude spectrum, auto-
correlation functions, mean–variance normalization, range normaliza-
tion, delta-regression coefficients, and various vector operations. How-
ever, most existing research focuses on three key pre-processing tech-
niques, as illustrated in Fig.  3:

• Pre-emphasis: This initial step increases the magnitude of higher 
frequency sounds relative to lower frequencies. It is typically 
implemented using the formula: 
𝑦𝑡 = 𝑥𝑡 − 𝛼𝑥𝑡−1 (1)

where 𝑥𝑡 represents the sample signal at time 𝑡, 𝑥𝑡−1 is the 
previous sample, 𝛼 is a weight factor, and 𝑦𝑡 is the resulting 
emphasized sample. Pre-emphasis enhances the signal-to-noise 
ratio by amplifying higher frequencies, which often carry more 
informative features in speech signals.

• Framing: Speech signals vary over time and are non-stationary. 
To analyze them effectively, they are segmented into short frames,
assuming stationarity within each frame. Frames are typically 
20–30 ms long, with a 50% overlap between consecutive frames. 
Within each frame, a spectral feature vector is extracted.

• Windowing: Segmenting signals into frames can introduce dis-
continuities at frame edges, leading to spectral leakage. To 
mitigate this, a window function is applied to each frame. Several 
windowing functions exist, such as Rectangular, Hamming, Hann 
(raised cosine), Gauss, Sine, Triangular, Bartlett, Bartlett-Hann, 
Blackman, Blackman-Harris, and Lanczos. A common choice is the 
Hamming window, defined as: 

𝑤[𝑛] = 0.54 − 0.46 cos
( 2𝜋𝑛
𝑁 − 1

)

where 0 ≤ 𝑛 ≤ 𝑁 − 1 (2)

where 𝑁 is the length of the frame and 𝑛 = 0, 1, 2,… , 𝑁 − 1. The 
window function tapers the signal at the edges of each frame, 
reducing spectral leakage.

4.2. Feature extraction

Audio feature extraction refers to the process of capturing and 
quantifying relevant characteristics or attributes from an audio signal. 
It involves transforming raw audio waveforms into numerical repre-
sentations that effectively capture important information for various 
audio processing tasks. Feature extraction is essential because raw 
audio waveforms are high-dimensional and contain vast amounts of 
data. By extracting relevant features, the dimensionality of the audio 
data is reduced while retaining the essential information required for 
subsequent analysis or modeling. The primary goal of feature extraction 
in audio profiling is to represent variable-size utterances as fixed-
size feature vectors suitable for further processing in model training 
and result inference. Since audio signals exist in different domains and 
various features can be extracted based on these domains and using 
different methods, this section primarily discusses feature extraction 
research categorized by signal domains and extraction methods (see 
Fig.  4).
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Fig. 3. General pre-processing steps.
Fig. 4. Feature extraction components.

4.2.1. Signal domains
In this section, we discuss feature extraction from audio signals 

based on the specified signal domains, including time domain, fre-
quency domain, and time–frequency domain.
Time domain:. The time domain represents audio signals based on 
amplitude variations over time. Temporal speech characteristics, such 
as intonation, pause duration, speed, and rhythm, are unique to each 
individual’s speech [28]. By performing waveform analysis on signals in 
the time domain, distinct patterns related to the speaker’s vocal tract 
and articulation style can be observed. The energy distribution over 
time, such as variations in loudness and the energy envelope of speech, 
is a significant identifier. In the time domain, these energy dynamics 
can be directly observed and measured, offering important clues for 
speaker identification. For instance, a speaker’s level of excitement or 
stress can often be inferred from these features, as temporal speech 
characteristics change under such conditions.

Time domain features, such as the Zero-Crossing Rate (ZCR) of a 
recording, can provide clues about the recording environment. Higher 
energy levels and varying ZCR values can indicate a noisy or dynamic 
environment, while lower, steadier values might suggest a calmer 
setting. Time domain features can be amplitude-based, such as Attack 
Decay (AD), Attack Decay Sustain Release (ADSR), Log Attack Time 
(LAT), and Shimmer, or energy-based, such as Root Mean Square (RMS) 
energy and Short-Time Energy. Other features include rhythm-based 
metrics, auto-correlation-based features, and ZCR.
Frequency domain:. In the frequency domain, audio signal analysis 
shifts focus to the spectrum of frequencies present in a sound. The 
transformation of time-domain signals into the frequency domain is 
performed using the Fourier Transform. This process enables the ex-
amination of the frequency components of both continuous and discrete 
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time-domain signals, simplifying mathematical analysis of the underly-
ing system. The frequency domain provides insights into the harmonic 
content and timbre of the audio, which are essential for understanding 
speaker characteristics and environmental contexts.

Some key frequency domain features include Spectral Centroid, 
Spectral Bandwidth, and Spectral Roll-off. These features are crucial in 
speaker profiling, as they can reveal unique aspects of a speaker’s voice, 
such as nasality or sharpness. In terms of environmental inference, fre-
quency domain features help identify the type of setting (e.g., indoors 
vs. outdoors) or the presence of specific background noises (e.g., traffic 
or machinery) [9].
Time–frequency domain:. The time–frequency domain approach in 
audio signal processing provides a comprehensive analysis of audio 
signals by capturing both their temporal and spectral characteristics. 
This domain is particularly important for complex auditory phenom-
ena where understanding the evolution of frequencies over time is 
crucial. Time–frequency analysis is achieved through a time–frequency 
distribution (TFD), resulting in a time–frequency representation (TFR). 
While the time domain illustrates amplitude changes over time and the 
frequency domain provides frequency information but lacks temporal 
details, a TFR bridges this gap by offering both time and frequency 
resolution. This enables a more detailed understanding of audio signals, 
allowing for the perception and analysis of the complex interplay 
between pitch and timing that defines the unique character of sounds. 
The Short-Time Fourier Transform (STFT) is a widely used method for 
obtaining a TFR.

Examples of time–frequency features include Band Energy Ratio 
(BER), Spectrograms, Mel-Spectrograms, Mel-Frequency Cepstral Co-
efficients (MFCCs), Linear Prediction Cepstral Coefficients (LPCCs), 
Perceptual Linear Prediction (PLP), Gammatone Cepstral Coefficients 
(GTCCs), and Chroma Features. Among these, MFCCs have been exten-
sively used to identify personal attributes and analyze various environ-
mental sounds. Additional details on these audio features can be found 
in the study by [29].

4.2.2. Extraction methods
In this subsection, we discuss different feature extraction methods, 

as illustrated in Fig.  4(b). These include statistical methods, neural 
network embedding methods, visual methods, and other approaches 
commonly found in the literature.
Statistical methods:. Statistical methods in feature extraction from 
audio signals typically involve calculating various statistical measures 
to summarize the characteristics of the signal. Time domain features 
such as ZCR, RMS Energy, Temporal Centroid, Attack Time, and Decay 
Time are calculated using statistical methods over short-time frames. 
Statistical methods include measures like Mean, Variance, First Quartile 
(Q1), Third Quartile (Q3), Interquartile Range (IQR), Kurtosis, and 
Skewness of an audio signal.
Mean reflects the average amplitude, providing insights into the gen-
eral loudness of the speech or sound environment. Variance and
Standard Deviation indicate the variability or dynamic range of the 
audio, which are useful for distinguishing between steady and fluctuat-
ing sound environments. Skewness reveals the asymmetry of the audio 
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signal’s amplitude distribution, which may indicate certain types of 
speech patterns or environmental sounds. Similarly, Kurtosis indicates 
the presence of outliers or extreme variations in the audio, which might 
signify unusual speech events or environmental sounds. These features 
are useful for basic analysis and classification tasks in audio process-
ing, providing insights into the signal’s distribution and variability 
characteristics. In some cases, entire personal attribute inference tasks, 
such as gender detection, can be performed using statistical measures 
alone [30].

Low-dimensional representations, such as sequences of features, 
super-vectors of Gaussian mean components, or low-dimensional vec-
tors like i-vectors (identity vectors) [31], are also extracted using 
statistical methods like Joint Factor Analysis. Applications of these 
representations include speaker verification, speaker diarization, lan-
guage recognition, and emotion recognition. A detailed roadmap of 
how audio features are extracted using statistical methods is provided 
in [32].
Neural network embeddings:. Neural network embeddings are fea-
ture representations learned by neural networks during training. These 
embeddings are derived from the input data and are optimized to 
capture the most relevant features for the specific task. Neural networks 
learn these embeddings as part of their weight parameters, typically 
in the initial layers of the network. The embedding process usually 
consists of two parts. First, an encoder network extracts frame-level 
representations from acoustic features such as MFCCs or filter banks. 
This is followed by pooling methods, such as global temporal pooling, 
which aggregate the frame-level representations into a single vector 
per utterance. This vector can then be used for different training 
objectives. Various types of neural network embeddings are used in 
audio processing, including Audio Word Embeddings [33], Speaker 
Embeddings [34], and Environmental Embeddings [35].

Of particular interest are speaker embeddings, which capture the 
unique characteristics of a speaker’s voice. A prominent example is x-
vectors [34], which are extracted using a deep neural network (DNN) 
architecture that encodes both speaker and phonetic content. X-vectors 
have been highly effective in tasks such as speaker verification, di-
arization, and language recognition [36]. Additional details on different 
encoder architectures and embeddings are discussed by the authors 
of [37].
Visual methods:. This category of feature extraction emphasizes vi-
sual representation methods that convert audio signals into visual 
formats, such as spectrograms, from which meaningful features can 
be extracted. Spectrograms provide a time–frequency representation, 
capturing temporal patterns and frequency events. Mel-spectrograms, 
adapted through the Mel scale [38], emphasize perceptually significant 
frequencies, enhancing tasks like speech and music recognition. Chro-
magrams focus on pitch classes, aiding in music analysis by identifying 
harmonic structures.

From these visual representations, various features can be extracted, 
such as mel-spectrogram features and chromagram features. Convo-
lutional Neural Networks (CNNs) and their variants are commonly 
used to automatically learn and extract relevant features from these 
visual representations for further analysis and inference. Audio profil-
ing tasks such as gender recognition [39], emotion recognition [40], 
acoustic scene classification, and event detection have been successfully 
performed using visual methods.

Apart from these, there are various end-to-end approaches that 
handle all aspects of the audio profiling process, from the initial input 
to the final output, without requiring manual intervention or separate 
processing stages. Raw waveforms are used as input, and different 
audio profiling tasks such as age estimation [41,42], voice pathology 
detection [43], Speech Emotion Recognition (SER) [44], and acoustic 
scene classification [45,46] are directly obtained as output. End-to-
end systems perform automatic feature extraction, learning directly 
from raw inputs without manual intervention. This approach allows the 
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learning model to uncover and utilize intricate patterns and relation-
ships within the data. Beyond automatic feature extraction, feature sets 
for audio profiling can also be selected manually by domain experts and 
researchers based on experiments or using specialized toolkits such as 
OpenEar, PRAAT, or openSMILE.

4.3. Learning model

This section discusses various learning models for audio profiling. 
The process of teaching a computer to make decisions or predictions 
based on data is commonly referred to as ‘‘model learning’’. It involves 
selecting a model (an algorithm or mathematical representation), train-
ing it on a dataset (allowing the model to discover patterns in the data), 
and evaluating its performance on new, unseen data. Depending on the 
type of prediction being made, model learning can encompass various 
tasks beyond classification and regression. In this section, we explore 
different types of models and architectures based on how they infer 
personal or environmental attributes. We categorize these models into 
three groups: Statistical Models, Machine Learning Models, and Deep 
Learning Models.

4.3.1. Statistical models
Statistical models are grounded in probability theory and statis-

tical inference. They analyze patterns in data by assuming that the 
data is generated from a specific statistical distribution. For speech 
recognition tasks, it is necessary to model the distribution of feature 
vector sequences. Models such as Gaussian Mixture Models (GMMs) 
are commonly used for density estimation and are particularly adept at 
handling data with multiple sub-populations. This makes them suitable 
for speaker recognition, where different speech patterns can be mod-
eled as distinct distributions. Hidden Markov Models (HMMs) excel 
in time-series analysis, which is critical for understanding sequential 
patterns in speech. HMMs have been applied to speaker modeling 
and can be used to estimate personal attributes such as age [47].
Universal Background Models (UBMs) are large GMMs trained on 
comprehensive datasets to provide independent models for feature 
distributions. UBMs offer a general model of speech that can be adapted 
to specific speakers [48]. These models are fundamental for tasks that 
require capturing the uncertainty and variability inherent in audio 
data. GMM-based systems have demonstrated their effectiveness in 
identity verification and related applications. They are used as foun-
dational models in tasks such as age estimation, gender recognition, 
and language recognition [3,49,50].

4.3.2. Machine learning models
Machine learning models involve algorithms that learn from data 

to make predictions or decisions. This learning can be supervised 
(with labeled data) or unsupervised (without labeled data). Supervised 
Learning Models like Support Vector Machines (SVMs), K-Nearest 
Neighbors (KNNs) are particularly effective in classification tasks. In 
the world of audio processing, they can be used to distinguish between 
different speakers (speaker recognition), identify personal attributes 
such as emotions [51], voice pathology [52] or to identify specific 
sound scenes and events in an environment (like a fire alarm or 
bird chirping, or indoor/outdoor environments) [25]. Unsupervised 
Learning Models like K-means or hierarchical clustering are used 
to group similar audio patterns without prior labeling and segregate 
different sound sources in the environment. Similarly, there are various 
machine learning models for regression such as Linear Regression and 
its variants, Support Vector Regression (SVR) that have been used for 
audio profiling.

Machine learning models in audio processing are tasked with ex-
tracting meaningful information from complex audio signals. They rely 
on robust feature extraction methods. Key methods include: statistical 
methods calculating statistical measures to summarize signal character-
istics; neural network embeddings learning compact representations via 

http://openaudio.eu/
https://www.praatvocaltoolkit.com/index.html
https://www.audeering.com/research/opensmile/
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temporal pooling and attention, such as x-vectors encoding speaker and 
phonetic information for speaker recognition; and visual representa-
tion methods converting audio to spectrograms, mel-spectrograms, and 
chromagrams, from which features like mel-spectrogram and chroma-
gram features are extracted for tasks like speech, gender, and emotion 
recognition. Models are then trained to recognize patterns that are 
indicative of different audio classes or to understand the structure in 
the data. The choice between supervised and unsupervised methods 
depends on the nature of the task and the availability of labeled data.

4.3.3. Deep learning models
Deep learning models have significantly advanced the field of ma-

chine learning, particularly in handling complex and high-dimensional 
data like images, audio, and text. Depending upon the task at hand, 
there are numerous deep learning models that are employed to under-
stand and solve the problem. Deep Learning Models can be supervised 
and unsupervised, and are adept at handling various tasks, including 
both classification and regression.

In supervised learning, Convolutional Neural Networks (CNNs) 
and their variants are extensively used for tasks that involve classi-
fication and regression, such as identifying emotions, personality or 
specific environmental settings from audio data. Recurrent Neural 
Networks (RNNs) and their advanced variants like Long Short-Term 
Memory networks (LSTMs) and Gated Recurrent Units (GRUs) are 
particularly effective for sequential data. These models excel in speech 
recognition tasks, making them ideal for detecting voice pathology, 
emotional states, and even events in environmental audio.

On the unsupervised side, Autoencoders are employed for feature 
learning and dimensionality reduction. This capability is crucial in 
understanding intricate voice characteristics or environmental sounds 
without predefined labels. Generative Adversarial Networks (GANs)
are known for their generative abilities, they have been used in feature 
extractions and also to create synthetic audio samples, which can 
enhance speech signals and contribute to the robustness of training 
datasets. Some models, like Transformers and Deep Belief Networks 
(DBNs), are versatile and find applications in both supervised and 
unsupervised learning contexts. Transformers have gained prominence 
for their effectiveness in handling sequential data, making them a 
powerful tool for advanced speech recognition tasks and environmental 
sound classification. DBNs, with their generative modeling capabilities, 
are pivotal in complex feature extraction, applicable in scenarios like 
detecting voice pathology or analyzing personality traits from speech 
patterns.

All the types of learning models can use either classification/
regression or a combination of both as in [41]. Classification and 
Regression are the two different types of tasks for Audio Profiling. 
Classification models can also be divided three types. The first type 
is Binary Classification where the classification model assigns labels 
from a set of pre-existing labels, for instance, in Gender classification, 
either male or female labels are assigned to the voice recording. Sim-
ilarly in Mental Health inference, different mental illness are present 
or absent. The next type is Multi-Class Classification where the 
classification model assigns a single label out of multiple classes, for 
instance, in Age classification, a sample belongs to one of the several 
age groups (young, adult, senior) present. Also, in case of Acoustic 
Scene Classification, a sample belongs one of the different scenes like 
parks, transport, cafe. The third one is Multi-Label Classification
where a sample belong to multiple classes at the same time. For 
instance, in Audio tagging, the identification of presence of specific 
sounds such as dog barking, car honking, baby crying etc. Similarly, 
emotional state identification of speaker in audio recording, such as 
happy, sad, angry, excited etc. On the other hand, regression models 
predict a numerical value which can be done in case of Age prediction, 
Height Prediction and Weight estimation. After feature extraction on 
the voice data, the model is trained on the training dataset and tested 
on the test set.
7 
Fig. 5. Audio profiling tasks.

Performance of the audio profiling models are done using the stan-
dard metrics : Mean Absolute Error (MAE) and Root Mean Squared 
Error (RMSE) for regression, Accuracy and Unweighted Accuracy 
(UA) for classification. In audio profiling, the final outcomes include 
inferred personal attributes and the deduced environmental context.

5. Audio profiling tasks

Audio profiling tasks involve inferring different personal and en-
vironmental attributes. AP integrates audio processing and machine 
learning to analyze speech recordings beyond conventional speech-to-
text applications. It involves extracting multifaceted personal and envi-
ronmental characteristics such as age, gender, height, weight, emotions, 
and mental states. The scope of audio profiling extends to environ-
mental context detection as well. The technology can infer whether 
a recording is captured indoors or outdoors, and can identify specific 
scenarios such as cafes, public transport, temples, parks, and other 
outdoor/indoor settings. Similarly, Audio Event Detection (AED) allows 
the detection of important sounds like doorbells, alarms, or a child 
who needs attention. Audio profiling tasks are classified based on the 
personal and environmental attributes they infer, as shown in Fig.  5.

A comprehensive work summing up the methods, algorithms, fea-
tures on personal attribute inference, and environmental context cues 
is provided in Sections 5.1 and 5.2.

5.1. Personal attributes inference

The human voice possesses remarkable potential due to its diverse 
characteristics. From tone and pitch to emotional cues and individ-
ual traits, the voice serves as a valuable source of information. This 
multidimensional nature of speech opens up numerous possibilities 
across various domains, contributing to the development of advanced 
technologies and enhancing human–machine interactions. Inferring an 
individual’s age solely from their voice is fascinating; combining this 
with attributes like gender and emotion provides deeper insights into an 
individual’s behavior and choices. Further augmenting these inferences 
with the detection of personality traits transforms this information into 
a treasure trove for digital marketers. Imagine the potential of machines 
understanding mental states to adapt their interactions accordingly or 
even diagnosing pathologies from voices. These capabilities underscore 
the potential of audio profiling to infer personal attributes.

In this section, we discuss a specialized literature review that un-
covers deeper insights and key developments in audio profiling. The 
focus is on analyzing finer details often overlooked in broader surveys, 
with an emphasis on the methodologies, findings, and contributions of 
significant studies.
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5.1.1. Gender inference from voice
Gender recognition involves analyzing voice signals to determine 

the gender categories of speakers. The acoustic characteristics of human 
speech vary by gender due to physiological differences in the glottis and 
vocal tract. Gender detection is often combined with age group classi-
fication, leveraging the fundamental frequency (f0), as male speakers 
typically exhibit lower frequencies compared to female speakers.

Among the numerous studies on gender detection, we present some 
of the major ones here. The authors of [53] introduced a two-layer
classifier fusion technique for automatic gender identification (AGI). 
The first layer employs acoustic classification with divisive clustering 
to group speakers based on similar vocal articulatory characteristics. 
For enhanced performance, the second layer integrates GMM, SVM, 
and MLP classifiers. The proposed method achieved a 96.53% ac-
curacy on the OGI multilingual corpus [54], surpassing traditional 
AGI approaches. The authors of [55] proposed gender classification 
based on utterance intensity using Simpson’s rule. The area under 
the normalized curve—obtained by multiplying a factor with a third-
degree polynomial fitted through the peaks in each frame of speech 
utterance (20 ms in length)—was measured to calculate voice inten-
sity. Experiments demonstrated an accuracy of 96.44% on the DARPA 
TIMIT dataset. To enhance human–computer interaction by integrating 
speech recognition technology, the authors of [56] extracted Mel coef-
ficients and their derivatives from Hindi vowel speech samples. They 
achieved an impressive 93.48% accuracy using a combined Support 
Vector Machine (SVM) and neural network classification approach. The 
study aimed to identify essential features for gender recognition and 
assess performance based on the first Mel coefficient. Additionally, 
the authors of [57] highlighted the importance of other voice signal 
characteristics, such as pitch and energy, in gender classification. Their 
method achieved an accuracy of 96.45% using their own datasets.

The study [58] presents a new method for gender recognition 
using audio speech features. It involves data pre-processing for noise 
reduction, followed by a multi-layer architecture for feature extraction. 
Fundamental frequency, spectral entropy, spectral flatness, and mode 
frequency were computed in the first layer, while the second layer 
employed linear interpolation and Mel Frequency Cepstral Coefficients 
(MFCCs) for feature extraction after Z-score normalization. SVM and 
K-Nearest Neighbors (KNN) were used for classification. The model 
achieved a peak accuracy of 96.8% with K-Nearest Neighbors (KNN) 
on the TIMIT dataset. The authors extended their work by adding 
a third layer that calculates Linear Predictive Coding (LPC) coeffi-
cients. These three layers were combined for training. The study also 
introduced a combined dataset for detecting both gender and the 
geographical region of the speaker, which includes multiple datasets: 
TIMIT, the Ryerson Audio-Visual Database of Emotional Speech and 
Song (RAVDESS), and BGC, a self-constructed dataset in random order. 
TIMIT was primarily used for gender recognition, while RAVDESS 
was used for emotion detection. The proposed multi-output-based 1D 
CNN model achieved an accuracy of 93.01% for gender detection, 
which is comparable to other state-of-the-art models. Additionally, it 
achieved an accuracy of 97.07% for region detection. However, the 
study’s limitation lies in the relatively small dataset used for region 
detection [59].

The study discussed in [60] employs a multilayer perceptron (MLP) 
deep learning model, leveraging acoustic characteristics of voices and 
speech to ascertain gender. A total of 22 acoustic parameters were 
measured on acoustic signals, achieving a significant accuracy level of 
96.74%. Similarly, [61] conducted a study aiming to predict gender 
from speech by employing Gaussian Mixture Models (GMM), Multilayer 
Perceptron (MLP), Vector Quantization (VQ), and Learning Vector 
Quantization (LVQ). Their predictive model achieved an accuracy of 
96.4% using the IViE corpus dataset [62]. Likewise, [63] conducted re-
search to predict gender from speech using Weighted Supervised Non-
negative Matrix Factorization (WSNMF) and age using a Generalized 
Regression Neural Network (GRNN). Their predictive model achieved 
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a gender recognition accuracy of 96% with the Dutch database [64]. 
The study in [65] employs deeper Long Short-Term Memory (LSTM) 
networks to predict gender from audio data, achieving a 98.4% accu-
racy on the Voice Gender dataset. This study compares its success rate 
to conventional machine learning methods, highlighting its pioneering 
role in effective and fast gender detection. In another effort, the authors 
of [66] focus on increasing the accuracy of machine learning models 
for gender recognition by utilizing a new ensemble semi-supervised 
self-labeled algorithm called iCST-Voting. This algorithm integrates an 
ensemble of popular self-labeled algorithms—Self-training, Co-training, 
and Tri-training—using them as base learners along with an ensemble 
of classifiers. Their approach achieved an accuracy of 98.42%, sur-
passing state-of-the-art supervised algorithms trained with 100% of the 
training set on the Voice Gender dataset.

The study by [67] strongly supports Deep Neural Networks (DNNs) 
as an effective choice for gender detection, presenting compelling 
evidence. By comparing various DNN architectures such as Convo-
lutional Neural Networks (CNNs), Temporal Convolutional Networks 
(TCNs), Convolutional Recurrent Neural Networks (CRNNs), and Con-
volutional Temporal Convolutional Networks (CTCNs), the paper high-
lights consistently low error rates, often below 2%, which align with top 
benchmarks in the literature. Additionally, DNNs outperform standard 
methods like Support Vector Regression (SVR) and Random Forest 
(RF), reducing error rates by over 50% in certain cases. The authors 
of [68] employed a sequential model with five hidden layers for gender 
detection. Using the trained model on the Common Voice dataset, they 
achieved an accuracy of approximately 91% for gender detection.

The study [39] explores handcrafted features such as Mel spectro-
gram, MFCC, Chroma, spectral contrast, and Tonnetz, analyzing their 
performance across various classifiers, including K-Nearest Neighbors 
(KNN) and Multilayer Perceptrons (MLP). Additionally, deep learning 
models such as Deep Neural Networks (DNN), ResNet34, and ResNet50 
are evaluated for their performance on spectrogram images. Notably, 
ResNet50 emerges as the most effective model, achieving an impressive 
98.57% accuracy on the Common Voice dataset while demonstrating 
strong generalization capabilities across different datasets. In their 
paper [69], the authors propose using DNNs to encode each utterance 
into a fixed-length vector by pooling the activations of the last hidden 
layer over time. The feature encoding process is designed to be jointly 
trained with an utterance-level classifier for improved performance. 
Experiments on a Mandarin dataset demonstrate the effectiveness of 
their proposed method for age and gender recognition tasks, achieving 
an accuracy of 92.72%. DNN-based embedder architectures, such as 
the d-vector system, have shown robust performance, with accuracies 
ranging from 96.8% to 99.6%, depending on the training and testing 
datasets. The highest result of 99.6% accuracy for gender recognition 
was achieved when the model was trained on the Common Voice 
dataset and fine-tuned on the TIMIT dataset [70].

While most studies focus on adult voices, some research has also 
investigated children’s voices. Identifying gender in children is more 
challenging since sex-based differences in vocal tract structure do not 
develop until puberty [71]. Studies exploring gender detection in chil-
dren’s voices include [72–75].

Looking at the different works on gender detection in Table  2, it 
is evident that earlier efforts primarily focused on manually extracting 
features and feeding them into suitable machine learning models for 
classification. Support Vector Machines (SVM) and Gaussian Mixture 
Models (GMM) were prominent choices, laying the foundation for 
the field’s development. The introduction of deep learning techniques 
marked a significant shift, enabling the automatic extraction of in-
tricate features with minimal manual intervention. A diverse set of 
deep learning architectures, such as Long Short-Term Memory networks 
(LSTMs) and Convolutional Neural Networks (CNNs), has been em-
ployed to improve accuracy. Multi-output models like 1D CNNs have 
proven effective in handling complex speech data. The adoption of 
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Table 2
Overview of the Algorithm, Features, and Datasets for gender detection.
 Reference Accuracy Algorithm Features Dataset  
 Keyvanrad et al. [53] 96.53 SVM, GMM, MLP MFCC + fused likelihood score OGI Multilingual Corpus  
 Alsulaiman et al. [55] 96.44 Simpson’s Rule Peak Intensity DARPA TIMIT  
 Bahari et al. [63] 96.00 WSNMF, GRNN Gaussian mixture weight super vectors Dutch Database  
 Djemili et al. [61] 96.40 GMM, MLP, VQ, LVQ MFCC IViE Corpus  
 Buyukyilmaz et al. 
[60]

96.74 MLP 22 acoustic features Voice Gender Dataset  

 Pahwa & Aggarwal. 
[56]

93.48 SVM MFCC + Delta + Delta-Delta Vowel data  

 Wang & Tashev. [69] 92.72 DNNs Energy + pitch + voice probability + 26 dim log MEL 
spectrograms

Mandarin dataset  

 Chaudhary & Sharma. 
[57]

96.45 SVM MFCC + pitch + energy Self data - 280 samples  

 Ertam et al. [65] 98.40 Deeper LSTM IRQ + meanfun + sfm + sd + median + Q25 + Q75 + mode + 
centroid + meandom

Voice Gender Dataset  

 Uddin et al. [58] 96.80 SVM, KNN FF + spectral frequency + spectral flatness + mode frequency + 
MFCC

TIMIT  

 Uddin et al. [59] 93.01 Multi-output 1d CNN FF + spectral frequency + spectral flatness + mode frequency + 
MFCC + LPC

RAVDESS + TIMIT + BCG  

 Zaman et al. [76] 96.4 CatBoost, Random 
Forest, XGBoost, 
KNN, SVM

20 statistical feature Common Voice Dataset  

 Kwasny et al. [70] 99.6 DNNs d-vectors TIMIT  
 Livieris et al. [66] 98.42 iCST-Voting – Voice Gender Dataset  
 Alnuaim et al. [39] 95.63 KNN, DNN, MLP MFCC, Mel spectrogram, Chroma STFT, Tonnetz, special contrast Common Voice Dataset  
 Alnuaim et al. [39] 97.94 ResNet34 Spectrograms Common Voice Dataset  
 Alnuaim et al. [39] 98.57 ResNet50 Spectrograms Common Voice Dataset  
 Kone et al. [68] 91.00 DNN Spectrograms Common Voice Dataset  
Fig. 6. Accuracy progression for gender detection across different datasets.
ensemble techniques, such as iCST-Voting, has demonstrated poten-
tial in boosting overall accuracy. Additionally, advanced architectures 
like ResNet34 and ResNet50, initially designed for computer vision 
tasks, have been adapted for gender detection, showcasing the trans-
ferability of algorithms across domains. Information on various datasets 
used for gender detection is presented in Table  7. A multidimensional 
comparison of accuracy across different datasets is illustrated in Fig.  6.
9 
5.1.2. Age inference from voice
Age detection is a challenging task as several factors, such as the 

shape of the vocal tract, health, emotional state, gender, and accent, 
can influence speech. However, certain voice characteristics provide 
indications of a speaker’s age. For instance, younger speakers generally 
exhibit a higher speech rate [77], and the fundamental frequency tends 
to decrease with age [78].
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One of the pioneering studies for age estimation based on paralin-
guistic features like speech rate was conducted by authors of [79]. The 
authors used acoustic, not linguistic, information in their utterances. 
Earlier methods of age estimation relied upon using statistical features 
and models. For instance, authors of [80] conducted a study to predict 
age from speech using Hidden Markov Model (HMM) and SVM. The 
accuracy of the predictive model using HMM is 48.1% to 70.7%, and 
the accuracy using SVM is 53.1% to 72.6% on the AT&T’s, HMIHY ‘‘how 
May I Help You’’, corpus [81]. In the paper [63], authors proposed a 
novel hybrid architecture combining WSNMF and GRNN. Evaluation 
on the Dutch dataset [64] shows that the MAE of age estimation using 
the proposed hybrid method is 7.48 years. Similarly, [82] conducted a 
study to predict age from speech using a two-level GMM into four cate-
gories: child, young, adult, and senior. The summary age classification 
of the whole GMM-based system was 92.3% on the Czech and Slovak 
database [83].

Recent approaches have focused on using machine learning and 
deep learning approaches with more inclination on the deep learning 
side. Deep learning approaches are adept to learning complex patterns 
in the data, and have shown better performance than the machine 
learning models. Machine learning approach as suggested by authors 
of the paper [68] propose a grid search pipeline technique using 
RobustScalar, Principle Component Analysis and Logistic Regression 
algorithms for age prediction on the common voice dataset and were 
able to achieve an accuracy of 59%. With a focus towards efficient fea-
ture extraction and deep learning based solutions, the authors of [84] 
introduce a novel embedding framework known as x-vector, which 
relies on a deep neural network (DNN). They conducted training on 
a time-delay neural network (TDNN) for a specific speaker classifica-
tion task. In a similar context, the authors of [85] also propose an 
embedding approach called d-vector for speaker verification. Like the 
method detailed in [84], both approaches aim to transform variable-
length utterances into fixed-size embedding vectors. However, these 
methods diverge in how they generate the embedding vector. In the 
x-vector system, statistical pooling is applied to the output of the final 
hidden layer of a convolutional neural network (CNN) to aggregate 
global context. In contrast, the d-vector architecture relies on a straight-
forward multi-layer, long-short time memory (LSTM) recurrent neural 
network (RNN), where the output of the last cell in the last hidden layer 
is utilized as the embedding.

Efforts have also been made to adapt both the x-vector and LSTM 
frameworks for age estimation tasks. In [86], the authors trained an 
LSTM-based system that demonstrated superior performance compared 
to the i-vector baseline when dealing with brief speech segments, 
specifically on the NIST SRE 2010 dataset [87]. Meanwhile, in an-
other study documented in [41], a research group introduced an ap-
proach based on x-vectors, achieving a mean absolute error (MAE) of 
4.92 years. Notably, when implementing the i-vector system on the 
same dataset, the MAE was higher at 5.82 years, indicating a clear 
advantage of the x-vector approach in this context. The paper [88] 
introduces a novel DNN architecture that can work with small training 
dataset for age prediction. The DNN system is able to improve the age 
RMSE by at least 0.6 years as compared to a traditional SVR system 
trained on GMM mean supervectors. The RMSE errors are 7.60 and 
8.63 years for male and female respectively on the TIMIT dataset with 
an average speech duration of 2.5 s. Authors also claim at most 3% 
performance degradation with 1-s speech input compared to the whole 
duration.

Using a set of common features to estimate a number of physical 
traits, authors of the paper [88] trained a support vector regressor 
to achieve a MAE of 5.2 years for male and 5.6 years for female 
speakers on the TIMIT dataset. Several other traits including shoulder 
size, waist size, and weight have been analyzed as well [78]. The 
utilization of x-vectors and d-vectors, along with the application of 
transfer learning, has been explored in the simultaneous estimation 
of age and gender, as described in [70]. This research addresses the 
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challenge of having limited training data by using transfer learning 
from networks pre-trained for tasks not directly related to speaker 
profiling, drawing on well-known speech recognition datasets such as 
TIMIT and common voice datasets. The application of transfer learning 
results in MAE of 5.12 years and 5.29 years, in addition, an RMSE of 
7.24 and 8.12 years for male and female speakers respectively. Authors 
of the paper [89] highlight that majority of the previous works have 
predominantly relied on deep learning techniques applied to either 
hand-crafted features [88] or relied on complex structures involving 
millions of parameters [90,91]. These approaches have shown various 
limitations, such as the high cost associated with feature extraction 
and the dependence on manually selected features. These drawbacks 
may render them less suitable for real-time applications. Consequently, 
the authors propose an end-to-end speaker profiling system designed 
to estimate age, height, and gender. A novel wavelet filter-bank 
initialization method for CNN with residual blocks is proposed and 
tested on the TIMIT dataset and it achieved comparable results with 
more popular DNN with embeddings. The system achieved a MAE 
of 5.36 years and 6.07 years for male and female speakers in age 
estimation. A summary of the major works for age estimation from 
voice is shown in Table  3 and a list of datasets are included in Table  7.

5.1.3. Emotion recognition from voice
Emotions can be recognized through various means, including direct 

questioning, tracking implicit parameters or vital signs, voice recog-
nition, facial expressions, and gesture recognition. However, Speech 
Emotion Recognition (SER) remains a complex field with ongoing re-
search employing both machine learning and deep learning approaches. 
Several traditional machine learning methods have been applied to 
SER, including Gaussian Mixture Models (GMMs) [92], Hidden Markov 
Models (HMMs) [93], Support Vector Machines (SVMs) [94], and 
k-Nearest Neighbors (KNNs) [95]. These methods typically involve ex-
tracting a feature set from speech and then training a classifier. Bozkurt 
et al. [96] pioneered the use of Line Spectral Frequencies (LSFs) for 
emotion recognition, demonstrating improved classification rates com-
pared to Mel-Frequency Cepstral Coefficients (MFCCs) when using a 
GMM classifier on the Berlin Emotional Speech Dataset (EMO-DB) [97] 
and the FAU Aibo Emotion Corpus [98].

Using the EmoSTAR dataset [99], Korkmaz et al. [100] inves-
tigated the use of Mel-Frequency Cepstral Coefficients (MFCCs) for 
analyzing emotional content in speech. MFCCs were extracted from 
spoken utterances using overlapping frames to ensure smooth transi-
tions and minimize data loss. The impact of frame length and frame 
shift (also known as ‘‘scroll time’’) on emotion recognition performance 
was evaluated using Support Vector Machines (SVMs) and k-Nearest 
Neighbors (k-NNs). Their 10-fold cross-validation analysis yielded a 
notable accuracy of 98.7% in classifying emotions. The authors of [51] 
used MFCC features obtained from the EMO-DB dataset and used NN, 
SVM classifiers for emotion recognition with an accuracy of ranging 
from 73–85.8%. Motamed et al. [101] also leveraged MFCCs from the 
EMO-DB dataset but adopted a different approach, using an Adaptive 
Neuro-Fuzzy Inference System (ANFIS) and a Multilayer Perceptron 
(MLP) network inspired by the structure of the brain’s emotional net-
work. In their model, the ANFIS component, simulating the amygdala 
and orbitofrontal cortex, generated classification rules. These rules 
were then fed into the MLP network to classify speech emotion signals, 
achieving an accuracy of 72.5% on the EMO-DB dataset.

To reduce computational cost, Liu et al. [102] proposed a feature 
selection method based on correlation analysis and the Fisher criterion 
to remove highly correlated redundant features. Additionally, they 
introduced an emotion recognition approach using an extreme learning 
machine (ELM) decision tree, considering the confusion degree among 
different basic emotions to improve classification accuracy. Experi-
ments on the CASIA Chinese speech database [103] demonstrated an 
average recognition rate of 89.9%.
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Table 3
Overview of the Algorithm, Features, and Datasets for age detection.
 Ref. Year Dataset Algorithms for age Features Metrics for age (Accuracy %)MAE (years)& 

RMSE (years)
 

 Shafran et al. [80] 2003 HMIHY HMM,SVM Voice Signatures 72.6%  
 Bahari et al. [63] 2011 Dutch Database WSNMF,GRNN Gaussian Mixture weight super vectors MAE = 7.48 years  
 Prilbil et al. [82] 2016 Czech and 

Slovak
GMM – 92.3%  

 Wang & Tashev 
[69]

2017 Mandarin dataset – Energy + Pitch + Voice Probability + 26 dimension 
Log MEL Spectrograms

92.72%  

 Zazo et al. [86] 2018 NIST SRE08 + 
SRE10

LSTM-RNNs MFCC + Pitch + Probability of Voicing + Normalized 
Cross Correlation Function

MAE = 6.23 for male and 7.31 for female  

 Ghahremani et al. 
[41]

2018 NIST SRE08 + 
SRE10

x-vector DNN 23-dim MFCC short-time mean normalized over 
sliding the window of 3 s

MAE = 4.92 years  

 Kalluri et al. [88] 2019 TIMIT DNNs MFCC + Delta + Delta-Delta RMSE = 7.6 for male and 8.63 for female  
 Kalluri et al. [78] 2020 TIMIT SVR Log-mel Spectrograms + Formant + Harmonic 

Features
MAE = 5.2 for male and 5.6 for female  

 Zaman et al. [76] 2021 Common Voice 
dataset + 
RAVDESS

CatBoost, Random 
Forest, XGBoost, 
KNN, SVM

20 statistical features 70.4%  

 Kwasny and 
Hemmerling [70]

2021 TIMIT DNNs d-vector feature extractor with front-end modules 
pre-training on Common Voice

RMSE = 7.24 for male and 8.12 for female  

 Jaid et al. [89] 2023 TIMIT CNN Residual Blocks + Filter Banks MAE = 5.36 for male and 6.07 for female  
 Tursunov et al. [91] 2021 TIMIT CNN Multi-attention Module 73%  
 Kone et al. [68] 2023 Common Voice 

dataset
RobustScalar, PCA, 
and Logistic 
Regression

Spectrograms 59%  
Deep learning methods have also demonstrated their superior per-
formance compared with traditional machine learning methods in emo-
tion recognition, primarily due to their ability to automatically learn 
complex features, scalability, and higher recognition accuracy [15,
104]. According to a comprehensive survey by Hashem et al. [15], 
DL techniques for emotion recognition can be categorized into three 
main approaches: (1) extracting handcrafted features followed by ML 
classification, (2) using DL for classification with either handcrafted 
features or automatically extracted features through DL layers, and 
(3) converting sound waves into spectrogram images to be used as 
input for DL models. While various methodologies have been employed 
in the field of SER to achieve acceptable results, the state-of-the-
art performance is often achieved using DL techniques. Commonly 
used DL architectures in SER include CNNs and their variants, DBNs, 
Autoencoders, LSTMs, and RNNs.

The authors of the study [105] have used MFCC features and a 1D 
CNN architecture for SER, achieving 82.3% accuracy on the RAVDESS 
dataset for six emotion classes. Similarly, Issa et al. [106] proposed 
a 1D CNN-based approach that extracts MFCCs, chromagram, spec-
trograms, Tonnetz representations, and spectral contrast features for 
SER. Their model achieved speaker-independent classification accura-
cies of 76.1%, 86.1%, and 64.3% on the RAVDESS, Berlin EMO-DB, 
and IEMOCAP datasets, respectively. An improvement over this tech-
nique was proposed by the authors of [107]. Instead of examining the 
whole utterance to recognize the final state of emotion, the authors 
used key sequence segment selection based on Radial-Based Func-
tion Network (RBFN) similarity measurement in clusters to recognize 
spatial–temporal information while reducing complexity. In addition, 
the normalized CNN features are fed to the deep BiLSTM to learn the 
temporal information for recognizing the final state of emotion. Exper-
iments over the IEMOCAP, EMO-DB and RAVDESS datasets resulted in 
accuracies of 72.25%, 85.57% and 77.02% respectively.

CNNs effectively extract features from speech spectrograms [108], 
while fully convolutional networks (FCNs) are designed for dense 
prediction tasks but struggle with temporal modeling [109]. In con-
trast, RNNs and LSTMs excel at capturing temporal dependencies and 
are widely used for SER. To model spatio-temporal features, hybrid 
architectures combining CNNs with RNNs or LSTMs are commonly 
employed [15,104]. Zhao et al. [110] proposed a model integrating 
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attention-based bidirectional LSTMs with attention-based fully con-
volutional networks to enhance spatio-temporal feature learning in 
SER. Their approach achieved a weighted accuracy (WA) of 68.1% 
and an unweighted accuracy (UA) of 67.0% on IEMOCAP, along with 
45.4% UA on FAU Aibo Emotion Corpus (FAU-AEC). Deep represen-
tations, when combined with a linear support vector classifier, per-
formed comparably to standard acoustic feature sets such as extended 
Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) [111] and 
Computational Paralinguistics Challenge features set (ComParE) [112]. 
Anvarjon et al. [113] addressed two key challenges in SER: reducing 
computational complexity and improving accuracy. They proposed a 
lightweight CNN with plain rectangular kernels and a modified pooling 
strategy, emphasizing deep frequency features in speech spectrograms. 
Their model achieved recognition accuracies of 77.01% on IEMOCAP 
and 92.01% on EMO-DB, surpassing state-of-the-art SER models.

Mustaqeem et al. [114] designed a one-dimensional dilated CNN 
architecture for real-time SER, similar to Zhao et al. [110]. Their 
approach combined CNNs for local feature extraction and LSTMs for 
global feature learning using a simple strategy, achieving an
unweighted accuracy of 67% on the IEMOCAP dataset. To overcome the 
limitations of [110], they proposed a multi-learning strategy framework 
incorporating two learning modules: a residual block with skip connec-
tions (RBSC) to capture emotional cues and a sequence learning (Seq_L) 
module to model long-term contextual dependencies. The proposed 
model achieved recognition accuracies of 73% on IEMOCAP and 90% 
on EMO-DB. Mishra et al. [115] introduced a deep learning framework 
that replaces MFCCs with log Mel-frequency spectral coefficients (MF-
SCs), which have been shown to outperform MFCCs. Their approach 
combines deep CNNs and BiLSTMs in an ensemble model. Experiments 
on the TESS [116] and SAVEE [117] datasets demonstrated an accuracy 
of 96.36%, surpassing single-model learners and previous machine 
learning techniques.

Apart from CNNs, DBNs [118] have also been explored for auto-
matic SER tasks. Deep learning techniques inherently capture complex 
non-linear features in multimodal data. Kim et al. [119] demonstrated 
the effectiveness of deep learning for emotion classification, testing 
a suite of DBN models on the Interactive Emotional Dyadic Motion 
Capture (IEMOCAP) dataset [120], achieving an average success rate 
of 73%. Xia et al. [121] proposed a framework combining DBNs with 
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Table 4
Overview of the classifiers, features, datasets, recognized emotions, and main contributions for SER.
 Ref. Year Algorithm Features Dataset used Recognized emotion Main contribution  
 [51] 2015 NN, SVM MFCC EMO-DB Anger, Fear, Joy, Sad, Neutral, Disgust, 

Boredom
Present a novel architecture based on NN for SER 
improving classification rate in contrast to traditional 
algorithms

 

 [101] 2017 ANFIS, MLP MFCC EMO-DB Anger, Fear, Joy, Sad, Neutral, Disgust, 
Boredom

Emotional learning models with different structures and 
functions using the amygdala-orbitofrontal cortex 
subsystem are suggested

 

 [102] 2018 ELM DT, SVM Prosodic 
features

CASIA Happy, Sadness, Surprise, Angry, Fear, 
Neutral

A novel feature selection method based on correlation 
analysis and Fisher is introduced that eliminates 
redundant features

 

 [123] 2018 Adversarial 
auto-encoders

Spectral, 
prosody and 
energy-based 
features

IEMOCAP Happy, Sad, Anger, Neutral Applied auto-encoders to enhance the state of research in 
emotion recognition

 

 [106] 2020 DEEP CNN MFCC, 
Spectrogram,
Chroma, 
Spectral 
Contrast, 
Tonnetz

RAVDESS,
IEMOCAP, 
EMO-DB

Happy, Sad, Anger, Calm, Fear, 
Nervous

All the models can work directly on raw sound data 
without conversion to other visual representations, and 
the approach sets a new state-of-the art on RAVDESS and 
IEMOCAP datasets.

 

 [107] 2020 CNN BiLSTM Spectrograms  RAVDESS,
IEMOCAP, 
EMO-DB

Happy, Sad, Anger, Calm, Fear, 
Nervous

A key sequence segment selection based on radial based 
function network (RBFN) similarity measurement in 
clusters is proposed that recognizes the Spatio-temporal 
information while reducing complexity

 

 [105] 2021 1D CNN MFCC, Pitch RAVDESS Happy, Sad, Anger, Calm, Fear, 
Nervous

Improved SER rate using MFCC features on RAVDESS 
dataset

 

 [115] 2023 Deep CNN + 
BiLSTM

MFSC TESS+SAVEE Happy, Sad, Anger, Neutral, Fear, 
Surprise, Disgust

Used MFSC feature and trained a novel ensemble deep 
learning framework that outperforms conventional 
machine learning techniques

 

i-vector space modeling for acoustic emotion recognition. Using MFCC 
features, their model was evaluated on the IEMOCAP dataset and 
achieved an accuracy of 59.6%. Autoencoders [122] have also been 
investigated for emotion recognition. Sahu et al. [123] explored their 
ability to transform high-dimensional feature vectors into a compressed 
space while preserving emotion-class distinguishability. Additionally, 
they examined how synthetic sample generation in the original feature 
space could aid in training emotion recognition classifiers. Experiments 
on the IEMOCAP dataset yielded a success rate of 57.88%. An overview 
of studies in emotion recognition is provided in Table  4 and Table  7 also 
highlights the most commonly used ones in the studies covered by this 
survey.

While this survey primarily focuses on audio-based profiling meth-
ods, it is important to acknowledge that human emotion perception 
is inherently multimodal. In actual human interactions, emotions are 
expressed not just through speech but also via facial expressions, 
hand movements, and physiological signals. Consequently, hybrid ap-
proaches that incorporate multiple modalities have been explored 
to improve emotion recognition performance. Several studies have 
investigated emotion recognition using facial expressions [124], hand 
gestures [125], body movements [126], and electroencephalography 
(EEG) signals [127]. A comprehensive survey on multimodal emotion 
recognition is available in [128].

The success of both unimodal and multimodal approaches is largely 
dependent on the availability of high-quality datasets. As machine 
learning and deep learning research continue to advance, a variety 
of datasets have been developed for emotion recognition. Table  7 
highlights the most commonly used ones in the studies covered by 
this survey. Beyond individual datasets, various challenges and com-
petitions, such as the Audio/Visual Emotion Challenge (AVEC) [129–
131], have significantly contributed to research progress in this field. 
These challenges often introduce novel multimodal datasets, such as 
the SEWA dataset [132], and define specific tasks for affective state 
detection, cultivating innovation and enriching available resources.
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5.1.4. Mental health inference from voice
Voice has been investigated for inference of Mental Health of a 

person such as depression, autism, schizophrenia. Authors of [133] 
conducted a study and found that voice acoustic features extracted 
from read speech demonstrated variable effectiveness in predicting 
clinical depression scores in men and women. Voice features are highly 
predictive of HAMD (Hamilton Depression Rating Scale) [134] and
BDI-II (Back Depression Inventory) [135] scores which are tools 
to measure a patient’s degree of depression and suicidal risk. The 
studies [136,137] point out the peculiar speech patterns associated 
with depression includes decreases in intensity, speech rate, stress, 
loudness, sluggishness in articulation, monotony and lack in vitality. 
The study [138] investigates the role of glottal features in speech 
for diagnosing clinical depression. It combines glottal with prosodic 
and vocal tract features for analysis. Feature selection strategies were 
tested across different domains, revealing that glottal and prosodic 
features together offer better discrimination of depression in speech 
than other combinations. Quadratic discriminant analysis was used for 
classification, highlighting the importance of glottal features in the 
assessment of depressed speech.

Authors of [139] investigate voice as a potential biomarker for 
depression suicidality, psychomotor disturbance. Data was collected 
from web version of PHQ9 (Patient Health Questionnaire) hosted by 
Mental Health America (MHA). A score of AUC of 0.821 and a MAE 
of 4.7 was obtained indicating voice as a potential biomarker. It is 
possible to identify high risk adolescents of early depression even as 
early as two years before as stated by the authors of [140]. Using a 
novel multi-classification approach aided by Glottal [141], Prosodic, 
Teager energy operator (TEO) and Spectral features [142,143] and a 
weighted classification decision procedure, an accuracy of 73% and a 
desirable sensitivity-to-specificity ratio of 79%/67% was obtained.

The study [5] showcases voice as a non-evasive and potential bio-
marker for the early detection of depression. Upon investigation using 
the EEG (Electroencephalogram) and audio data from clinically de-
pressed patients and matching normal controls, the study acquired 
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an accuracy of 83.4% on the MODMA (Multi-modal Open Dataset 
for Mental-disorder Analysis) dataset [144]. Similarly, authors of the 
paper [145] introduced a multi-model approach to enrich detection 
of mental disorders like depression using text and learning from low 
level and graph-based voice signal features. The study improves ac-
curacy employing a transformer-based deep learning architecture that 
uses novel graph-based features on the DAIC-WOZ (Distress Analysis 
Interview Corpus/Wizard-of-Oz set) dataset [146].

Along with depression, insights into the identification of
Schizophrenia based on the voice have been studied. This study [147] 
focuses on comparing the speech production fluency of patients with 
schizophrenia to healthy controls using a temporal speech parameter 
set. The results show that the temporal indicators can capture specific 
differences in spontaneous speech, with classification accuracy scores 
between 70%–80% and F-measure scores between 81% and 87%. The 
pause-related temporal parameters that consider both silent and filled 
pauses were found to be the most useful for distinguishing the two 
speaker groups.

A study [148] highlighted the potential of using voice charac-
teristics for detecting autism. The study found that children with
ASD (Autism Spectrum Disorder) often exhibit atypical patterns 
in prosodic elements such as monotonous pitch, reduced stress, odd 
rhythm, flat intonation, and even differences in the harmonic structure 
of their speech. These are among the earliest signs of the disorder. 
Another study [149] compared the acoustic features of the speech of 
TD (Typically Developing) children and children with ASD. It found 
that for all children with ASD, voice and speech are characterized 
by high values of pitch, an abnormal spectrum, and well-marked 
high-frequency. Another study [150] states that easy-to-measure voice 
acoustic parameters can be used as a diagnostic aid tool, specific to 
ASD. The model achieved an overall accuracy of 91% against TD 
(Typically Developing) children. Thus voice can potentially contribute 
significantly to the early detection and intervention of ASD.

Various studies have explored the potential of voice as a marker for
Parkinson’s disease (PD), a neurodegenerative disorder characterized 
by motor deficits such as bradykinesia (slow movement), rigidity, 
and tremors [151]. PD is estimated to be the second most common 
degenerative disorder, after Alzheimer’s, and affects approximately 12 
individuals per 1000 of the population with an increased prevalence 
in persons aged over 65 [152]. Authors of the study [153] employ a 
method that separates speech into voiced and unvoiced segments and 
models the energy content of unvoiced sounds using Mel-frequency cep-
stral coefficients (MFCCs) and Bark band energies (BBEs). The method 
was tested on dataset [154] that contains different speech tasks per-
formed by speakers in Spanish, German, and Czech. It outperformed 
classical approaches, achieving accuracies ranging from 85% to 95% in 
classifying speech of people with PD and healthy controls. The method 
can detect PD in early and middle stages of the disease and is ro-
bust against different technical conditions. It shows promise for future 
development of computer-aided tools for the automatic evaluation of 
dysarthric speech signals. Datasets for mental health detection are listed 
in Table  7. Furthermore, specific datasets to model health outcomes can 
be found here.1

Challenges and competitions such as Audio/Visual Emotion Chal-
lenge (AVEC) have carried out competitions focusing on mental health 
issues such as bipolar disorder recognition [155], depression detec-
tion [156], state-of-the-mind recognition [157]. These challenges intro-
duce multimodal datasets that focus on detecting specific mental health 
conditions.

1 Available at: https://github.com/talhanai/speech-nlp-datasets.
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5.1.5. Inference of voice pathology
Voice pathology detection involves labeling phonation as either nor-

mophonic or dysphonic, as described in [158]. Various medical tech-
niques, such as laryngoscopy, glottography, stroboscopy, electromyog-
raphy, and videokymography, are available for directly examining and 
diagnosing pathologies. However, these methods have drawbacks: the 
human vocal tract is difficult to access during phonation, which hinders 
accurate identification of pathologies. Additionally, these diagnostic 
methods can be uncomfortable for patients and may distort the sig-
nal, leading to incorrect diagnoses [159]. Consequently, non-invasive 
assessment methods are gaining popularity due to their robustness, low 
cost, comfort, and reduction in subjective bias. For voice pathology 
detection, the most commonly used datasets include the Saarbruecken 
Voice Database (SVD), Arabic Voice Pathology Database (AVPD), 
and Massachusetts Eye and Ear Infirmary Database (MEEI). Details 
about these datasets are presented in Table  7.

Voice pathology detection remains an active research area with 
numerous studies exploring innovative methods. The authors of [160] 
proposed a CNN–LSTM architecture that operates directly on raw audio 
signals, eliminating the need for pre-extracted feature vectors. Their 
experiments on the SVD dataset, using voice recordings of sustained 
vowel /a/ at normal pitch, achieved 71.36% validation accuracy and 
68.08% test accuracy—results comparable to earlier studies employing 
different methodologies. Another notable study [161] introduced CNN-
based pathology classification, leveraging a pre-trained model fine-
tuned to extract features from voice signals. This approach achieved 
an impressive 95.41% accuracy, with F1-Score and Recall values of 
94.22% and 96.13%, respectively. The system demonstrates strong 
potential for real-world clinical applications, enabling fast, automatic 
diagnosis within 3 s. However, both studies face limitations, such as the 
small size of the SVD testing dataset, the lack of gender-specific anal-
yses, and insufficient consideration of pathology severity. Addressing 
these challenges is essential for improving the reliability and scalability 
of voice pathology detection systems.

A novel approach to utilizing voice signals for the classification and 
detection of Upper Respiratory Tract Infections (URTI) was proposed 
by the authors of [162]. The study evaluated the efficacy of a classifier 
in detecting speech affected by URTI and demonstrated its ability to 
achieve results comparable to those obtained in related health-based 
detection tasks, such as autism detection [163], Parkinson’s disease 
detection [164], and cognitive or physical load classification [165]. 
These findings highlight the potential of computational paralinguis-
tic analysis for detecting URTI-related illnesses. The work leverages 
the dataset described in [166]. Additionally, Amazon Technology Inc. 
has patented a system [24] that identifies pathological voices and 
seamlessly integrates this knowledge to provide tailored responses and 
suggestions.

In addition to these, several studies have explored different learning 
models for voice pathology detection. These include stochastic models, 
such as GMM-based approaches [167–169]; machine learning models, 
like SVM-based methods [170,171]; and deep learning models [160,
172], as summarized in [173]. While recent studies primarily focus 
on differentiating normal and pathological voices, they often struggle 
with fine-grained classification of specific conditions, such as laryngeal 
cancer or voice tremors. Current machine learning approaches face 
challenges related to generalizability, dataset imbalance, and robust-
ness to variability in speech signals. To address these limitations, 
future research should focus on developing more discriminative feature 
extraction techniques that capture subtle pathological variations in 
speech while enhancing classifier architectures with better regular-
ization, improved activation functions, and domain-adaptive learning 
strategies. These advancements would improve accuracy, efficiency, 
and the overall reliability of voice pathology detection systems.

https://github.com/talhanai/speech-nlp-datasets
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5.1.6. Inference of personality traits
A person’s personality is a blend of their behavior, emotions, moti-

vations, and unique patterns in their thinking. It significantly influences 
life decisions, well-being, health, and shaping preferences and aspi-
rations. As a result, the capacity to automatically identify someone’s 
personality traits holds immense practical significance across various 
domains.

Various personality modeling scales have been used by the re-
searchers, such as Eysenck Personality Questionnaire-Revised (EPQ-R) 
and the Eysenck Personality Profiler (EPP) [174], Sixteen Personal-
ity Factor (16PF) [175], and the three-trait PEN (Psychoticism, Ex-
traversion, and Neuroticism) model [176]. Furthermore, Myers-Briggs 
Type Indicator (MBTI) [177] also categorizes people into four dimen-
sions: sensing/intuiting, thinking/feeling, judging/perceiving, introver-
sion/extraversion. However, in the realm of automated personality 
inference, the prominent model is the ‘‘Big Five’’ model [178]. These 
traits are based on binary (yes/no values):

1. Openness (O): Is the individual inventive and curious or dog-
matic and cautious?

2. Conscientiousness (C): Is the individual efficient and organized 
or sloppy and careless?

3. Extraversion (E): Is the individual outgoing, talkative, and en-
ergetic or reserved and solitary?

4. Agreeableness (A): Is the individual trustworthy, straightfor-
ward, generous, and modest or unreliable, complicated, meager, 
and boastful?

5. Neuroticism (N): Is the individual sensitive and nervous or 
secure and confident?

There have not been many comprehensive literature reviews on per-
sonality detection. Additionally, audio-based datasets are rare. Some of 
the audio-based dataset for personality detection is presented in Table 
7. Personality detection is a new and upcoming field. There have been 
studies for personality detection based on text, and visual features, and 
relatively few studies [179–181] have only used audio as the sole input. 
A study [179] describes an automated system for speaker-independent 
personality prediction in the context of human-human conversations 
using the PersIA (Personable and Intelligent virtual Agents) speech 
dialog corpus annoted with user self-assessments of the Big-Five per-
sonality traits. Study claims to have promising results on detecting the 
conscientiousness and extroversion labels.

Another study [181] examines inferring speakers’ personality traits 
from spontaneous conversations, using the Big-Five model. It outlines 
annotation methods applied to 128 speakers from the AMI corpus, 
followed by experiments using various features. Findings show accu-
rate recognition of high/low extraversion, conscientiousness, and neu-
roticism, but not agreeableness and openness. Non-linguistic features 
outshine linguistic factors in this analysis.

For automatic extraction of personality traits the authors of [182] 
use the NEO-FFI inventory, which measures the Big-Five personality 
traits. The authors analyze the ratings and find that they are generally 
consistent and correlate well with the speaker’s instructions. They also 
find that some factors, such as openness and extroversion, are more 
difficult to manipulate or perceive. The authors extract various acoustic 
and prosodic features from the speech recordings and use support vec-
tor machines to classify them into 10 classes. They achieve about 60% 
accuracy, which is much higher than chance level. They also find that 
some features such as MFCCs, intensity, and pitch, are more informative 
than others. However, limitations such as database having a single 
professional speaker, unreliable link between the trained professional 
and actual untrained speakers etc are the downside of the approach. 
Often times a multi-model that works using text, visual features, and 
audio are more relevant in personality detection.

Text is one of the most common and rich sources of information 
for personality detection, as it reflects the style, content, and sentiment 
of the writer or speaker. Linguistic information has been widely used 
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because self-assessment and peer-assessment of personality leverage a 
list of verbal descriptors. Subsequently, these lists have been combined 
and condensed into higher level dimensions. Authors of [183] demon-
strate that certain acoustic and linguistic features can be indicative 
of perceived leadership qualities, such as charisma, decisiveness, and 
confidence. Text-based personality detection can be done using closed-
vocabulary or open-vocabulary methods. Closed-vocabulary methods 
rely on predefined categories of words, such as LIWC (Linguistic In-
quiry and Word Count), MRC (Medical Research Council), or Mairesse, 
which are associated with psychological constructs. Open-vocabulary
methods rely on extracting a comprehensive collection of language 
features from text, such as n-grams, punctuation, emoticons, topics, or 
word embeddings. Furthermore, deep learning models, such as CNNs, 
RNNs, LSTMs, GRUs, or bi-directional variants can be employed for per-
sonality detection [184]. These models can learn hierarchical, vector, 
and temporal representations of words and sentences, and can capture 
complex and subtle patterns in language use. Text-based personality 
detection faces several challenges, such as dealing with noisy, sparse, 
or unstructured data, modeling inter-trait dependencies, accounting for 
cultural and contextual variations, ensuring fairness and ethics, and 
explaining the results [185].

Incorporation of more than one source has also been carried out in 
personality prediction, the primary reason being the limited capability 
of single modality personality trait recognition. Bimodal architectures 
that combine fusion of features from the audio and visual modali-
ties [186] and trimodal architectures that combine audio, video and 
textual modalities [187] are showing promising result. [188] intro-
duced a multimodal deep learning approach that combined raw audio 
and visual elements to predict personality traits. They utilized a 14-
layer 1D CNN for audio feature extraction and a pre-trained ResNet-50 
network for visual feature extraction. Their method incorporated a 
fully connected layer to collectively learn audio-visual features for 
recognizing personality traits, achieving an average score of 91.6%.

On the other hand, [189] proposed a multimodal personality trait 
recognition technique incorporating audio, visual, and text compo-
nents. They employed a ResNet-18 for extracting audio and visual fea-
tures, while leveraging the skip-thought vectors for text features. Their 
approach involved a late fusion strategy to merge all three modalities, 
resulting in an average score of 91.61%. Similarly, the research [190] 
introduces a multimodal approach for recognizing personality traits, 
employing a combination of CNN, Bi-LSTM, and Transformer net-
works. The fusion of these techniques aims to grasp comprehensive 
audio-visual spatio-temporal features crucial for identifying person-
ality traits. Additionally, the study conducts a comparative analysis 
of multimodal personality prediction utilizing three fusion methods. 
Through experiments conducted on the ChaLearn First Impression-V2 
dataset, it was determined that decision-level fusion yielded the most 
superior results for multimodal personality trait recognition, achieving 
average score of 91.67%. A more detailed inspection on the efficient 
fusion (Feature-level, Model-level, Decision-level) of the multimodal 
is needed. A consolidated comparison of major studies employing the 
Big-5 personality measure—across unimodal and multimodal setups—is 
presented in Table  5.

A new direction in the field of personality recognition by offering 
an ethical and privacy-preserving methodology distinct from traditional 
approaches is suggested by the authors of [12]. While promising, 
the method to extract personality traits from conversational dynamics 
is relatively new, and its efficacy across broader and more diverse 
datasets cannot be fully guaranteed at this stage.

5.1.7. Multiple personal attributes
Numerous studies have been conducted in this field, ranging from 

investigations into singular attribute detection to research focusing on 
the simultaneous detection of multiple attributes from a unified feature 
set. In this section, we highlight studies that focus on inferring multiple 
attributes, including combinations such as age and gender, gender and 



A. Pudasaini et al. Neurocomputing 640 (2025) 130334 
Table 5
Overview of the Modalities, Accuracy, Features and Algorithm for Personality Inference using BIG-5 Measure.
 Ref. Modality Accuracy (%) Features & Algorithm Year  
 [190] Audio, Video 91.67 VGGish model for extracting audio and VGG-Face model for visual features extraction 2023 
 [189] Audio, Video, 

Text
91.61 ResNet-18 for extracting audio and visual features, while leveraging skip-thought vectors for text features. 2022 

 [188] Audio, Video 91.6 14-layer 1D CNN for audio feature extraction and a pre-trained ResNet-50 network for visual feature 
extraction.

2021 

 [186] Audio, Video 90–91 Facial features extracted with ResNet34 and audio features are combined and fed to Deep LSTM 2017 
 [187] Audio, Video, 

Text
89.18 Facial features are extracted using OpenFace [191], Audio features such as MFCC, ZCR, spectral energy 

distribution, speaking rate are extracted using OpenSMILE and SenticNet is used for polarity detection 
from text.

2017 

 [184] Text 57.99 1D convolutions to extract n-grams combined with Mairesse features 2017 
 [181] Audio 57.48 prosodic features, speech activity features, word n-grams and dialog act tags were extracted and fed into 

simple ML classifiers
2012 

 [179] Text 57.48 openSMILE feature extractor and a boosting based system for text categorization 2011 
 [182] Audio – Cepstral features such as MFCC, ZCR, intensity, pitch, loudness, formants were fed into a SVM regressor 2010 
Table 6
Overview of Feature extraction, Learning model and Audio profiling tasks.
 Ref Feature extraction Learning model Audio profiling tasks Year 
 Domain Method Statistical ML DL Age Gender Emotions MH Personality VP ASC/AED  
 [192] FD PRAAT RF regres. � � � � � � � 2023

 [193] TFD Statistical MLP � � � � � � � 2020

 [194] TFD Statistical LSSVR � � � � � � � 2014

 [195] TFD Statistical ANN � � � � � � � 2015

 [49] TFD Statistical SVM � � � � � � � 2008

 [4] TFD Statistical MLP � � � � � � � 2020

 [70] TFD NN Embeddings DNN � � � � � � � 2021

 [39] TFD Visual DNN � � � � � � � 2022

 [96] TFD Statistical GMM � � � � � � � 2010

 [100] Cepstrum Statistical SVM/KNN � � � � � � � 2015

 [196] Cepstrum Statistical HMM � � � � � � � 2015

 [197] TD/Cepstrum Statistical SVM � � � � � � � 2011

 [40] TFD Visual CNN � � � � � � � 2019

 [198] TD Statistical GMM � � � � � � � 2003

 [199] TD+FD Statistical SVM/RF � � � � � � � 2016

 [200] TFD(CWT) Statistical SVM � � � � � � � 2007

 [201] Cepstrum Statistical GMM � � � � � � � 2009

 [160] TFD NN Embeddings DNN � � � � � � � 2017

 [202] TFD Statistical MC-SVM 1D_CNN � � � � � � � 2019

 [203] TFD NN Embeddings CNN � � � � � � � 2019

 [204] TFD Opensmile Boostexter � � � � � � � 2011

 [205] TD/FD Statistical Boostexter � � � � � � � 2012

 [76] FD Statistical MMLM � � � � � � � 2021

Notes:

∙ �- Not included; �- Included.
∙ TD - Time Domain FD - Frequency Domain, TFD - Time–Frequency Domain.
∙ ML - Machine Learning, DL - Deep Learning, ANN - Artificial Neural Network, DNN - Deep Neural Network, CNN - Convolutional Neural Network, MMLM - Multiple Machine Learning Models.
∙ SVM - Support Vector Machine, RF - Random Forest, MLP - Multilayer Perceptron.
∙ MH - Mental Health, VP - Voice Pathology, ASC/AED - Acoustic Scene Classification/Audio Event Detection.
∙ PRAAT - Phonetic and acoustic analysis toolkit.
∙ openSMILE - open-source Speech and Music Interpretation by Large-space Extraction.
emotions, and age and height. Several studies focus on the simultaneous 
inference of age and gender [70,206–209], whereas others examine 
age and height [42,88]. Speaker height estimation is grounded in the 
positive correlation between the size of the Vocal Tract Length (VTL)
and a person’s height and weight [71]. Studies focusing on weight 
estimation from voice remain scarce due to the lack of comprehensive 
datasets. Research has also explored the simultaneous inference of age, 
height, and gender [210,211]. Additionally, some studies have investi-
gated predicting speaker body parameters, such as shoulder and waist 
size, based on voice characteristics [78,212,213]. Emotion recognition 
has been studied alongside age and gender, particularly in spoken 
dialog systems. For instance, [69] explores jointly recognizing these 
attributes using a deep neural network approach, demonstrating im-
proved performance in Mandarin speech. Studies employing frequency 
spectrum analysis [214] suggest that speech signals can be used to 
15 
simultaneously infer gender, age, and emotion. Notably, [76] demon-
strates the feasibility of inferring all three attributes—age, gender, and 
emotion—from a single source for the first time. Additional details on 
the inference of multiple attributes can be found in Table  6.

5.2. Environmental attributes inference

The environment of a speaker can reveal sensitive information about 
their behavior, ethnicity, religion, choices, and more, which could po-
tentially be misused for targeted marketing or other unethical purposes. 
This section explores current research on environmental awareness that 
can be leveraged for audio profiling.
Acoustic scene classification and event detection. Acoustic Scene 
Classification (ASC) is a critical task in the field of environmental sound 
analysis, aiming to categorize audio recordings based on the specific 
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environment in which they were captured [215]. ASC has garnered 
significant attention within the Audio and Acoustic Signal Processing 
(AASP) community. Voice recordings often contain ambient noise in 
addition to speech. By analyzing these background sounds, it is possible 
to gain insights into the environment where the audio was recorded. 
Examples include indoor environments (e.g., cafes, offices, libraries, 
grocery stores), outdoor environments (e.g., parks, pedestrian streets, 
city centers, urban parks, residential areas, forests, subways, metro 
stations), and modes of transport (e.g., buses, cars, trains, trams) [216,
217]. A challenging aspect of ASC is the detection of audio events 
that are temporarily present within an acoustic scene. Examples of 
such events include footsteps, sirens, doorbells, running water, and 
fire alarms. This task is referred to as Acoustic Event Detection (AED). 
Unlike ASC, which focuses on categorizing broader environmental 
contexts, AED emphasizes the precise temporal detection of specific 
sound events.

Numerous studies have been conducted on ASC/AED. For instance, 
the authors of [218] provide an in-depth overview of traditional feature 
extraction and classification techniques prior to the dominance of deep 
learning-based methods. Other surveys focus on state-of-the-art deep 
learning approaches for Acoustic Event Detection (AED) [9,219] and 
Acoustic Scene Classification (ASC) [10]. Additionally, several papers 
summarize algorithms presented in various ASC/AED challenges, such 
as [220].

ASC has garnered substantial attention in recent years, leading to 
the development of various state-of-the-art methods and the organiza-
tion of challenges such as CLEAR [221] and the DCASE (Detection and 
Classification of Acoustic Scenes and Events) series, which began in 
2013. These challenges have attracted participants from both academic 
and industrial backgrounds [220]. The DCASE challenges [222] serve 
as a platform for researchers specializing in the computational analysis 
of sound events and scene analysis to showcase and discuss their 
research outcomes. The classification of acoustic scenes involves the 
recognition of semantic entities, referred to as acoustic scenes, which 
is achieved through computational algorithms encompassing signal 
processing and machine learning techniques [223]. The Interspeech 
Computational Paralinguistics Challenge (ComParE) serves as a 
pivotal platform, driving innovation and advancements in Acoustic 
Event Detection (AED). Across its editions, ComParE has introduced a 
wide range of tasks specifically tailored to the detection, classification, 
and analysis of diverse acoustic events. These include:

• Environmental Monitoring: Detection of sounds such as
mosquitoes [224].

• Healthcare and Wellness Monitoring: Detection of breathing, 
snoring, and heartbeats [166].

• Pediatrics and Childcare: Detection of baby sounds and infant 
crying [225].

Additional tasks from the ComParE challenge can be accessed here.
The use of deep learning-based methods has been a prominent 

area of research in ASC, with studies focusing on techniques such 
as knowledge distillation, attentive max feature maps, weight 
quantization, and structured pruning to enhance classification ac-
curacy. Additionally, the development of robust and low-complexity 
ASC systems has been an area of interest, with models such as the 
ASC baseline, which features an inception-based and low-footprint 
architecture. The study by [226] investigates ASC for identifying audio 
recording scenes. It introduces a low-footprint ASC baseline model and 
compares it against other architectures. The study further enhances 
the baseline with a novel deep neural network (DNN), evaluating 
the trade-off between complexity and accuracy. It also examines the 
influence of sound events on ASC accuracy and proposes a method 
to integrate scene and event information. Experiments conducted on 
diverse datasets from the DCASE challenge demonstrate the models’ 
effectiveness in real-world applications, particularly on edge devices 
16 
and mobile platforms, emphasizing low computational complexity and 
general applicability. Furthermore, the paper introduces a visualization 
method to contextualize sound scenes.

In addition to acoustic scene classification, it has been demonstrated 
that specific acoustic events can also be recognized. These include vari-
ous sounds related to animals (e.g., cat, cow, dog), natural soundscapes 
and water sounds (e.g., rain, wind, sea waves, crackling fire), non-
speech human sounds (e.g., sneezing, drinking, clapping), domestic 
or interior sounds (e.g., door, can opening, mouse click, appliance 
sounds), and exterior sounds (e.g., siren, airplane, hand saw, church 
bells) [227,228].

Acoustic scene classification (ASC) and event detection (AED) are 
multifaceted tasks that have experienced significant advancements in 
recent years, particularly with the rise of deep learning-based meth-
ods and the organization of research challenges such as DCASE and 
ComParE. However, several challenges remain. High-performing ASC 
models are often computationally complex, making it difficult to op-
timize them for deployment on resource-limited devices such as IoT 
platforms. Additionally, the performance of ASC models lags behind 
other audio processing fields due to difficulties in extracting efficient 
features from diverse acoustic scenes. Furthermore, the availability of 
large-scale, inclusive datasets and a well-defined ontology remains a 
critical requirement. Table  7 presents some of the key datasets available 
for ASC/AED. Defining the boundaries of acoustic scenes is another 
challenge, as the definition of events and scenes often depends on 
specific use-case scenarios, adding to the complexity. Despite these 
challenges, the future of ASC/AED is promising. A concerted effort from 
the research community is needed to address these limitations and pave 
the way for more robust, efficient, and adaptable solutions.

6. Datasets

Audio profiling represents a multidisciplinary research domain en-
compassing diverse analytical tasks such as gender recognition, age pre-
diction, emotion detection, accent recognition, environmental context 
detection and speaker characterization. The domain of audio profiling 
research has been fundamentally shaped by a select group of transfor-
mative datasets that have pushed the boundaries of acoustic analysis 
and machine learning technologies. These datasets represent more than 
mere collections of audio samples; they are critical infrastructures that 
have enabled breakthrough innovations in understanding human vocal 
characteristics. This section presents an overview of the most preva-
lent datasets, providing a comprehensive perspective on the dataset 
landscape.

Table  7 presents datasets encompassing diverse domains, modal-
ities, and applications, illustrating the progression of audio profil-
ing research. Prominent datasets such as TIMIT [229] and Common 
Voice [231] are characterized by their extensive speaker diversity and 
language coverage. TIMIT, a widely regarded benchmark for phoneme 
segmentation, is noted for its high-quality recordings and balanced 
dialects, making it indispensable for speech recognition and phonetic 
analysis tasks. In contrast, Common Voice excels in multilingual and 
demographic diversity, offering contributions from a global user base. 
This dataset is particularly suitable for building robust models for 
gender, age, and accent classification due to its wide-ranging represen-
tation.

For emotion-focused profiling, datasets such as IEMOCAP [120] and 
RAVDESS [236] are highly valued. IEMOCAP is praised for its nuanced 
emotional expressions and multimodal setup, but its relatively limited 
number of speakers restricts its generalizability across diverse popu-
lations. Similarly, RAVDESS, known for its controlled and validated 
emotional expressions, offers excellent quality but shares the limitation 
of restricted speaker variety, which may affect its applicability in 
real-world scenarios.

Gender and age profiling are addressed in datasets like the Dutch 
Corpus [64] and NIST SRE08 [230], both of which include balanced 
demographic distributions and metadata on speaker attributes. Large-
scale resources, such as AudioSet [245] and Freesound Dataset 50k 

http://www.compare.openaudio.eu/tasks/
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Table 7
Datasets for audio profiling.
 Dataset Composition Characteristics AP tasks Year  
 TIMIT [229] 630 speakers(438 male, 192 female), 6300 

utterances, 8 dialect regions
Language: English,Type: Artificial, Modality: 
Aud, Txt

Gender, Age 1987  

 OGI [54] Total 1927 telephone calls, Average 175 calls 
per language

Language: Multilingual (11), Type: Natural, 
Modality: Aud

Gender 1994  

 IViE Corpus [62] 110 speakers (54 male, 56 female), 9 dialect 
regions

Language: British English, Type: Artificial, 
Modality: Aud, Txt

Gender 2001  

 Dutch Corpus [64] 308.3 recorded hours, 555 speakers (436 
male, 19 female), age groups(18–81)

Language: Dutch(2), Type: Artificial, Natural, 
Modality: Aud

Gender, Age 2008  

 NIST SRE08 [230] 942 recorded hours, telephone and 
microphone data

Language: Multilingual(25), Type: Artificial, 
Natural, Modality: Aud

Age 2011  

 Common Voice [231] 30,329 recorded hours, age groups (20–79), 
45% male, 17% female, 2% others

Language: Multilingual (120), Type: Artificial, 
Natural, Modality: Aud, Txt

Gender, Age, 
Accent

2019  

 SUSAS [232] 4 Emotions × 32 Speakers(19 male, 13 
female), 16000 utterances

Language: English, Type: Artificial, Natural, 
Modality: Aud

Emotion 1999  

 EMO-DB [97] 7 Emotions × 10 Speakers(5 male, 5 female), 
10 utterances

Language: German, Type: Artificial, Modality: 
Aud

Emotion 2005  

 CASIA [103] 6 Emotions × 4 Speakers(2 male, 2 female), 
9600 utterances

Language: Mandarin, Type: Artificial, 
Modality: Aud

Emotion 2008  

 IEMOCAP [120] 9 Emotions × 10 Speakers(5 male, 5 female), 
10039 utterances

Language: English, Type: Artificial, Modality: 
Aud

Emotion 2008  

 TESS [116] 8 Emotions × 2 Speakers(female), 2800 
utterances

Language: English, Type: Artificial, Modality: 
Aud

Emotion 2010  

 RECOLA [233] 2 Emotions × 46 Speakers(27 male, 13 
female), 9.5 h

Language: French, Type: Artificial, Modality: 
Aud, Vis, ECG, EDA

Emotion 2013  

 CREMA-D [234] 6 Emotions × 91 Speakers(48 male, 43 
female), 7442 utterances

Language: English, Type: Artificial, Modality: 
Aud, Vis, Aud-Vis

Emotion 2014  

 SAVEE [117] 8 Emotions × 4 Speakers(male), 480 
utterances

Language: English, Type: Artificial, Modality: 
Aud-Vis

Emotion 2015  

 CHEAVD [235] 6 Emotions × 238 Speakers, 140 min 
emotional segments

Language: Chinese, Type: Artificial, Modality: 
Aud-Vis

Emotion 2016  

  
 RAVDESS [236] 7 Emotions × 24 Speakers(12 male, 12 

female), 7356 utterances
Language: Multilingual (2), Type: Artificial, 
Modality: Aud, Vis, Aud-Vis

Gender, 
Emotion

2018  

 DAIC-WOZ [146] 50.4 recorded hours, 189 interviewed healthy 
+ controls

Conditions: anxiety, depression, 
post-traumatic stress disorder, Modality: Aud, 
Vis, Txt

Mental 
Health

2014  

 MODMA [144] 23 clinically depressed patients + 29 healthy 
controls, Demographic data, Psychological 
assessments

Conditions: mental disorders, Modality: Aud, 
EEG

Mental 
Health

2015  

 SVD [237] 2000 speakers(687 healthy, 1356 pathological 
cases), Vowel Recordings, Pitch recordings, 
Sentence recordings

Conditions: 71 different pathologies, 
Modality: Aud, EGG

Voice 
Pathology

2012  

 MEEI [238] 139 speakers(53 healthy, 86 pathological 
cases), Vowel Recordings, Running speech 
recordings, Isolated words recordings

Language: English, Conditions: 6 vocal 
disorders, Modality: Aud

Voice 
Pathology

2017  

 AVPD [239] 50 speakers(25 healthy, 25 pathological 
cases), Vowel Recordings, Running speech 
recordings, Isolated words recordings

Language: Arabic, Conditions: 4 vocal 
disorders, Modality: Aud

Voice 
Pathology

2017  

 AMI Corpus [240] 100 recorded hours, Monologues, Dialogs and 
multi-party discussions recording

Language: English, Personality measure: Big 
Five, Modality: Aud, Vis

Personality 2005  

 First Impression 
[241]

41.6 recorded hours, 10,000 labeled video 
clips

Language: English, Personality measure: Big 
Five, Modality: Vis

Personality 2017  

 (continued on next page)
(FSD50K) [242], offer extensive coverage of acoustic scenes and event 
detection tasks. AudioSet, with over 2 million human-labeled audio 
clips spanning 632 classes, is unparalleled in scale and diversity, mak-
ing it a go-to resource for broad-spectrum audio analysis. However, 
17 
both datasets face challenges such as class imbalance, which can hinder 
model performance on underrepresented categories.

A growing trend in audio research is the adoption of multimodal 
datasets that integrate audio with other modalities. Datasets such as 
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Table 7 (continued).
 Dataset Composition Characteristics AP tasks Year  
 FSD50K [242] 51,197 audio clips, sounds produced by 

physical sound sources and production 
mechanisms

Number of classes: 200, Total length: 108.3 h, 
Class proportions: Imbalanced, Modality: Aud

ASC, AED 2022  

 DESED [243] 10 s sound clips, sounds recorded or 
synthesized to simulate a domestic 
environment

Number of classes: 10, Total length: >12 h, 
Class proportions: Imbalanced, Modality: Aud

AED 2019  

 TUT Acoustic
Scenes
[244]

10 s sound clips, sounds of indoor, outdoor 
environments

Number of classes: 10, Total length: 24 h, 
Class proportions: Balanced, Modality: Aud

ASC 2018  

 Audio Set [245] 10 s sound clips, 2.1 million annotated 
Youtube videos

Number of classes: 527, Total length: 4971 h, 
Class proportions: Maximally balanced, 
Modality: Aud, Vis

ASC, AED 2017  

 MAD [246] 1–10 s sound clips, 8075 samples, high levels 
of background noise, realistic military 
scenarios

Number of classes: 7, Total length: 12 h, 
Class proportions: Maximally balanced, 
Modality: Aud

AED 2024  

 ESC-50 [227] 5 s sound clips, sounds of animals, natural 
soundscapes, non-speech sounds, domestic 
and urban sounds

Number of classes: 50, Total length: 2.7 h, 
Class proportions: Balanced, Modality: Aud

ASC 2015  

 UrbanSounds8K 
[247]

8732 labeled sound excerpts (≤4 s) of urban 
sounds

Number of classes: 10, Total length: 27 h, 
Class proportions: Maximally Balanced, 
Modality: Aud

ASC, AED 2014  
Fig. 7. Use cases for audio profiling across various domains.

DAIC-WOZ [146], MODMA [144], and SVD [237] combine audio 
with visual data, electroencephalography (EEG), or electroglottography 
(EGG). These datasets are increasingly used for mental health diag-
nostics, providing a richer, multidimensional perspective on human 
behavior. For instance, DAIC-WOZ has been instrumental in depression 
detection research due to its detailed interview recordings and associ-
ated clinical scores. Selecting an appropriate dataset requires careful 
consideration of factors such as demographic diversity, class balance, 
and task-specific requirements.

7. Applications and use cases

Audio profiling has a lot of practical use case scenarios. Having 
the ability to recognize various physical traits such as age, gender, 
18 
height, weight, face, and physiological traits such as emotional and 
mental state, and social traits such as socio-economic status [248–250], 
religion, ethnicity, and dialect can be invaluable in various fields. Based 
on several works on user profiling through voice, some of the popular 
areas where profiling can play significant roles are shown in Fig.  7.

7.1. Law and security

Profiling can be used as a supportive tool for the investigation of 
crimes where voice is one of the primary evidence. Crimes such as 
blackmailing, voice phishing (vishing), extortion, hoaxes and pranks, 
harassment, and threats are committed using voice. With technology-
assisted crimes on the rise, especially those involving phone calls, 
profiling can predict key traits of the perpetrator, potentially aiding in 
quicker identification than otherwise possible.

Voice signals exhibit a vast number of unique parameters, making 
no two voices alike worldwide. This distinctive nature makes them well 
suited for biometric security applications. Currently, voice biometrics 
are employed in speaker identification, where a speaker is recognized 
from a set of possible candidates, and speaker verification or authenti-
cation, which involves confirming a speaker’s claimed identity. These 
tasks rely on creating a voice signature and matching it against stored 
signatures in a database. However, studies have shown that speaker-
matching applications can be vulnerable to adversarial attacks designed 
to spoof voice authentication [251–253]. To strengthen security, inte-
grating audio profiling can provide an additional layer of protection by 
analyzing attributes such as age, accent, or gender to verify if they align 
with the registered identity. A practical application of voice biometrics 
can be seen in ANZ Bank’s Voice ID system [254]. This technology 
analyzes a caller’s voice and matches it against a database of registered 
clients. If a match is found, the system authenticates the user, granting 
access to banking services. ANZ’s Voice ID enables customers to make 
secure payments over $1000 via their mobile app without requiring 
additional passwords or PINs, leveraging voice biometric technology 
for enhanced security and convenience. Beyond identity verification, 
incorporating audio profiling could further improve fraud detection 
by assessing variations in speech patterns or contextual cues, making 
authentication systems more resilient to spoofing attempts. 
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With the support of ASC/AED systems, deeper insights can be 
gained into the environment of interest. For example, it is possible to 
determine if a perpetrator is calling from inside a car or public trans-
portation, such as a train or tram, which could aid in fugitive cases. 
Furthermore, ASC/AED systems can be employed in surveillance, help-
ing identify potential threats or events like glass breaking, gunshots, 
or abnormal sounds [222]. In certain restricted environments, such as 
prisons, where video surveillance is legally limited, audio monitoring 
can serve as a viable alternative for detecting illegal activities within 
legal boundaries [255].

Facial reconstruction from voice is an active research field focused 
on generating facial features or entire faces from voice signals. This 
area holds significant potential in forensics, as reconstructing facial fea-
tures from voice—and vice versa—can provide valuable insights. Voice 
is both directly and indirectly linked to physical characteristics, such 
as bone structure, height, weight, age, and gender. These relationships 
enable predictive modeling, where parameters like body mass index 
and skeletal proportions can be inferred from voice analysis. Leveraging 
this knowledge, it is technologically feasible to create a 3D reconstruc-
tion of the face and even the entire body. Detailed discussions on facial 
reconstruction from voice can be found in the article by [256].

7.2. HealthCare

Profiling can be applied in healthcare for non-invasive assessment 
and monitoring of physical and mental health. It is useful for tracking 
medical drug compliance, detecting intoxication, substance abuse, and 
various health indicators. Telemonitoring, especially for underprivi-
leged populations, can provide early warnings of diseases and improve 
treatment outcomes. It can be used for faster diagnosis of different 
voice-related pathologies [160,161]. Voice contains a rich array of 
information and can be a potential biomarker for various diseases. A 
real-world application of audio profiling in healthcare is Sleep.ai, a 
system developed by AltexSoft for a Dutch healthcare startup. This 
solution detects teeth grinding and snoring sounds during sleep to 
help dentists identify and monitor bruxism—a condition where patients 
unconsciously clench or grind their teeth. By tracking sleep-related 
sounds, Sleep.ai enables early detection and long-term monitoring, 
allowing healthcare professionals to understand the root causes of 
bruxism and recommend appropriate treatment strategies [257].

Another example of audio profiling application is Hume AI’s em-
pathic voice interface (EVI 2), which enables large language models 
(LLMs) to detect and express human emotions. This technology ana-
lyzes vocal cues to infer emotions such as anxiety, determination, or 
happiness and responds with contextually appropriate emotional tones. 
For instance, if a user speaks in a sad tone, the system can recognize 
this and provide a sympathetic response, making AI interactions more 
natural and emotionally engaging. This approach enhances user en-
gagement in applications such as virtual assistants, customer service, 
and mental health support. For further details, see the article on Wired. 
An interesting recent use case involves leveraging audio profiling to 
support call center workers by transforming angry customer tones 
into calmer, more neutral ones during live interactions. The system is 
designed to detect vocal stress markers such as pitch and inflection 
associated with anger, adjusting them in real-time while preserving 
the essential emotional context to ensure appropriate responses. This 
technology aims to alleviate the psychological stress caused by ‘‘kasu-
hara’’ (customer harassment), a significant and growing issue in Japan. 
SoftBank Corp., a leading telecommunications provider in Japan, plans 
to commercialize the system by 2026, with the goal of enhancing 
worker well-being and productivity in high-stress environments. For 
more details, see the article on Reuters. The Section 5.1.5 gives a 
distilled knowledge about voice pathology detection. Additionally,  Sec-
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tion 5.1.4 discusses several mental health issues that can be addressed 
using voice.

7.3. Commercial and social services

Profiling technology has the potential to revolutionize interactions 
in business and educational settings. It can monitor and flag calls for 
issues such as anger, dissatisfaction, fraud, and intoxication, helping 
to prevent business losses. Additionally, it can enhance persuasion and 
leadership skills across various professions and monitor professionals 
for signs of fatigue.

A patent by Amazon Technologies Inc. [24] describes a system that 
extracts real-time physical and emotional traits from user voice inputs 
to identify specific conditions or characteristics. This enables tailored 
content suggestions or service offerings aligned with the user’s imme-
diate state. For instance, the system can detect a cough and suggest 
medications accordingly. However, health-related data, classified as 
sensitive under Article 9 of the European Union’s General Data Protec-
tion Regulation (GDPR), requires strict protections due to its sensitivity. 
Prejudiced applications, such as adjusting insurance premiums based on 
inferred health status, remain a concern [258].

A facet of profiling technology is the automated personality recogni-
tion systems, which have a wide array of applications across industries. 
These systems enhance personal assistants like Siri and Alexa by en-
abling tailored responses based on user personality. They also improve 
recommendation systems, assist in sentiment analysis and word po-
larity detection, provide personalized counseling in healthcare, and 
support forensic investigations and deception detection. Additionally, 
they optimize job screening processes, advance psychological studies 
by analyzing behavior-personality connections, and inform political 
campaigns by creating targeted voter profiles for more effective per-
suasion strategies [185]. For instance, audio profiling technology is 
increasingly used in recruitment. By analyzing voice characteristics, 
organizations can identify candidates best suited for specific roles. 
Some companies assess candidates’ reliability and positivity through 
voice analysis, helping select individuals with the right mindset for the 
job [258].

Beyond recruitment, ASC/AED enable smart devices to recognize 
and respond to specific sounds. For example, a smart home system 
can turn on lights upon detecting a doorbell or identify alarms and 
emergencies [222]. Overall, audio profiling holds significant potential 
to enhance organizational efficiency and drive revenue growth across 
industries.

7.4. Entertainment and games

Profiling technology has exciting applications in entertainment and 
recreation, such as creating 2D and 3D representations of individuals 
based on their voice. It can enable customized gaming experiences 
tailored to players’ traits and preferences and create themed characters 
in entertainment and amusement park settings. Additionally, acoustic 
event detection can enhance virtual reality experiences by providing 
more immersive audio environments that react dynamically to different 
sound events.

8. Open issues and future directions

In this section, we discuss the prominent open issues that hinder the 
effectiveness of Audio Profiling. We discuss issues with the attribute 
inference process, dataset availability and privacy preservation. It 
also explores future research directions to address these challenges. 
Identifying and analyzing these challenges is of utmost importance 
when seeking novel and technical solutions.

https://www.wired.com/story/hume-ai-emotional-intelligence/
https://www.reuters.com/technology/softbank-corp-aims-help-call-centre-workers-by-softening-angry-customer-calls-2024-05-16/
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8.1. Issues in attributes inferences

The literature on personal attribute inference, mainly in terms 
of gender and age prediction, has several issues, such as efficiency 
discrepancies between genders [51,61,70] indicating potential biases 
or challenges in accurately capturing vocal characteristics. A con-
sensus is lacking regarding the specific features or feature sets that 
prominently characterize each attribute. Additionally, the challenge of 
accurately predicting age, emotion, gender, height, etc. for voices with 
various accents, speech impairments, or other unique characteristics 
emphasizes the potential complexity of generalizing models to diverse 
linguistic characteristics. Furthermore, the inability to detect attributes 
accurately when audio clips consist of voices from more than one per-
son simultaneously highlights the challenges in handling multispeaker 
scenarios. There exists some difference between the perceived age and 
actual age, and also voice patterns are affected by multiple parameters, 
such as weight, height, and emotions [63].

GMMs are widely used in age classification. The major issues are 
primarily related to the varying effectiveness of different speech fea-
tures and the number of mixtures used in the GMM method, as well 
as the challenges in accurately classifying adult voices compared with 
children’s voices.[82]. Different end-to-end learning models that use 
voice embeddings such as x-vectors and i-vectors have been used for 
age prediction and classification. Although effective for the task at 
hand, these approaches face challenges related to data dependency: 
they require a large amount of training data, which might not always 
be available. In addition, the study [41] suggests that the DNN back-
end might struggle with high-dimensional inputs, as seen in the limited 
improvement when using i-vectors alone for the back-end, but im-
proved performance when concatenated with x-vectors. This limitation 
could affect the scalability and adaptability of the system. Many studies 
rely heavily on Transfer Learning, which might not capture the full 
diversity of human voices, especially in different linguistic or cultural 
contexts [70].

These difficulties underscore the necessity for a thorough under-
standing and refinement of models to guarantee an unbiased and 
precise inference of attributes from voice data. Future direction lies 
in enhancing multi-attribute inference models. Efforts to prioritize 
the development of unbiased systems to mitigate efficiency discrep-
ancies in multi-attribute inference, ensuring equitable performance 
across diverse demographics is essential. Addressing the complexities of 
multi-speaker scenarios and improving model generalization for voices 
with various accents, speech impairments, and cultural variations are 
essential. Additionally, refining transfer learning techniques to reduce 
dependency on large datasets and exploring robust feature sets, such 
as d-vector embeddings [85] can significantly enhance model accuracy 
and scalability.

8.2. Quality and type of data

8.2.1. Dataset availability
The efficacy of Audio profiling relies completely on high quality 

of datasets available. Audio profiling is about personal attributes and 
environmental context detection that need high quality and quan-
tity data. In the case of personal traits detection, currently available 
dataset can be classified as: Natural datasets, Semi-Natural and Actor 
Based Dataset. Natural datasets, such as recordings from reality shows, 
youtube vlogs, customer service calls contain pure and unaltered char-
acteristics but are often restricted due to ethical and privacy concerns. 
The next type of dataset is the semi-natural dataset that contains audio 
clips/recordings from scenarios that are real and the speakers have no 
idea of being recorded. Datasets like [232] is an example. The most 
common dataset is the actor-based dataset which contains recordings 
from professional actors who imitate different sounds as needed. The 
prominent issue with datasets is the absence of full variability represen-
tation encountered in the real world. The authenticity and practicality 
of such a dataset need to be properly scrutinized by future research.
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Datasets for other attributes such as weight estimation, body build 
parameters like shoulder width, waist size, etc., along with voice 
recordings are difficult to find. Additionally, these estimations may not 
be reliable due to the less direct relationship between these parameters 
and the speech signal. The limited availability of datasets that cover a 
wide range of linguistic, cultural, and demographic diversity restricts 
the generalizability of models.

8.2.2. Data imbalance
Many datasets show disparities in the gender and age representation 

of speakers. For instance, the TIMIT dataset has 192 female and 438 
male speakers, Dutch Corpus [64] has uneven 436 male speakers and 
only 19 female speakers. While the VoxCeleb dataset [259], though 
more balanced, still has a skew with 55% male and 45% female speak-
ers. These imbalances can significantly impact the performance and 
generalizability of audio profiling systems, especially when considering 
variations in languages, accents, and emotional expressions.

To address these challenges, future research should prioritize the 
creation of diverse, high-quality audio datasets. Additionally, efforts 
should focus on developing universal benchmark datasets that ac-
curately capture real-world variability across linguistic and paralin-
guistic dimensions. One promising avenue for addressing dataset lim-
itations is extending advanced audio synthesis frameworks, such as 
AudioLM [260]. These models offer the capability to generate syn-
thetic audio that closely mimics the nuances of human speech and 
environmental sounds, thereby overcoming the constraints of limited 
real-world data. Future research should explore the development of 
domain-specific adaptations of Large Audio Models (LAMs) to produce 
datasets tailored for specialized tasks such as emotion recognition, 
pathological speech analysis, or environmental sound classification.

8.3. Model complexity and computational requirements

Complex Architectures those incorporating deep learning such as 
LSTM-RNNs, DNNs, Transformers are computationally intensive and 
complex, requiring substantial resources for training and deployment. 
Tuning and optimizing these complex model, including tuning hyper-
parameters and network layers, for specific tasks can be challenging 
and resource-consuming. Audio Profiling in general requires heavy 
computational resources. As the current models are getting complex 
and the parameters increasing exponentially, limitations of computa-
tional resource is another crucial issue. There is a need for develop-
ing models that are more resource-efficient, making audio profiling 
accessible to systems with limited computational capacity. Future re-
search should aim to streamline model architectures to make them 
more resource-efficient. Current state-of-the-art architectures, such as 
transformers, often require substantial computational resources. Future 
research should explore lightweight architectures capable of delivering 
high accuracy while reducing computational and energy demands. 
Possible exploration of architecture like xLSTM [261], which have 
proven efficient in low-resource settings, merits investigation for audio 
profiling. These advancements would facilitate the deployment of audio 
profiling systems in resource-constrained environments and make the 
technology more accessible.

8.4. Issues related to real-world application and integration with real-time 
systems

Many systems are tested in controlled conditions, and their adapt-
ability to real-world, noisy, and dynamic environments is often
untested. Systems may not generalize well across different speech 
contexts, languages, or accents. Furthermore, integrating these models 
into real-time systems (like call centers or interactive voice response 
systems) poses challenges in terms of latency and continuous streaming 
of data. Many models are designed for specific utterance lengths, and 
their effectiveness with varying speech duration can be limited.



A. Pudasaini et al. Neurocomputing 640 (2025) 130334 
8.5. Issues beyond computational complexity

Human voice is complex and not deterministic. Even when con-
ditions are constant, the same person can produce different voice 
sounds. This variability is affected by emotions, mental and physical 
states, social and environmental circumstances, making each person 
unique. Thus, Inherent Human Variability is both a challenge and 
opportunity for profiling.

Human poses another set of skill, intentional alteration of their 
voice. Voice Disguise includes impersonation and masking. Imperson-
ation and mimicry involve humans altering their voices to resemble 
someone else, though the former generally carries a more negative 
connotation compared to the latter. Identifying an impersonated voice 
is an issue as the judgments about the speaker are likely to be incorrect. 
The challenge for accurate profiling is to find elements in a voice that 
are not under voluntary control of the speaker, and do not change with 
disguise, and derive conclusions based on those aspects. For this to 
happen, a system to identify disguised voice is needed. Thus, Audio 
profiling systems that are fool proof from voice disguise remains an 
open problem. The author of the book [1] suggests that employing
micro-articulometry represents a logical approach to addressing the 
shortcomings of profiling when dealing with voice disguise.

Voice Masking refers to the concealment of the natural attributes of 
one’s voice, suppressing its genuine qualities. This can involve imitating 
sounds like that of animals, musical instruments, or even external 
aids such as physical masks or electronic voice transformation devices. 
As long as the fundamental basis remains natural human speech, the 
potential for successful profiling exists, although the efficacy varies for 
different types of masking. On the contrary, if voice or speech is entirely 
synthesized, profiling is likely to, and ideally should, fail. Currently, 
achieving an accurate synthesis of human voice or speech, including 
its micro-nuances, without borrowing elements from real voices is 
challenging [1]. With the recent AI breakthroughs, voice synthesizing 
tools are readily available [262] which necessitates systems capable of 
detecting and handling synthetic voices. Detecting synthetic voices in 
isolation, similar to addressing the issue of voice disguise or masking, is 
a concern that must be tackled within the context of profiling. Future 
research should investigate methods to identify and counteract these 
alterations for generalized audio profiling models. Emotion-resilient 
models that differentiate between intrinsic voice attributes and tran-
sient emotional states could ensure consistent profiling under diverse 
conditions.

8.6. Privacy concerns and preservation

Privacy preservation refers to the measures, techniques, and strate-
gies employed to protect sensitive data from unauthorized access, 
disclosure, and misuse. It aims to ensure that personal and confidential 
data remains secure and is only accessible to authorized entities. Pri-
vacy preservation is vital in many fields, including healthcare, finance, 
and communication. For example, in today’s digital era, with voice 
assistants like Alexa, Google Assistant, Siri, and Cortana integrated 
into devices such as smart speakers, smartphones, and IoT systems, 
protecting privacy in voice user interfaces is essential. Voice assistants 
do not only process spoken commands but they can also extract paralin-
guistic information such as emotions, gender, and even potential health 
conditions [24]. An article published by Yale University Press examines 
the emergence of audio profiling and its potential impacts on personal 
freedom. The study highlights privacy concerns over how companies 
collect and analyze voice data to infer personal traits. For instance, 
without proper privacy measures, an insurance company might analyze 
a client’s voice, detect a health issue, and raise client premiums without 
his/her consent. This is why strong privacy preservation is needed to 
keep all aspects of voice data secure.

In the literature, various approaches have been proposed to address 
privacy concerns and protect paralinguistic information embedded in 
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speech data such as emotional states, gender identity, and personal 
attributes. One key strategy for voice privacy preservation is limiting 
transmitted information to what is essential for downstream tasks—a 
concept known as information isolation, where channels of infor-
mation separate target information from private or undesired data. 
The Information Bottleneck (IB) [263] method achieves information 
isolation by compressing speech data through an encoder, creating 
a constrained bottleneck that transmits only essential information. A 
decoder then reconstructs data for the task. Techniques like dimension-
ality reduction and quantization ensure private information is excluded. 
The IB principle is effective in applications such as anonymizing speech 
attributes [264] and learning low-bitrate representations that retain 
semantic content [263]. The strengths of the IB method include its 
provable privacy guarantees (determined by the bottleneck’s bitrate), 
flexibility in balancing privacy and utility, and adaptability to various 
tasks. However, challenges include designing appropriate loss functions 
for tight bottlenecks, vulnerability to adversarial attacks, and ensuring 
robust system design to maintain task accuracy while discarding private 
data [265].

Another approach used by researchers to protect data privacy is
Adversarial Learning [266,267]. In this approach, models are trained 
to balance utility and privacy through competing objectives. A trusted 
task (e.g., speaker verification) extracts task-specific features, while an 
adversarial task (e.g. gender classification) penalizes the system for 
retaining sensitive attributes. This adversarial competition forces the 
encoder to suppress private information, such as emotion or gender, 
while preserving utility. For instance, CycleGAN has been used to neu-
tralize emotional attributes in speech [268], while GenGAN synthesizes 
gender-ambiguous voices to enhance privacy [269]. GenGAN employs 
a U-Net generator and an AlexNet-based discriminator, leveraging ad-
versarial loss to balance utility and privacy with minimal distortion. 
Validation on LibriSpeech [270] shows it outperforms methods like VQ-
VAE-Gen [271] and PCMelGAN [272] in word recognition accuracy 
while reducing gender and identity inference rates.

Disentanglement Learning is another approach for data privacy 
preservation that leverages disentangled representations to separate 
observed data into distinct, independent features, enhancing robust-
ness, interpretability, and generalization. In computer vision, this ap-
proach has been applied to tasks like pose-invariant recognition, ad-
versarial disentanglement for attribute transfer [273], and person re-
identification [274]. Beyond vision, disentangled representations help 
mitigate bias for fairness and facilitate domain adaptation by separating 
domain-specific features [275]. Many research studies [271,276–278] 
have used speech disentanglement to separate signals into independent 
channels—such as linguistic content, speaker identity, and emotions—
enabling selective sharing of private information tailored to application 
requirements.

Other approaches include voice transformation for privacy, such as
Voice Sanitization [279], speech anonymization using the McAdams 
coefficient [280], and the VoicePM framework [281], which pro-
vides a structured methodology for evaluating privacy-utility trade-
offs across different anonymization techniques. VoicePM systematically 
assesses anonymization methods such as signal processing, voice con-
version, and adversarial perturbation, measuring their effectiveness 
in concealing speaker attributes while preserving intelligibility and 
downstream task performance.

Although these methods demonstrate significant progress in safe-
guarding sensitive voice attributes, they also highlight persistent chal-
lenges in paralinguistic privacy preservation. Key issues include: (1) 
achieving a balance between privacy protection and data usability, as 
overly strict measures risk compromising the practical utility of audio 
[282], (2) incomplete anonymization remains a persistent issue, with 
residual sensitive information potentially enabling re-identification 
[277,283], and (3) the lack of standardized evaluation metrics for 
assessing privacy-utility trade-offs, which hinders consistent progress 
and comparison across approaches [281,282].
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Researchers must develop more sophisticated, efficient, and adapt-
able methods that effectively address these challenges and ensure ro-
bust protection of sensitive speech and audio data. A promising di-
rection in voice anonymization is the integration of Neural Audio 
Codecs (NACs), as introduced by [284]. NACs, such as EnCodec [285], 
represent speech as discrete acoustic tokens, which can be manipu-
lated to anonymize speaker identity while preserving semantic content. 
Unlike conventional methods that rely on perturbing speaker embed-
dings, NACs offer a more consistent and effective approach to speaker 
identity concealment [284]. NACs employ quantized codes to bottle-
neck speaker-related information, ensuring a more robust and reliable 
anonymization process. Additionally, NACs can also be integrated with 
audio language models such as VALL-E [286] and AudioLM [260] 
to generate high-quality synthetic speech that maintains linguistic in-
tegrity while effectively concealing speaker identity. These models 
leverage discrete acoustic representations, enabling robust anonymiza-
tion of speech attributes without introducing significant distortions to 
linguistic content. Future research should focus on improving these 
methods to strengthen privacy guarantees.

9. Conclusion

In this survey, we have provided an up-to-date review of the audio 
profiling paradigm. We have described the audio profiling pipeline and 
highlighted the datasets, features, methods, and various audio profiling 
tasks. We have also discussed several attributes that can be inferred 
from voice recordings and how these combine to paint the whole 
picture of a speaker in the recording. This study has compiled and 
focused on the diverse and significant applications of audio profiling 
systems. In addition to the comprehensive review, we have highlighted 
the challenges that impede the effectiveness of profiling systems, with 
an emphasis on privacy preservation, thereby providing directions for 
future research in this field. We aspire for this article to serve as 
a definitive resource for researchers and practitioners engaging with 
audio profiling. As voice recording devices become increasingly embed-
ded in the fabric of a smart society and advancements in audio profiling 
systems continue to rise, these technologies must be safeguarded. The 
future of audio profiling lies in addressing these multifaceted challenges 
through innovative research, interdisciplinary collaboration, and a fo-
cus on ethical, practical, and scalable solutions. The goal is to develop 
systems that are unbiased, efficient, and respectful of user privacy, 
thereby enhancing the reliability and applicability of audio profiling 
technologies in diverse real-world scenarios.
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