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ABSTRACT
Background: The ability to predict readmission accurately after hos-
pitalization for acute myocardial infarction (AMI) is limited in current
statistical models. Machine-learning (ML) methods have shown
improved predictive ability in various clinical contexts, but their utility
in predicting readmission after hospitalization for AMI is unknown.
Methods: Using detailed clinical information collected from patients
hospitalized with AMI, we evaluated 6 ML algorithms (logistic regres-
sion, naïve Bayes, support vector machines, random forest, gradient
boosting, and deep neural networks) to predict readmission within 30
days and 1 year of discharge. A nested cross-validation approach was
used to develop and test models. We used C-statistics to compare
discriminatory capacity, whereas the Brier score was used to indicate
overall model performance. Model calibration was assessed using
calibration plots.

Acute myocardial infarction (AMI) has a high readmission
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R�ESUM�E
Contexte : Les modèles statistiques actuels ne permettent pas de
pr�edire avec exactitude la r�eadmission après une hospitalisation pour
cause d’infarctus aigu du myocarde (IAM). Les m�ethodes de pr�ediction
faisant appel à l’apprentissage automatique ont �et�e associ�ees à une
am�elioration de la capacit�e de pr�ediction dans divers contextes
cliniques, mais leur utilit�e pour pr�edire la r�eadmission après une
hospitalisation pour cause d’IAM demeure inconnue.
M�ethodologie : À l’aide de donn�ees cliniques d�etaill�ees recueillies
auprès de patients hospitalis�es pour un IAM, nous avons �evalu�e six
algorithmes d’apprentissage automatique (r�egression logistique, clas-
sification naïve bay�esienne, machine à vecteurs de support, forêt
al�eatoire, boosting par descente de gradient fonctionnelle et r�eseaux
neuronaux d’apprentissage profond) pour pr�edire la r�eadmission dans
les 30 jours et dans l’ann�ee suivant la sortie de l’hôpital. Les modèles
burden, as approximately 1 in 6 patients are readmitted within
Several models exist for predicting patients’ risk of read-

mission. The LACE index was developed in 2010 to estimate

30 days of discharge.1 With the introduction of the Hospital
Readmission Reduction Program in 2012 in the United
States, hospitals have been financially incentivized to reduce
readmission rates.2 Although this has led to the development
of various intervention strategies aimed at reducing read-
missions, they tend to be costly and resource intensive.3 In
this context, predictive models would allow hospitals to
identify patients at high risk for readmission and target the
delivery of these interventions towards them, thereby reducing
unplanned readmissions.4,5
risk of all-cause readmission in medical and surgical patients
based on 4 criteria: length of stay (L), acuity of admission (A),
comorbidity of the patient (C), and emergency department
use in the 6 months before admission (E). Although this
criteria-based system is easy to apply, it is not very accurate
(C-statistic range, 0.51-0.72).6-8 AMI-specific logistic and
Cox models have also been developed to model and predict
readmission in an AMI population more accurately.9-11

However, despite the more focused approach, these models
have only improved discrimination capabilities moderately
(median C-statistic 0.65; range 0.53-0.79). Moreover, none of
these models exclusively use clinical data, thus limiting their
applicability for clinical use.12

In many clinical disease contexts, machine-learning (ML)
models have shown improved discriminatory power at pre-
dicting outcomes compared with traditional approaches.13,14

ML methods can automatically identify patterns in data that
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Results: The 30-day readmission rate was 16.3%, whereas the 1-year
readmission rate was 45.1%. For 30-day readmission, the discrimi-
native ability for the ML models was modest (C-statistic 0.641; 95%
confidence interval (CI), 0.621-0.662 for gradient boosting) and did not
outperform previously reported methods. For 1-year readmission,
different ML models showed moderate performance, with C-statistics
around 0.72. Despite modest discriminatory capabilities, the observed
readmission rates were markedly higher in the tenth decile of pre-
dicted risk compared with the first decile of predicted risk for both 30-
day and 1-year readmission.
Conclusions: Despite including detailed clinical information and
evaluating various ML methods, these models did not have better
discriminatory ability to predict readmission outcomes compared with
previously reported methods.

ont �et�e mis au point et test�es à l’aide d’une approche de validation
crois�ee imbriqu�ee. Nous avons utilis�e la statistique C pour comparer la
capacit�e de discrimination des diff�erents modèles, et le score de Brier
pour en chiffrer le rendement global. Le calage des modèles a �et�e
�evalu�e au moyen de courbes d’�etalonnage.
R�esultats : Le taux de r�eadmission à 30 jours �etait de 16,3 %, tandis
que le taux de r�eadmission à 1 an �etait de 45,1 %. Dans le cas de la
r�eadmission à 30 jours, la capacit�e de discrimination des modèles
d’apprentissage automatique �etait modeste (statistique C : 0,641;
intervalle de confiance [IC] à 95 % : 0,621-0,662 pour le boosting par
descente de gradient fonctionnelle) et n’�etait pas sup�erieure à celle
des m�ethodes d�ejà utilis�ees. Dans le cas de la r�eadmission à 1 an,
diff�erents modèles d’apprentissage automatique se sont r�ev�el�es
mod�er�ement efficaces, la statistique C se chiffrant à environ 0,72. En
d�epit des modestes capacit�es de discrimination des diff�erentes
m�ethodes, les taux de r�eadmission observ�es �etaient nettement plus
�elev�es dans le dixième d�ecile du risque pr�edit comparativement à ceux
du premier d�ecile, pour la r�eadmission à 30 jours comme pour la
r�eadmission à 1 an.
Conclusions :Malgr�e le recours à des donn�ees cliniques d�etaill�ees et à
diff�erentes m�ethodes d’apprentissage automatique, les modèles
�evalu�es n’ont pas montr�e une capacit�e de discrimination sup�erieure à
celle des m�ethodes d�ejà utilis�ees pour pr�edire la r�eadmission.
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are predictive of relevant health outcomes and include various
algorithms that can model complex nonlinear interactions
among variables. With respect to AMI readmissions, it has not
yet been established whether these methods can produce more
accurate predictions compared with the existing methods
described here. The goal of this study was to conduct a
comprehensive analysis of ML methods for the task of pre-
dicting readmission in patients with AMI at the time of
discharge, using clinical data collected during the course of
care. To this end, we compared the performance of commonly
used supervised ML algorithms on 2 different readmission
tasks: readmission within 30 days and readmission within
1 year.
Methods

Data sources

The study sample was derived from the Enhanced Feed-
back for Effective Cardiac Treatment (EFFECT) study,15 a
cluster randomized trial to evaluate the effectiveness of public
reporting. Detailed clinical data were collected from 81 hos-
pital corporations in Ontario via retrospective chart review
performed by trained nurse abstractors. Additional databases
that were used for this study include the Ontario Registered
Persons Database, a registry of all Ontario residents with
health insurance coverage, and the Canadian Institute for
Health Information Discharge Abstract Database (DAD),
which contains information on all admissions to acute care
hospitals in Ontario. This database was used to identify any
subsequent hospital readmissions. These datasets were linked
using unique encoded identifiers and analyzed at Institute for
Clinical Evaluative Services (ICES). The use of data in this
project was authorized under section 45 of Ontario’s Personal
Health Information Protection Act, which does not require
review by a Research Ethics Board.
Study sample

Patients between the ages of 20 to 105 years with a most
responsible diagnosis of AMI (identified by International
Classification Disease-9 code 410 in DAD) and a valid
Ontario Health Insurance Plan number were included in the
EFFECT phase 2 study. However, patients were excluded if
they died before the end of their respective analysis periods of
30 days (n ¼ 91, 1.28%) or 1 year (n ¼ 211, 2.96%) without
a readmission.

Predictors

A total of 204 routinely available clinical variables were
initially selected from the EFFECT study using a priori
clinical knowledge, level of completeness, and applicability to
the entire cohort (ie, nonconditional questions). These
included demographic variables (age, sex, race/ethnicity, and
employment status), past medical history, vital signs, charac-
terization of AMI (including admission symptoms, compli-
cations and severity scores), cardiac procedures, select
laboratory tests and medications, medical imaging procedures,
and patient counselling. To account for predictors with
missing data, variables with more than 30% missing values
were dropped from each readmission cohort. This resulted in
a total of 192 variables. The final list of variables used for
input is provided in Supplemental Table S1. The continuous
variables were normalized by z-scoring across all patients so
that each continuous variable had zero mean and unit vari-
ance. Finally, dummy variables were created for all categorical
variables.

Outcome

We developed models to predict all-cause hospital read-
mission within 2 timeframes: readmission within 30 days of
discharge from the index hospitalization and readmission
within 1 year of discharge from the index hospitalization.
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Analysis

We developed prediction models using 6 commonly used
ML algorithms: (1) logistic regression (LR); (2) naïve Bayes
(NB); (3) support vector machines (SVMs); (4) random for-
ests (RF); (5) gradient boosting (GB); and (6) deep neural
networks (DNN). LR is a simple linear model that provides a
good baseline comparison for more complex models. We
considered both L1 (lasso) and L2 (ridge regression) regula-
rization for LR. NB is a probabilistic classifier that makes a
"naïve" assumption that the input variables are independent,
given the outcome. Although this assumption does not usually
hold, the resulting model often performs well owing to its
simplicity and relative immunity to overfitting.16 SVM at-
tempts to find an optimal hyperplane that maximizes the
margin (distance) between the data points of the 2 classes.
With instances in which data are not linearly separable, the
assumption of linearity is relaxed by allowing outlier data
points to fall on the wrong side of the decision margin.17 In
contrast to the aforementioned methods, RF, GB, and DNN
are nonlinear algorithms; they do not make previous as-
sumptions about the functional form of the input and are
therefore able to model nonlinear interactions in the data. RF
is an ensemble method that fits a number of decision trees on
subsamples of the dataset and then uses model averaging to
improve accuracy and control for overfitting.18 GB is another
ensemble learning method; however, unlike RF, the decision
trees are grown sequentially using gradient descent, with each
subsequent tree aiming to reduce the errors of the previous
tree.19 A DNN consists of a series of fully connected hidden
layers, which transform an input vector into a probability
distribution estimating the output.20 All analyses were done
using Python v2.7. LR, NB, SVM and RF were implemented
using scikit-learn v0.18.1.21 GB was implemented using and
XGBoost v0.6.22 The DNN was implemented using Keras.23

A detailed discussion of the ML algorithms is provided in
Supplemental Text S1.

Each model was assessed using a nested k-fold cross-
validation approach consisting of 2 loops: an outer loop for
model evaluation and an inner loop for tuning hyper-
parameters. We used 10 nonoverlapping training and test sets
in the outer loop. Performance estimates were calculated by
averaging test set scores across the 10 dataset splits of the outer
loop. Each training fold of the outer loop was further split into
5 nonoverlapping training and validation sets (the inner loop),
which were used to tune hyperparameters for each model
using grid searches. A grid search builds a model for every
combination of the specified hyperparameters, using the
training set, and then evaluates each model on the validation
set to identify the optimal combination of hyperparameter
values. Further details including a list of hyperparameters are
provided in the Supplemental Text S2 and Supplemental
Table S2).

To address the class imbalance in the cohort for 30-day
readmission, we experimented with 3 strategies to create a
balanced dataset of readmitted and not-readmitted patients
during model training: upsampling, creating duplicates of the
minority class; downsampling, randomly subsampling subjects
of the majority class; and weighting algorithms by providing a
weight for each class. The weight selected for each class
(readmitted and not readmitted) was inversely proportional to
class frequencies in the training dataset. In each of these cases,
we applied the modification only to the training dataset. We
also considered an approach in which no weighting, and no
up- or downsampling was applied. For each algorithm, we
report the results for the technique that gave the best
prediction.

We chose the C-statistic (equivalent to the area under the
receiver operating characteristic [ROC] curve) as our primary
performance measure for all models. The C-statistic is the
probability that a randomly selected readmitted patient will
have a higher predicted probability of readmission than a
randomly selected patient who was not readmitted.24 We
report the Brier score as a measure of accuracy of probabi-
listic predictions. It can take on values between 0 and 1,
with a score of 0 indicating perfect prediction.24 We assessed
model confidence using the logarithmic-loss (log-loss) func-
tion. The log-loss function calculates a score by penalizing
the difference between the predicted probabilities and ex-
pected values; as the penalty is logarithmic in nature, log-loss
heavily penalizes models that are confident about an incor-
rect prediction. A perfectly accurate model has a log-loss
score of 0, whereas less accurate models have increasingly
larger scores. Model calibration was assessed by stratifying
the test sample into 10 risk strata using the deciles of the
predicted probability of the outcome. We then compared the
observed probability of the outcome within each decile with
the mean predicted probability of the outcome within
each decile.
Results
Baseline characteristics of patients in 30-day and 1-year

readmission cohorts are detailed in Table 1. Overall, there
were 7018 patients in the 30-day readmission cohort, with
1146 readmissions, resulting in a readmission rate of 16.3%.
For 1-year readmission, there were a total of 6898 patients in
the cohort, of whom 3113 were readmitted, resulting in a
readmission rate of 45.1%. On average, patients who were
readmitted were older than those not readmitted. Comorbid
conditions and AMI-specific hospital complications were also
higher in readmitted patients. Finally, patients who were
readmitted were less likely to have undergone cardiac pro-
cedures during the hospital stay than those were not
readmitted.

Thirty-day readmission

Overall, discrimination for the various models was modest
(Table 2). The discriminative ability of different models, as
represented by ROC curves, is shown in Figure 1A. The GB
model had the highest discrimination (C-statistic ¼ 0.641;
95% confidence interval [CI], 0.621-0.662), although pre-
dictive accuracy was average (Brier score, 0.151; 95% CI,
0.144-0.158, log-loss 0.484; 95% CI, 0.468-0.500). The RF
and DNN models displayed similar discrimination (RF:
C-statistic, 0.639; 95% CI, 0.617-0.662 and DNN:
C-statistic ¼ 0.637; 95% CI, 0.617-657), with improved
predictive accuracy and confidence compared with the GB
model (Brier score w0.132, log-loss w0.430 for both RF



Table 1. Characteristics of patients in 30-day and 1-year readmission cohorts

Characteristic

30-day readmission 1-year readmission

Readmitted n (%) Not readmitted n (%) Readmitted n (%) Not Readmitted n (%)

N 1146 5872 3113 3785
Median age, years (SD) 69.8 (13.7) 66.7 (14.0) 70.1 (13.5) 64.4 (13.8)
Women 435 (38.0) 2040 (34.7) 1198 (38.5) 1220 (32.2)
Past medical history (cardiovascular comorbidities)

Stroke/transient ischemic attack 181 (15.8) 621 (10.6) 478 (15.4) 284 (7.5)
Diabetes 395 (34.5) 1500 (25.5) 1046 (33.6) 804 (21.2)
Congestive heart failure 101 (8.8) 243 (4.1) 254 (8.2) 70 (1.8)
Hypertension 748 (65.3) 3284 (55.9) 1971 (63.3) 1981 (52.3)
Hyperlipidemia 529 (46.2) 2665 (44.4) 1455 (46.7) 1692 (44.7)
Myocardial infarction 335 (29.2) 1286 (21.9) 892 (28.7) 678 (17.9)
Atrial fibrillation 131 (11.4) 409 (7.0) 346 (11.1) 170 (4.5)
Peripheral arterial disease 122 (10.6) 432 (7.4) 334 (10.7) 202 (5.3)
Angina 397 (34.6) 1612 (27.5) 1042 (33.5) 914 (24.1)

Past medical history (medical comorbidities)
Renal disease 18 (1.6) 45 (0.8) 51 (1.6) 12 (0.3)
Cancer 25 (2.2) 88 (1.5) 69 (2.2) 40 (1.1)
Chronic obstructive pulmonary disease 152 (13.3) 528 (9.0) 427 (13.7) 229 (6.1)
Chronic liver disease 9 (0.8) 26 (0.4) 23 (0.7) 12 (0.3)
Peptic ulcer disease 67 (5.8) 253 (4.3) 169 (5.4) 143 (3.8)

Past cardiac procedures
Coronary artery bypass grafting 94 (8.2) 464 (7.9) 309 (9.9) 242 (6.4)
Percutaneous coronary intervention 85 (7.4) 355 (6.0) 225 (7.2) 210 (5.5)

Types of myocardial infarction
STEMI 370 (32.3) 2111 (36.0) 941 (30.2) 1526 (40.3)
Non-STEMI 745 (65.0) 3640 (62.0) 2090 (67.1) 2194 (58.0)

In-hospital treatments and procedures
Cardiac catheterization 430 (37.5) 2884 (49.1) 1148 (36.9) 2152 (56.9)
Percutaneous coronary intervention in hospital 176 (15.4) 1403 (23.9) 474 (15.2) 1102 (29.1)
Coronary artery bypass surgery in hospital 43 (3.8) 263 (4.5) 103 (3.3) 201 (5.3)

AMI-specific hospital complications (>24 hours after
arrival)

Heart failure in hospital 122 (10.6) 353 (6.0) 276 (8.9) 184 (4.9)
Shock 16 (1.4) 46 (0.8) 30 (1.0) 31 (0.8)
Recurrent angina/ischemia 222 (19.4) 883 (15.0) 518 (16.6) 575 (15.2)
Hemorrhage requiring intervention 28 (2.4) 123 (2.1) 69 (2.2) 82 (2.2)

Lab values, mean (SD)
Blood urea nitrogen 4.5 (1.2) 7.4 (4.5) 8.7 (5.9) 6.7 (3.5)
Cholesterol 4.5 (1.2) 4.6 (1.2) 4.5 (1.2) 4.7 (1.1)
Hemoglobin (first) 133.2 (21.7) 138.9 (19.5) 133.8 (21.3) 141.8 (18.0)
Hemoglobin (last) 123.1 (18.6) 128.9 (17.9) 124.5 (18.3) 131.1 (17.5)

SD, standard deviation; STEMI, ST-elevated myocardial infarction.
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and DNN). SVM (with class weighting) and LR performed
similarly, both with slightly worse discrimination and pre-
dictive accuracy. Finally, although NB also showed similar
discrimination (C-statistic 0.627; 95% CI, 0.602-0.652), it
had the lowest overall prediction score (Brier score, 0.189;
95% CI, 0.176-0.201, log-loss 1.141; 95% CI, 1.018-
1.263).

The LR, SVM, DNN, and RF models demonstrated good
concordance between the observed and predicted probabilities
of readmission (Fig. 2A), although the range of predicted
probabilities was limited between 0.042 and 0.489. The cali-
bration curves show poor alignment for the GB model, despite
having a C-statistic value similar to RF. The NBmodel had the
worst model calibration, despite a large predictive range of
predicted probabilities (0.00 to 1.00), with no change in
observed readmission rate, regardless of predicted probability.
Finally, despite the small range of predicted probabilities for the
LR, DNN, and RF models, the mean observed readmission
rates were markedly higher in the highest predicted risk group
(30.1%, 31.6%, and 30.8%, respectively) than the lowest
predicted risk group (6.8%, 7.1%, and 6.4%) (Fig. 2A, with
detailed values in Supplemental Table S3).

One-year readmission

The LR, SVM,DNN, RF, andGBmodels resulted in similar
scores for both measures of predictive accuracy (C-statistic
w0.72, Brier Scorew0.21, and log-lossw0.61), with nomodel
showing superior performance compared with the other (Table 2
andFig. 1B). As in the 30-day readmission sample,NBhadworse
discrimination (C-statistic 0.692; 95% CI, 0.679-0.705) and
worse predictive accuracy and confidence (Brier score, 0.321;
95% CI, 0.306-336, log-loss 2.485; 95% CI, 2.317-2.653).

The LR, SVM, RF, and DNN models all resulted in
predictions with good concordance between observed and
predicted probabilities for all ranges of predicted probability
(Fig. 2B). The range of predicted probabilities were also much
larger compared with the models for 30-day readmission. The
GB model also showed good calibration, unlike for 30-day
readmission in which calibration was poor. NB had the



Table 2. Measures of predictive accuracy for various machine learning models

Outcome and model C-statistic (95% CI) Brier score (95% CI) Log loss (95% CI)

Readmission within 30 days
Logistic regression 0.631 (0.611-0.651) 0.132 (0.124-0.141) 0.430 (0.410-0.451)
Naïve Bayes 0.627 (0.602-0.652) 0.189 (0.176-0.201) 1.141 (1.018-1.263)
Support vector machine 0.627 (0.608-0.645) 0.133 (0.128-0.137) 0.431 (0.420-0.443)
Deep neural network 0.637 (0.617-0.657) 0.132 (0.124-0.141) 0.430 (0.410-0.450)
Random forest 0.639 (0.616-0.661) 0.132 (0.124-0.141) 0.429 (0.408-0.450)
Gradient boosting 0.641 (0.621-0.662) 0.151 (0.144-0.158) 0.484 (0.468-0.500)

Readmission within 1 year
Logistic regression 0.719 (0.706-0.732) 0.212 (0.207-0.217) 0.614 (0.604-0.624)
Naïve Bayes 0.692 (0.679-0.705) 0.321 (0.306-0.336) 2.485 (2.317-2.653)
Support vector machine 0.718 (0.706-0.731) 0.212 (0.208-0.216) 0.613 (0.605-0.621)
Deep neural network 0.716 (0.702-0.731) 0.213 (0.208-0.218) 0.615 (0.604-0.626)
Random forest 0.716 (0.704-0.729) 0.213 (0.209-0.217) 0.616 (0.607-0.625)
Gradient boosting 0.720 (0.708-0.732) 0.212 (0.207-0.216) 0.612 (0.603-0.621)
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worst model calibration, with low concordance between
observed and predicted probabilities for all ranges, similar to
the 30-day readmission sample.

The LR, SVM, DNN, RF, and GB models were able to
risk stratify patients adequately, with observed mean read-
mission rates ranging between w17% and 18% among the
lowest-risk persons to w80.0% among the highest-risk per-
sons. The range was smaller for NB, with an observed mean
readmission rate of 21.5% in the first risk decile and 76.7% in
the highest-risk decile (Fig. 2B, with detailed values in
Supplemental Table S4).
Discussion
In this study, we examined the ability of various ML

algorithms to predict readmission, using detailed clinical data
in patients who were hospitalized with AMI. We found that
Figure 1. Receiver operating characteristic curves for (A) 30-day readmissi
under the curve for each model (ie, C-statistics) are presented in Table 2. LR
SVM (green line), support vector machine; DNN (red line), deep neural ne
boosting.
the use of ML algorithms did not lead to substantial im-
provements in prediction for either 30-day or 1-year read-
mission when compared with previously reported statistical
methods. All models developed for 30-day readmission had
similar performance and showed modest discrimination, with
C-statistics in the range of 0.63 to 0.64. These values are
consistent with the median C-statistic (0.65) reported by a
recent review of risk-prediction models for 30-day AMI
readmission,12 although it should be noted that this number
is likely inflated, as not all models were validated. The
models for 1-year readmission showed moderate perfor-
mance, with C-statistics consistently around 0.72 (with the
exception of the NB model), whic was also consistent with
results from the literature.9

Given the considerable burden placed on the health care
system by readmissions after AMI,1,25 predicting readmission
risk would enable hospitals to target readmission reduction
on and (B) 1-year readmission. The corresponding values of the area
(blue line) indicates logistic regression; NB (orange line), naïve Bayes;
twork; RF (purple line), random forest; and GB (brown line), gradient



Figure 2. Calibration plots for machine learning models for predicting (A) 30-day readmission and (B) 1-year readmission. LR (blue line) indicates
logistic regression; NB (orange line), naïve Bayes; SVM (green line), support vector machine; DNN (red line), deep neural network; RF (purple line),
random forest; and GB (brown line), gradient boosting.
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interventions toward patients more likely to benefit from
them, thereby improving patient health and reducing costs. As
such, several models have been developed to estimate a pa-
tient’s risk of readmission after hospitalization for AMI.
However, many of the existing prediction models use data
that are not available until well after discharge (eg, adminis-
trative claims or registry data),12 are developed using data
derived from a single centre, or lack any validation.26-28 We
overcame these limitations by relying solely on data collected
during a patient’s hospital stay, from across 81 hospitals in
Ontario, Canada. To our knowledge, this is the first study
that uses detailed clinical data that are routinely available to
clinicians to evaluate ML algorithms for the task of predicting
AMI readmission. Moreover, using data that have been
collected from multiple locations ensures that the variables
included in the models represent standard care of practice,
rather than esoteric tests and measurements. These factors
help increase the applicability of the models to clinical
settings.

Our study found that ML methods do not provide an
adequate increase in accuracy for predicting readmission for
AMI to warrant clinical use, when compared with conven-
tional approaches reported in literature. The limited number
of previously published papers for prediction of readmission
for AMI rely mostly on points-based risk scores or LR
models,9,10,29 which tend to underperform when there are
complex decision boundaries present in the data. Employing
ML algorithms that are able to leverage complex higher-level
interactions among input variables could potentially over-
come this drawback. We found minor improvement in
discrimination for 30-day readmission when using models
such as RF, GB, and DNN (0.64) as opposed to LR (0.63),
which is encouraging but ultimately insufficient. This suggests
that the inclusion of complex interactions does not improve
predictive accuracy in this context. Furthermore, calibration
plots showed that no model was asdor moredaccurate in
predicting readmissions than LR. The outcome was similar in
the case of 1-year readmission; LR performed just as well as
more complex models, such as DNN or RF, when comparing
C-statistic and model calibration. Despite the overall modest
discrimination for both 30-day and 1-year readmission, we
found that the range of observed readmission events among
deciles of predicted risk varies sufficiently to stratify patients
into low-, medium-, and high-risk groups to target read-
mission intervention prevention.

We attribute the modest predictive ability of the various
ML algorithms to 2 factors. First, predicting readmission is a
difficult problem, especially when compared with other30

prediction tasks such as mortality.6,12,31 Unlike mortality,
which is largely dependent upon severity of disease and
comorbidity burden,32-36 readmission is likely a result of
more complex interactions among patients’ clinical condi-
tions, sociodemographic factors, and psychosocial
environments.33-36 Such complex factors are unlikely to be
captured within the data from a single hospital stay. Second,
our study adds to the growing trend of literature, which
confirms that, although more complex ML methods have
potential, they do not necessarily confer an advantage when
the data are tabular, contain a relatively small number of
features, and are of a modest sample size. This is particularly
true of deep learning (deep neural network) models;
although they are capable of using raw data as input, they
require enormous numbers of data to train and achieve
sufficiently high performance. For example, researchers
recently demonstrated a deep learning model capable of
achieving high accuracy on various tasks including in-
hospital mortality (C-statistic 0.93 to 0.94), 30-day read-
mission (C-statistic 0.75 to 0.76), and prolonged length of
stay (C-statistic 0.85 to 0.86).37 This deep learning model
was trained using raw time-ordered electronic health records
data consisting of 46 billion data points (including clinical
notes) from 216,221 patients. It is because of these large
clinical datasets and computational resources that complex
ML algorithms have become practical and useful. However,
they cannot replace the use of classifiers and regressors on
smaller tabular datasets such as in this study.
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Limitations

This study has several potential limitations. First, the ML
models developed use data from the patient’s entire stay to
make a prediction at the time of discharge. Although this
would enable hospitals to implement postdischarge
interventions, there is some evidence to suggest that certain
interventions are more effective at reducing readmissions if
implemented well before discharge.12,38 Second, certain
AMI-severity measures, such as troponin value and frailty,
were not included in the dataset, although it is unlikely that
the addition of further severity scores will improve accuracy
drastically, given that alternate measures of disease severity are
included. Third, we did not include postdischarge factors as
predictors because our intention was to predict rehospitaliza-
tion before discharge and concerns for bias because the overlap
in ascertainment period because the predictor and the
outcome. Finally, although we used a robust nested cross-
validation approach to verify our models, if these models
were to be implemented, they would require external valida-
tion on more recent data than used in the study to reflect any
changes in care practices for AMI.39
Conclusions
In this analysis of readmission prediction after hospitali-

zation for AMI using clinical data, we found that ML methods
do not improve discrimination when compared with previ-
ously reported approaches. Future work needs to focus on
further improvement of predictive ability through the use of
larger datasets that contain both clinical time-series data and
information on sociodemographic factors to facilitate earlier
and better targeting of interventions to patients at high risk for
readmission.
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