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Abstract—Hierarchical image classification is an arduous task
in deep learning and computer vision. It requires classifying
multiple image classes following a taxonomy or data hierarchy.
This paper introduces a bottom-up hierarchical capsule network
(BUH-CapsNet) designed to address hierarchical multi-label
classification. The hierarchical structure of BUH-CapsNet allows
it to build a tree-like structure for classification problems, making
use of the data hierarchy. This structure enables the network to
learn more complex relationships in the taxonomy by balancing
the hierarchical levels and following the fine-to-coarse paradigm,
leading to more accurate classification results. Furthermore, the
bottom-up architecture of the BUH-CapsNet enforces hierarchi-
cal consistency, using the hierarchical structure of the datasets.
We trained our BUH-CapsNet considering the hierarchical level
weights that keep a balance between the levels. Experiments on
six widely available datasets show that BUH-CapsNet achieves
better results than existing multi-label classification methods and
performs better when handling hierarchical labels.

Index Terms—Image Classification, Hierarchical Multi-label
Classification, Capsule Network

I. INTRODUCTION

Image classification is an important task in computer vi-

sion and image processing, which involves assigning a set

of classes to an image based on its visual content. Image

classification has a wide range of applications, such as facial

recognition [1], object detection [2], and scene recognition

[3]. These classification methods often employ a flat classifi-

cation approach by assigning each image to a single category

based on its visual content, while ignoring the similarities

present among the similar categories [4]. Hierarchical multi-

label classification (HMC) has gained significant attention

in recent times due to its ability to classify instances into

multiple classes organized in a hierarchical structure [5].

This approach leverages machine learning methods to tackle

complex classification problems across various application

fields. Notably, HMC has proven its effectiveness in domains

such as medical imaging, where it has been used for tasks like

disease diagnosis and identification [6]. Additionally, HMC

has been successfully applied in CCTV inspection systems

for detecting and classifying objects of interest in surveillance

videos [7]. Furthermore, in the context of E-commerce sys-

tems, HMC enables personalized product recommendations by

classifying items into a hierarchical taxonomy [8]. Even in

remote sensing applications, HMC has exhibited its utility by

accurately categorizing land cover types and analyzing satellite

imagery data [9]. To construct hierarchical classifiers, two

common approaches are employed: utilizing hierarchical trees

or direct acyclic graphs (DAGs) as the structure [10]. In both

cases, convolutional neural networks (CNNs) have emerged

as the backbone architecture for achieving state-of-the-art

performance. The hierarchical structure provides a flexible

framework for capturing the inherent relationships among

classes, enabling the model to exploit both global and local

dependencies within the data. By leveraging the hierarchical

organization of labels, HMC facilitates more interpretable

classification outputs, allowing for fine-grained predictions

that reflect the complex relationships between classes.

Typically, the architecture of models designed for HMC

problems has primarily followed a top-down approach, as

highlighted by Naik et al. [11]. This top-down strategy aligns

with the coarse-to-fine paradigm, where predictions are gener-

ated from the highest-level nodes of the hierarchical tree down

to the lowest-level nodes. While this approach has demon-

strated success in capturing high-level semantic information,

it often results in deep neural connections and can suffer from

challenges such as inconsistent predictions and difficulties

in modeling fine-grained details. In contrast, the bottom-up

approach offers an alternative perspective in addressing HMC

tasks by focusing on the fine classes located at the last level of

the hierarchical tree. It leverages the information from these

fine classes to make predictions for the coarser classes in

higher levels [12]. In HMC, this allows for a more granular un-

derstanding of the hierarchy, as it starts with the basic building

blocks and works its way up. This approach enables the model

to identify classes detailedly, building up an understanding of

the patterns from the bottom to the top level. Additionally, the

bottom-up approach eliminates the need for extensive feature

engineering, which is often required in the top-down paradigm.

By leveraging the inherent hierarchical structure, the model

can learn and extract discriminative features directly from

the data. This not only simplifies the modeling process but

also allows for a more efficient and effective approach to
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Fig. 1: Architecture of bottom-up hierarchical capsule network (BUH-CapsNet). Each secondary capsule layer in the architecture

represents a hierarchical level, and each capsule in the same layer denotes a class in the hierarchical label tree.

hierarchical classification.

In this paper, we introduce a novel approach called Bottom-

Up Hierarchical Capsule Network (BUH-CapsNet) specifically

designed for addressing hierarchical multi-label classification

(HMC) problems. Our proposed method builds upon the

concepts of the capsule network (CapsNet) [13], which of-

fers several advantages over traditional convolutional neural

networks (CNNs) by utilizing a set of neurons to capture

both features and their transformations. One notable strength

of CapsNet is its ability to model part-whole relationships

between different capsules in different layers, allowing them

to learn hierarchical relationships between features [14]. This

intrinsic property makes CapsNet well-suited for capturing the

hierarchical structure of labels in HMC tasks.Recent studies

have demonstrated that CapsNet outperforms CNNs in terms

of accuracy and robustness [15], highlighting its potential for

advancing hierarchical classification tasks. However, it has

been observed that simply stacking multiple capsule layers

on top of each other does not necessarily lead to improved

model performance at the same level [16]. To overcome this

limitation, a hierarchical organization of capsule layers has

been proposed, showing promising results in terms of level-

wise improvement and overall performance enhancement [17].

This hierarchical arrangement enables capsules to effectively

capture the complex relationships between features and classes

in a hierarchical manner, facilitating more accurate and mean-

ingful predictions. Moreover, selective feature extraction has

been explored in conjunction with capsule networks, resulting

in a reduction in trainable parameters while simultaneously im-

proving performance [18]. This approach allows the network

to focus on the most discriminative features at each level of

the hierarchy, enhancing both efficiency and effectiveness.

In a nutshell, the proposed BUH-CapsNet inherits the ad-

vantage of CapsNet in capturing part-whole relationships as

well as taking the structure of HMC into consideration. Em-

phasizing image classification, we have trained and evaluated

our BUH-CapsNet on six different widely available datasets.

The remaining of this paper is organized as follows. In Sec. II,

we provide a detailed explanation of the BUH-CapsNet archi-

tecture, highlighting its key components and working method-

ology. In this section, we outline how our model leverages the

hierarchical capsule network approach to tackle HMC tasks.

In Section III, we present the experimental setup conducted

to evaluate the performance of BUH-CapsNet. We provide

comprehensive details regarding the datasets used, training

procedures, and evaluation metrics. Additionally, we report

and analyze the test results obtained from the experiments,

comparing BUH-CapsNet against alternative approaches to

demonstrate its superior performance. Finally, we discuss the

contribution and conclude this paper in Sec. IV.

II. BOTTOM-UP HIERARCHICAL CAPSULE NETWORK

Generally, in hierarchical image classification problems, the

class labels are typically organized in a tree taxonomy, where

each instance can be assigned to multiple classes at different

levels of the hierarchy. To address this challenge, our proposed

BUH-CapsNet leverages capsule layers to classify the class

labels based on the hierarchical taxonomy for each instance.

The overall architecture of our BUH-CapsNet network is

presented in Fig. 1. It is designed to capture the hierarchical

relationships between features and classes, enabling accurate

and interpretable predictions. The architecture consists of

several key components, each serving a specific purpose in

the hierarchical classification process.

In the initial stage of BUH-CapsNet, the raw image data

is fed as input to the network. The network begins with

a feature extraction block, which consists of convolutional

layers, batch normalization, and pooling layers. This feature

extraction process aims to capture local features from the input

image that are relevant for classification. These local features
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play a crucial role in subsequent hierarchical classification

steps. The extracted local features are then reshaped and

grouped to form primary capsule layers (P ), as shown in

Fig. 1. Primary capsules encapsulate the local features and

encode them into vectors representing the presence of specific

visual patterns or attributes. These vectors capture important

information about the primary features detected in the input

image.

The output vectors from the primary capsule layers are

then passed on to the secondary capsule layer (SN ) at the

bottom level of the hierarchy, where N represents the total

number of hierarchies present in the label tree. Each secondary

capsule in this layer corresponds to a specific class or label

within the hierarchy. The primary capsules’ output vectors

are used as inputs to the secondary capsule layer for the

Nth level, allowing the network to learn the relationships

between primary features and the classes at the bottom level of

the hierarchy. To form the complete hierarchical architecture,

output from each capsule in the secondary capsule layer goes

to the next capsule layer (i.e., output from Si goes to Si−1 for

i ∈ {2, 3, · · · , N}), which consists of capsules for classifying

the parent classes in taxonomy1. It is also worth mentioning

that, each secondary capsule layer (Si) contains Ci number

of capsules, where Ci is the number of classes present in

the hierarchical level i and each capsule in the corresponding

hierarchy is responsible for a class label.

In the BUH-CapsNet model, a bottom-up strategy is em-

ployed to implement dynamic routing [13] between the capsule

layers. This means that each parent capsule in the hierarchy

updates its information from the child capsules using an

iterative routing method. This bottom-up architecture allows

BUH-CapsNet to take full advantage of CapsNet’s ability to

capture part-whole relationships, thereby enhancing hierarchi-

cal consistency. By considering the outcomes from the child

classes, the parent class outputs predictions, leading to im-

proved performance in capturing the hierarchical relationships

between classes.

As shown in Fig. 1, each secondary capsule layer (Si) also

has its own prediction layer (Yi). The primary purpose of these

prediction layers is to compute the class predictions for the

classes present in the corresponding level of the hierarchy. The

prediction layers utilize the vector outputs vi
k obtained from

the secondary capsule layer (Si) to make these predictions.

Where, k represent a class in the ith hierarchical level. More

specifically, for each secondary capsule in layer (Si), the

output vector vi
k represents the instantiation parameters of the

capsule corresponding to class k. These parameters encode

various attributes and properties related to the presence and

characteristics of the class within the given input data. The

prediction layer (Yi) processes these vector outputs to generate

the classification predictions. By having separate prediction

layers (Yi) for each secondary capsule layer (Si), our model

outputs the class predictions at each level of the hierarchy. This

1Hereinafter, we abuse the notion i ∈ {1, 2, 3, · · · , N} to represent all the
N levels since it will not cause any confusion.

hierarchical prediction scheme allows the model to capture

the intricate relationships between the classes in a hierarchical

manner, providing more nuanced and accurate predictions.

The overall loss function LT for our proposed model is a

weighted summation of the hierarchical level-wise loss Li,k,

which is formulated as

LT =
N∑

i=1

Ci∑

k=1

λi Li,k, (1)

where λi is the hierarchical level weight for level i. In more

detail, the hierarchical level-wise loss Li,k is a modified hinge

loss [13] with the form

Li,k = Ti,k max
(
0,m+ − ∥∥vi

k

∥∥)2

+ ω (1− Ti,k)max
(
0,

∥∥vi
k

∥∥−m−
)2

,
(2)

where Ti,k is 1 if the class label is present; otherwise it will

be 0, and m+, m− and ω are hyperparameters. By utilizing

this loss formulation, our model learns to enforce a margin

between relevant and non-relevant classes at each hierarchical

level, facilitating the accurate classification of instances within

the hierarchical structure.

III. RESULTS AND EXPERIMENTS

In our experiments, we evaluate our BUH-CapsNet model

by making use of six different image datasets: EMNIST

[19], Fashion-MNIST [20], CIFAR-10 [21], CIFAR-100 [21],

Caltech Birds-200-2011 [22], and Stanford Cars [23]. These

datasets offer a diverse range of image classification chal-

lenges, allowing us to evaluate the robustness and generaliz-

ability of BUH-CapsNet across different domains. To provide

a comprehensive comparison, we benchmark BUH-CapsNet

against two well-established baseline models: the flat classifier

CapsNet proposed by Sabour et al. [13] and the hierarchical

classifier B-CNN proposed by Zhu et al. [24], which is based

on the CNN architecture. It is worth noting that the baseline

CapsNet in [13] focuses solely on the classes present in

the bottom level of the hierarchy, overlooking the taxonom-

ical relation in the data hierarchy. However, it shares the

same capsule layers and routing algorithm with our proposed

hierarchical model, allowing for a meaningful performance

comparison in terms of accuracy, robustness, and efficiency.

On the other hand, the B-CNN model in [24] is a multi-

label hierarchical classifier that addresses all the class labels

within the datasets. This approach considers the hierarchical

structure and explicitly captures the relationships between

classes at different levels. By comparing our BUH-CapsNet

with the B-CNN model, we aim to assess the effectiveness of

our proposed method in improving hierarchical classification

performance compared to a CNN-based hierarchical approach.

A. Experimental Setup Details

For all the experiments, we implement our BUH-CapsNet

model on TensorFlow using the Adam optimizer with Tensor-

Flow’s default settings. In order to train our model, we use an

exponential decay learning rate function with an initial value
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of 0.001, and a decay rate of 0.95 is carried out after 10
training epochs. This decay schedule helps in fine-tuning the

model over time, allowing it to converge to a better solution.

As mentioned earlier, our BUH-CapsNet model has a

feature extraction block and a primary capsule layer (P )
for extracting local features and constructing inputs for the

secondary capsule layers. For all the implementations of

BUH-CapsNet, the feature extraction block consists of four

sub-blocks comprised of two convolution layers where each

followed by a batch normalization layer, and finally one max

pooling layer. All the convolutional layers in the feature

extraction block use 3 × 3 filters with zero padding and

rectified linear unit (ReLu) activations function. We gradually

increase the number of filters in the convolutional layers from

32 filters for the two convolutional layers in the first sub-

block to 512 in the following sub-blocks, i.e. 64, 128, 256
and 512. Likewise, for all the max pooling layers in the

feature extraction block, we use a 2 × 2 pooling window

with a stride of 2, resulting in downsampling by a factor of

2 in each pooling step. For modesty, we use 8-dimensional

primary capsules (P ) and 16-dimensional secondary capsules

(Si) in the BUH-CapsNet architecture for all the scenarios.

Further, for training our BUH-CapsNet model we set the

hyperparameter m+, m− and ω to 0.9, 0.1 and 0.5 in Eq. (2)

for all the experiments. To achieve a balanced learning process

across different levels of the hierarchical label tree, we follow

the approach presented in [25] and set the hierarchical level

weights λi in Equation (1). These weights are adjusted after

each training epoch, considering the level-wise hierarchical

accuracy. This adjustment ensures that the model maintains

a suitable balance between the different levels, promoting

effective learning and classification performance.

B. Datasets

In order to train and test our BUH-CapsNet model for hier-

archical multi-label classification problems, we have manually

assigned additional coarse and medium classes to the afore-

mentioned datasets to make a tree-like hierarchical structure.

In this tree structure, coarse classes are a superclass of all the

corresponding medium-level classes, and both of these labels

are a superclass for the fine labels. Therefore, each image will

have multiple class labels that follow a hierarchical tree, where

the number of class labels gradually increases from coarse to

fine levels. Table I provides an overview of the datasets used

in our experiments, along with the details of their hierarchical

levels, the number of training samples, and the number of

testing samples.

The EMNIST [19] dataset contains 28 × 28 grey-scale

handwritten images of letters and numbers, which belongs

to 47 fine classes. We assign two additional coarse labels,

i.e. digit and letter classes, as mentioned in [25] to make a

hierarchical structure. This hierarchical structure enables us

to capture the hierarchy between digits and letters within the

dataset. The Fashion-MNIST [20] dataset also contains 28×28
grey-scale fashion images for 10 classes. Following the steps

in [26], we create a three-level hierarchy for the dataset. We

Dataset
Hierarchical

levels
Training
samples

Testing
samples

EMNIST
2

(Coarse and Fine)
112,800 18,800

FMNIST
3

(Coarse, Medium and Fine)
60,000 10,000

CIFAR-10
3

(Coarse, Medium and Fine)
50,000 10,000

CIFAR-100
3

(Coarse, Medium and Fine)
50,000 10,000

CU Bird
3

(Coarse, Medium and Fine)
5,944 2,897

Stanford Cars
3

(Coarse, Medium and Fine)
8,144 4,021

TABLE I: Description of datasets used in the experiments.

Each dataset is divided into hierarchical levels. Each sample

in the dataset is annotated with a label at each level.

assign coarse, medium, and fine labels to create a hierarchical

structure that reflects the taxonomy of fashion items.

For the CIFAR-10 and CIFAR-100 datasets [21], as well

as the Caltech Birds-200-2011 [22] and Stanford Cars [23]

datasets, we follow the hierarchical label structures proposed

in prior works [24], [27]. These datasets are transformed into

three-level hierarchical structures, allowing us to model the

relationships between classes at different levels within the

hierarchical label tree. This hierarchical structure allows us to

model the relationships between classes at different levels in

the hierarchical label tree. By incorporating these hierarchical

label structures into the datasets, we aim to evaluate the

effectiveness of BUH-CapsNet in capturing and leveraging the

hierarchical relationships between classes for improved multi-

label image classification performance.

C. Results

Now we draw our attention to the results yielded by our

BUH-CapsNet, the CapsNet as initially proposed in [13] and

the B-CCN approach presented in [24] when implementing the

aforementioned datasets. In Figure 2, we present the accuracy

plots for the fine level classification of all the datasets, show-

casing the performance of different classifiers as a function of

training epoch. We focus on the fine level since it represents

the most challenging classification task within the hierarchy,

requiring the identification of more complex features and

encompassing the highest number of class labels. It is evident

from the plots that our proposed BUH-CapsNet consistently

outperforms the alternative classifiers in terms of accuracy,

demonstrating its superior capability in handling hierarchical

multi-label classification tasks. Moreover, the BUH-CapsNet

model exhibits faster convergence, reaching higher accuracy

levels within fewer training epochs compared to the baseline

models.

To provide a comprehensive assessment of the classifiers’

performance, we utilize additional metrics beyond the tradi-

tional precision, recall, and F1-score, which may overlook

the hierarchical relationships between the classes. Instead, we

adopt hierarchical metrics to evaluate the models, considering
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(a) EMNIST (b) Fashion MNIST (c) CIFAR-10

(d) CIFAR-100 (e) Caltech Birds (f) Stanford Cars

Fig. 2: Fine-level accuracy on the test dataset as a function of training epoch for all the models considered. Each plot represents

a different dataset.

the hierarchical precision, hierarchical recall, hierarchical F1-

score [28], consistency [29], and exact match score [29].

Fig. 3 presents the overall performance of the classifiers on

all the datasets, providing insights into their effectiveness in

capturing and utilizing the hierarchical relationships within

the data. By leveraging the hierarchical metrics, we obtain a

more comprehensive evaluation of the models, accounting for

the hierarchical nature of the classification task. The results

depicted in Fig. 3 further reinforce the superiority of our

BUH-CapsNet model, showcasing its consistently superior

performance across all the hierarchical metrics. This reinforces

the notion that our proposed model not only surpasses the al-

ternative classifiers in terms of accuracy but also demonstrates

its effectiveness in capturing the hierarchical relationships

between classes, resulting in improved hierarchical classifi-

cation performance. This improvement is particularly evident

in datasets with more complex features, such as CIFAR-100,

Caltech Birds-200-2011, and Stanford Cars. Furthermore, our

network consistently achieves higher hierarchical consistency,

which is reflected in the hierarchical exact match metric.

This outcome is expected since BUH-CapsNet first classifies

the fine classes and then utilizes the obtained information

to classify the parent classes (coarse and medium classes),

thereby enforcing hierarchical consistency. This characteristic

is evident in the results obtained across all the datasets, further

reinforcing the efficacy of BUH-CapsNet in capturing and

leveraging the hierarchical relationships within the data.

It is also worth mentioning that, compared to baseline

CapsNet [13], our proposed BUH-CapsNet achieved a much

higher classification accuracy, as presented in Fig. 2 and

Fig. 3. The superior performance of BUH-CapsNet validates

the effectiveness of our hierarchical approach in capturing and

leveraging the hierarchical relationships between classes. In

Figure 3, we also present additional performance metrics for

the baseline CapsNet [13], focusing solely on the fine level of

the dataset since it is a flat classifier and does not consider the

hierarchical structure. However, our proposed BUH-CapsNet

takes full advantage of the hierarchical relationships, resulting

in improved performance across all levels of the hierarchy.

Furthermore, we provide insights into the model complexity

and efficiency by comparing the number of trainable param-

eters for different models in Table II. Our BUH-CapsNet

exhibits a significant reduction in the number of trainable

parameters compared to the baseline CapsNet [13]. This reduc-

tion is primarily attributed to the differences in the architecture

and design choices between the two models. The baseline

CapsNet utilizes convolutional layers to form the primary cap-

sules, which leads to a larger number of trainable parameters.

In contrast, our BUH-CapsNet leverages a dedicated feature

extractor to form the primary capsules, resulting in a reduced

parameter count. Furthermore, the baseline CapsNet employs

a decoder network to reconstruct the input image, which adds

additional trainable parameters to the model. In contrast, our

BUH-CapsNet achieves performance improvements without

the need for a decoder network, eliminating the associated

trainable parameters. The reduction in the number of trainable
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Fig. 3: Hierarchical performance of all the classifiers on the test datasets. Each section in the figure represents a dataset.

parameters offers several advantages. Also, it contributes to

faster execution during training and inference, as the model

has fewer parameters to update and compute. This can result

in improved efficiency and reduced computational costs.

Furthermore, we provide insights into the model complexity

and efficiency by comparing the number of trainable param-

eters for different models in Table II. Our BUH-CapsNet

exhibits a significant reduction in the number of trainable

parameters compared to the baseline CapsNet [13]. This reduc-

tion is primarily attributed to the differences in the architecture

and design choices between the two models. The baseline

CapsNet utilizes convolutional layers to form the primary cap-

sules, which leads to a larger number of trainable parameters.

In contrast, our BUH-CapsNet leverages a dedicated feature

extractor to form the primary capsules, resulting in a reduced

parameter count. Furthermore, the baseline CapsNet employs

a decoder network to reconstruct the input image, which adds

additional trainable parameters to the model. In contrast, our

BUH-CapsNet achieves performance improvements without

the need for a decoder network, eliminating the associated

trainable parameters. The reduction in the number of trainable

parameters offers several advantages. Also, it contributes to

faster execution during training and inference, as the model

has fewer parameters to update and compute. This can result

in improved efficiency and reduced computational costs.

In our comparative analysis, we observed that BUH-

CapsNet, in comparison to the B-CNN approach [24], exhibits

slightly higher trainable parameters when implemented on the

EMNIST, Caltech Birds-200-2011 and Stanford Cars datasets.

This difference in parameter count is primarily attributed to the

design of the feature extractor in BUH-CapsNet. However, de-

spite having a slightly higher parameter count, BUH-CapsNet

consistently outperforms the CNN approach, as depicted in

Fig. 2 and Fig. 3. BUH-CapsNet demonstrates superior perfor-

mance compared to the alternative models in multiple aspects.

Particularly, when applied to datasets with a limited number

Dataset
Trainable Parameters (in Millions)

CapsNet [13] B-CNN [24] BUH-CapsNet

EMNIST 13.97 0.87 5.10
FMNIST 8.22 9.41 4.79

CIFAR-10 17.39 12.38 5.04
CIFAR-100 44.66 12.48 8.52

CU Bird 105.72 31.52 38.43
Stanford Cars 104.08 31.50 36.43

TABLE II: Total number of trainable parameters for the

classification models on all the datasets.

of training samples, such as Caltech Birds-200-2011 and

Stanford Cars, BUH-CapsNet showcases significantly higher

model performance. This improvement in performance can be

attributed to the hierarchical nature of BUH-CapsNet, which

leverages the hierarchical relationships between classes to

enhance classification accuracy.

IV. CONCLUSION

In this work, we proposed a hierarchical capsule network

employing a bottom-up approach for image classification. The

network uses multiple secondary capsule layers to predict

hierarchical class labels following a hierarchical label tree.

One key aspect of our approach is the utilization of the bottom-

up strategy, which facilitates the propagation of information

between the secondary capsule layers. This bottom-up infor-

mation flow is aligned with the inherent hierarchy present in

the data, enabling the network to capture and leverage the

hierarchical relationships between classes. By leveraging the

data hierarchy, our model achieves improved consistency and

maintains a balanced learning process across different levels

of the hierarchical label tree. Through extensive experiments

conducted on six widely available and diverse datasets, we

demonstrated the superior performance of our BUH-CapsNet

model compared to alternative approaches. In particular, when
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compared to the baseline capsule network, our proposed

model exhibited significantly better classification performance

while achieving faster convergence rates. These findings high-

light the effectiveness and efficiency of our BUH-CapsNet

in hierarchical image classification tasks. By combining the

power of capsule networks, the utilization of hierarchical label

structures, and the bottom-up strategy, our proposed approach

contributes to the advancement of hierarchical multi-label

classification methods. The promising results obtained from

our experiments validate the potential of BUH-CapsNet as a

robust and efficient model for addressing complex hierarchical

classification problems in various domains.
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