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Abstract—Disseminating prior knowledge about a pattern
recognition task in Deep Neural Networks (DNNs) is desirable,
to enable them to learn some complex patterns or represen-
tations, that are otherwise difficult to learn via usual data-
driven training. Several methods have been proposed for that
purpose, but creating an end-to-end trainable DNN model,
while keeping it informed with prior knowledge, remains
a challenging task. In this paper, we propose a method to
disseminate prior knowledge in DNN models. Specifically, we
created a novel MAsk-based pRior Knowledge diSsemina-
tion mechanism (MARKS-mech), that transfers logical prior
knowledge in DNN models via input data transformation. We
utilize a recently constructed Twitter-based dataset to perform
our experiments, which is specifically designed to test the
logical prior knowledge dissemination ability of methods like
ours. We find that our method provides superior knowledge
dissemination performance compared to the baselines.

1. Introduction

Deep Neural Networks (DNNs) exhibit remarkable per-
formance on pattern recognition tasks, mainly due to their
ability to learn hierarchical feature representations in un-
structured data [8]. Generally, DNNs learn these representa-
tions through purely data-driven approaches in which learn-
ing is performed automatically through the input training
data [17], without any other external supervision.

Previous works have also shown that purely data-driven
training, is not only insufficient for learning some complex
and desirable representations, but may also lead to learning
spurious representations [21], [11]. Moreover, representa-
tions learned from purely data-driven learning are highly
complex and humanly uninterpretable, due to which, no
meaningful relationship in terms of how? and why? can be
established between the input and DNN output. Thus, DNNs
are essentially treated as Black-box models [28].

For example, on the sentence-level sentiment classifi-
cation task, it is challenging for simple DNN models like
Convolutional Neural Networks (CNNs) [23] and Recurrent
Neural Networks (RNNs) [13], [3] to capture complex-
linguistic patterns called Contrastive Discourse Relations
(CDRs) like “a-but-b” in input sentences, via purely data-

driven training [14], [16]. A sentence contains the “a-but-
b” CDR, if it has an “a-but-b” syntactic structure and the
conjuncts - “a” and “b” - contain contrastive sentiment-
polarities. In such case, the sentence-sentiment is determined
as per the “b” conjunct, and utilizing the opposing sentiment
information in “a” conjunct will lead to incorrect sentence
sentiment prediction [18], [20], [30], [32].

To counter the drawbacks of purely data-driven train-
ing, a group of algorithms and methods called Informed
Machine Learning (IML) [4], [29] have been proposed,
that incorporate some external supervision during the DNN
training. This external supervision is generally the prior
knowledge [17] about the task, which consists of some
complex desirable patterns required to be learned, and are
difficult for the model to learn via purely data-driven train-
ing. These methods usually model this knowledge in a
symbolic form and disseminate it in the DNN, to influence
its decision to be consistent with the symbolic knowledge.

In this paper, we propose an IML method called
MAsk-based pRior Knowledge diSsemination mechanism
(MARKS-mech), that captures logical prior knowledge like
the “a-but-b” CDR [20] on input sequence, and dissemi-
nates the information about dominant conjunct in the DNN
model (called CDR dissemination task). While providing
predictions, our method employs Feature Manipulation to
pass only the features consistent with prior knowledge to
the DNN model. Our method is agnostic to the choice of
DNN; does not require any complicated ad-hoc changes to
the DNN construction pipeline which consists of: i)training
data preparation, ii)defining hypothesis, and iii)optimization;
and is jointly optimized with the DNN to create an end-to-
end trainable model. The key contributions of this work are
summarized as follows:

1) We introduce an IML method called MARKS-mech,
that helps a DNN model to effectively recognize
complex logical structures in input data, and incor-
porate them while providing prediction on a pattern
recognition task.

2) We conduct a thorough analysis of our method
on a Twitter-based dataset, which is specifically
designed to test the CDR dissemination ability of
IML methods. Our analysis includes: -
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a) Testing multiple configurations of our
method with multiple DNN models, to pro-
vide a thorough comparison against the
baselines and propose the best configuration
for each DNN model.

b) Calculating multiple metrics, which quan-
tify both the sentiment classification and
CDR dissemination performances of our
method.

2. Related Work

2.1. Informed Machine Learning

IML consists of methods or algorithms proposed to
combine prior knowledge [17] about the pattern recognition
task with a machine learning model [4], [29]. The combina-
tion process usually involves transforming either one, or a
combination of multiple steps in the data-driven construction
pipeline of machine learning models. This pipeline generally
involves the following steps: i) training data preparation, ii)
defining the hypothesis (architecture), or iii) defining the
learning algorithm (training objective or the loss function).
Note that more well-known and similar fields like “Neural-
Symbolic AI” [7], [2], [31] can be classified as the sub-field
of IML [4].

2.2. Implicit IML methods

While not originally proposed as an IML method, some
works show that certain existing DNN models can im-
plicitly capture linguistic structures like “a-but-b”, without
any explicit modifications to their construction pipeline. For
example, Krishna et al. [16] claimed that, creating Contextu-
alized Word Embeddings from input sequence can inherently
capture the dominant-conjunct information, when fine-tuned
with the DNN model on downstream sentiment analysis
task. They proposed to create these embeddings using a large
pre-trained language model called ELMo [24]. We instead
use implicit learning to learn a rule-mask by a sequence
model which represents the applicable structure and utilize
it to transfer information about dominant conjunct on input
features via Feature Manipulation.

2.3. Explicit IML Methods

These methods incorporate prior knowledge explicitly
by encoding information into the trainable weights of a
neural network. This is done by modifying either its in-
put training data, architecture, or its objective function.
Hu et al. [14] proposed Iterative Knowledge Distillation
where CDRs modelled as first-order logic rules are incor-
porated with DNNs via a combination of Knowledge Dis-
tillation [12] and Posterior Regularization [6]. The authors
proposed an upgraded version of this method called Mutual
Distillation [15], where some learnable parameters ϕ are in-
troduced with logic rules when constructing the constrained

posterior [6], which are learned from the input data. Instead
of formulating constraints as regularization terms, Li and
Srikumar [19] build Constrained Neural Layers, where log-
ical constraints govern the forward computation operations
in each neuron. In contrast to these methods, our approach
does not encode the CDR information into the trainable
parameters of the model, but instead uses Feature Ma-
nipulation to represent CDR information on input features
and pass it to the DNN model while providing predictions.
Thus, our method can incorporate such structures without
any such complicated ad-hoc changes to either input data,
architectures, or training procedures.

3. Methodology

3.1. Contrastive Discourse Relations for Sentiment
Classification

Previous works [14], [16] have shown that Contrastive
Discourse Relations like “a-but-b” are hard to capture by
general DNNs like CNNs [23] and RNNs [3] for sentence-
level sentiment classification. Sentences containing a CDR
have a syntactic structure like a-keyword-b where two con-
juncts - “a” and “b” - are connected through a discourse
marker (keyword) and have contrastive sentiment polari-
ties [25]. These relations can be further classified into
(i) CDRFol, where the dominant clause is following (b
conjunct), or (ii) CDRPrev, where the dominant clause is
preceding (a conjunct). In Table 1, we provide a list of CDRs
used in this study.

Given an input sentence, our task is to identify if it
contains a CDR, pass the information about the dominant
conjunct to the DNN model, and influence the model deci-
sion to be based on the dominant conjunct. Whereas, if the
sentence just contains a CDR-syntactic structure (conjuncts
do not contain contrastive sentiment senses), we pass the
entire sentence to the DNN model to prevent any loss of
sentiment-sensitive information. This is called CDR dissem-
ination task.

For example, given a sentence “The movie is good but
the casting was terrible” containing the “a-but-b” CDR (it
contains the “a-but-b” syntactic structure and “a” & “b” con-
juncts contain contrastive sentiments), we pass only the “b”
conjunct information to the DNN model to predict sentence
sentiment. This is because the entire sentence sentiment is
consistent with the “b” conjunct, and utilizing the opposing
sentiment information in “a” conjunct will lead to incorrect
sentence sentiment prediction [18], [20], [30], [32]. For
a sentence like “John is good at math but he is best in
Physics”, we want the DNN to base its decision on the entire
sentence as it contains the “a-but-b” syntactic structure, but
“a” & “b” conjuncts do not contain contrastive polarities of
sentiment. Hence, removing the “a” part will result in the
loss of sentiment-sensitive information. For simple sentences
like “I like this movie”, we again pass the entire sequence
information to the DNN model.

We achieve the task of CDR dissemination in DNNs by
dividing it into the following sub-tasks:
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TABLE 1: List of Contrastive Discourse Relations (CDRs) used in our analysis.

CDR Keyword Dominant conjunct Sentence
“a-but-b” “but” “b” (CDRFol) structure [20] The movie is good but the casting is terrible
“a-yet-b” “yet” “b” (CDRFol) structure [20] Even though we can’t travel yet we can enjoy each other and what we have

“a-though-b” “though” “a” (CDRPrev) structure [20] You are having an amazing time though we are having this awful pandemic
“a-while-b” “while” “a” (CDRPrev) structure [1] Stupid people are not social distancing while there’s a global pandemic

1) Recognize the CDR in the input sentence
2) Encode the information about dominant-conjunct

on the input sentence
3) Pass the information to the DNN model

Our method contains individual components, each of which
achieves one of these sub-tasks and shares the output with
others to disseminate the information about the dominant
conjunct in the DNN model.

3.2. Recognizing the CDR in Input Sentence via
Rule-mask

Given a sentence s as an ordered sequence of n tokens
[t1, t2, · · · , tn], we want to determine whether it contains
any of the relations listed in Table 1. This is done by
recognizing whether it contains a syntactic structure like “a-
keyword-b”, and whether the “a” & “b” conjuncts contain
contrastive sentiment polarities. The keyword denotes the
discourse marker corresponding to a CDR listed in Table 1.

To achieve this objective, we feed the sentence s to a
Seq2seq DNN model called Rule-mask Block (shown in
Figure 1a) which outputs a rule-mask value (m). This rule-
mask m is an ordered sequence of n binary values, where
each value corresponds to a token in the sentence s. The
following denotes the rule-mask output for each case of
input sentence

1) For a sentence [“The”, “movie”, “is”, “good”,
“but”, “casting”, “is”, “bad”], which contains a
CDRFol relation (“a-but-b”), the rule-mask output
is [0, 0, 0, 0, 0, 1, 1, 1] in which the values are 0
for tokens corresponding to “a” and keyword parts
in sentence s. In this case, the rule-mask is defined
to have a syntactic structure of 0− 0− 1 denoting
that the tokens corresponding “a” and “keyword”
parts will not be considered (or masked out) when
the DNN performs sentiment classification on s.

2) For a sentence [“You”, “are”, “having”, “an”,
“amazing”, “time”, “though”, “we”, “are”, “hav-
ing”, “this”, “awful”, “pandemic] which contains
a CDRPrev relation (“a-though-b”), the rule-mask
output is [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0] in which
the values are 0 for tokens corresponding to “b”
and keyword parts in sentence s. In this case, the
rule-mask is defined to have a syntactic structure
of 1−0−0 denoting that the tokens corresponding
“b” and “keyword” parts will be masked out when
the DNN performs sentiment classification on s.

3) For sentences with no relation like [“Titanic”, “is”,
“good”, “movie”] or just contains the CDR syn-
tactic structure [“John”, “is”, “good”, “at”, “math”,

“but”, “he”, “is”, “best”, “in”, “Physics”], the rule-
mask output is [1, 1, 1, 1] for the former case,
and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] for the latter
case. The rule-mask in this case is defined to have
a syntactic structure of 1− 1− 1 denoting that the
entire sentence s will be considered for sentiment
classification.

The Rule-mask Block contains a many-to-many output
sequence layer followed by a sigmoid-activation layer as
shown in Figure 1a. The sequence layer consists of a
recurrence-based DNN model like GRU [3] or LSTM [13].
Essentially, we treat the task of rule-mask prediction as
a token-level binary classification problem (akin to NER
tagging), where we predict either 0 or 1 tags correspond-
ing to every token in the input sentence. Note that we
use predictive modeling to construct the rule mask instead
of manual construction otherwise, it will not be possible
to determine the contrastive sentiment senses between the
conjuncts “a” and “b”. Moreover, we utilize probabilistic
values [pθ1(y1|t1), pθ1(y2|t2), · · · , pθ1(yn|tn)] of the rule-
mask vector instead of absolute values to preserve more
information.

In Table 6, we show how accurately this mechanism can
predict the rule-mask when using different many-to-many
sequence layers like GRU [3] and LSTM [13]. We compare
the rule-mask accuracy of our method with another IML
method in the literature called Rule-Mask Mechanism [9]
which also uses feature manipulation to transfer prior knowl-
edge via a rule-mask vector. Although it performs well,
it often confuses sentences containing a CDR and just
CDR-syntactic structures. This leads to inaccurate rule-mask
outputs on sentences containing just the CDR-syntactic
structures, where the sentiment-sensitive information in “a”
conjunct is masked out. Our method contains a Rule-mask
Correction module as described in Section 3.3 which pro-
vides more accurate rule-masks demonstrated by rule-mask
accuracy results in Table 6. In Section 5.3, we provide a
more detailed description of the rule-mask accuracy and
analyze its results.

3.3. Rule-mask Correction

The Rule-mask block as shown in Figure 1a can ef-
fectively determine the CDR-syntactic structure in the in-
put sentence, however, it often outputs incorrect rule-mask
vectors for sentences that just contain the CDR-syntactic
structure. For example, for the sentence “The movie is good
but the casting was terrible” containing the “a-but-b” CDR,
it predicts a rule-mask of syntactic structure 0 − 0 − 1.
Whereas, for the sentence “John is good at math but he is
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best in Physics”, it also often predicts the rule-mask of the
structure 0−0−1. To correct the rule-mask values, especially
for CDR-syntactic structure sentences, we incorporate the
Rule-mask Correction module in our method which consists
of the Contrast Block and the Rule-mask Update Block.

3.3.1. Contrast Block. We create a component called Con-
trast Block to specifically determine the contrastive senti-
ment senses between the conjuncts, as shown in Figure 1b.
It consists of a many-to-one output sequence layer followed
by a sigmoid activation layer. It takes the input sentence
s of a structure a-keyword-b and provides a prediction
c = pθ2(yc|s), which determines whether the conjuncts
“a” and “b” contain contrastive sentiment polarities. If they
do, it outputs a value of 1, otherwise it outputs 0. For
sentences with no syntactic structure, it outputs 0, since the
applicability of CDR requires the presence of a correspond-
ing syntactic structure. Figure 2 denotes the outputs of the
contrast block for example cases.

3.3.2. Rule-mask Update Block. After calculating the
contrast output c (which determines contrastive sentiments
between conjuncts), we utilize it to correct the rule-mask
output by re-calculating it as mCDR as shown in Eq. (1).

mCDR = [11, 12, · · · , 1n]− pθ2(yc|s)+
pθ2(yc|s)[pθ1(y1|t1), pθ1(y2|t2), · · · , pθ1(yn|tn)]

(1)

where [pθ1(y1|t1), pθ1(y2|t2), · · · , pθ1(yn|tn)] represents
the rule-mask prediction from the Rule-mask Block and
pθ2(yc|s) represents the contrast prediction from the Con-
trast Block. Based on the contrast prediction value, the
outputs of Eq. (1) are either:

1) A sequence of ones containing n values if
pθ2(yc|s) = 0: Denotes that the sentence does
not contain conjuncts with contrastive sentiment
polarities and the rule-mask should be modified as
a “list of ones containing n values” (i.e. of syntactic
structure 1− 1− 1). This means that DNN should
output its decision based on all the tokens of the
sentence since it contains just the CDR-syntactic
structure, not the actual CDR. Thus, using just a
part of the sentence can lead to a loss of sentiment-
sensitive information.

2) The rule-mask prediction if pθ2(yc|s) = 1: De-
notes that the sentence contains conjuncts with
contrastive sentiment polarities and the CDR corre-
sponding to the CDR-structure is applicable. Hence,
the rule-mask should remain as it was predicted
from the Rule-mask Block, and the DNN should
output its decision based on the dominant conjunct
of the sentence.

In Figure 2, we show the outputs of Rule-mask Update for
possible cases of sentences.

3.4. Encoding and Disseminating CDR information

To encode and disseminate information about the dom-
inant conjunct in the DNN model, we compute a product
between s and mCDR to calculate a post-processed instance
sc as shown in Eq. (2), which only contains tokens corre-
sponding to the dominant-conjunct. We term it as Feature
Manipulation.

sc = mCDR ∗ s (2)

After computing sc, we pass it to the downstream DNN
model, which now determines the sentiment on the basis
of the dominant-conjunct as pθ3(ys|sc). We optimize the
outputs of all the components as well as the sentiment
prediction of DNN jointly to create an end-to-end trainable
model as shown in Eq. (3)

min
θ1,θ2,θ3∈Θ

L(ys, pθ3(ys|sc))+

Σn
i=1L(yi, pθ2(yi|ti)) + L(yc, pθ2(yc|s))

(3)

where L is the Binary Cross-Entropy loss function,
(ys, pθ3(ys|sc)) are the sentiment value and sentiment pre-
diction pairs, (yc, pθ2(yc|s)) are the contrast value and
contrast prediction pairs, and (yi, pθ2(yi|ti)) are the mask
value and mask prediction pairs for ith a token in the
input sequence s = [t1, t2, · · · , tn]. In Figure 2, we provide
a diagrammatic representation of our method and show
how each component interacts with others to achieve CDR
dissemination in the DNN model.

Our method is completely agnostic to the choice of DNN
model, does not require any ad-hoc changes to the DNN
construction process, and is jointly optimized with the DNN
to create an end-to-end trainable model. While it can also
be coupled with the popular transformer-based DNNs like
BERT [5] and GPT-2 [26], the focus of our paper is limited
to helping simple DNN models based on CNNs [23] and
RNNs [3], [13] to capture the complex discourse information
as they are unable to do so themselves [14], [16].

4. Experimental Setup

This section describes our experimental setting for test-
ing the CDR dissemination performance of our method.1

4.1. Dataset

In order to carry out a comprehensive and impartial
analysis, we utilize a new dataset sourced from Twitter
called Covid19-twitter [9]. This dataset comprises sentences
as tweets related to the COVID-19 topic and was specifically
designed to test the CDR dissemination performance of IML
methods. In Figure 3, we provide a brief description of this
dataset.

We use a random division to split this dataset into train,
validation, and test sets each containing 80%, 10%, and 10%

1. The source code of this work is available at: https://github.com/
shashgpt/CDR-Mechanism.
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This movie is good but casting terrible

Input Sentence

is

H1 H2 H3 H4 H5 H6 H8H7

Sequence Layer
(many-to-one)

H0

S1

Dense Layer
(Sigmoid Activation) 

1Contrast
Prediction
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Figure 1: Diagrams of the Rule-mask and the Contrast blocks used in our method.

Contrast
Block

Sentence with a CDR

1
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casting is terrible
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(Eq. (2))

0-0-1

Rule-mask Correction

casting is terrible

DNN
Model

0

Contrast
Block

Sentence with just
CDR structure

0

Case ii)

John is good at maths 
but 

he is best in Physics

Rule-Mask
Block

0-0-1

Rule-mask Update
(Eq. (1))

Feature Manipulation
(Eq. (2))

John is good at maths 
but 

he is best in Physics

DNN
Model

1

Contrast
Block

Simple sentence

0

Case iii)

Titanic is my favorite
movie

Rule-Mask
Block

1-1-1

Rule-mask Update
(Eq. (1))

Feature Manipulation
(Eq. (2))

1-1-1

Rule-mask Correction

Titanic is my favorite
movie

DNN
Model

1

Rule-mask Correction

0-0-1

MARKS-mech

Figure 2: MARKS-mech architecture and its outputs for input sentences containing: i) a CDR, case ii) just the CDR syntactic
structure (conjuncts do not contain contrastive sentiment senses), iii) no structure. Note that in the case of a CDRPrev

relation, the rule-mask output will be 1− 0− 0.

proportion of tweets respectively. Each set also contains a
similar symmetric distribution of tweets as present in the
entire dataset (shown in Figure 3a). We show all our results
(in Tables 2, 3, and 6) on the Rule subset of the test set,
which contains an equal proportion of Rule-contrast (sen-
tences containing CDRs) and Rule-no-contrast (sentences
containing just CDR syntactic structures) tweets. This is
done to demonstrate the CDR dissemination performance
of the classifiers.

4.2. Sentiment Classifiers

To conduct an exhaustive empirical analysis, we train a
total of 44 sentiment classifiers divided into the following
categories as listed below: -

1) Flat classifiers: We use recurrent-based DNN mod-
els like GRU [3] and LSTM [13] to construct the
Flat classifiers as follows: GRU, BiGRU, LSTM,
and BiLSTM. Each model contains one hidden
layer with 128 units and provides a measure of a
general DNN model performance on the sentiment
classification task for our dataset.

2) Baseline classifiers: We then create Baseline clas-
sifiers by coupling an IML method like Rule-Mask
Mechanism [9] with each of the DNN model.
We train a total of 16 classifiers by creating
multiple configurations as follows {GRU, BiGRU,
LSTM, and BiLSTM} Rule-masks × {GRU, Bi-
GRU, LSTM, and BiLSTM} DNN models. This
is done to provide the best configuration of the
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The movie is good but casting is bad

John is good at maths but he is best in Physics

Titanic is a good movie

(a) Distribution of Covid19-twitter dataset.
Rules Positive Positive Negative Negative

Contrast No-contrast Contrast No-contrast
a− but − b 9135 7091 17665 9002
a− yet − b 490 441 1072 761

a− though − b 962 443 625 268
a− while − b 1509 814 1949 1057

(b) Individual CDR distributions in the dataset.

Figure 3: Description of Covid-19 tweets dataset. The 1st
layer distribution denotes the tweets containing negative and
positive sentiment labels. In the 2nd layer, Rule distribution
denotes tweets having either one of the CDR-syntactic struc-
tures as shown in Table 1, and No-rule distribution contains
tweets with no syntactic structures. In the last layer, Contrast
distribution in Rule subsets denotes tweets containing a
CDR, and No-contrast distribution denotes tweets without a
CDR.

RMM method for each DNN model. Krishna et
al. [16] hypothesized that constructing contextual
word embeddings [24] from input sentences and
feeding them to the DNN model can inherently
capture complex linguistic structures like CDRs.
Hence, we also use Large Language Models like
BERTweet [22] and GPT-2 [26] to construct con-
textual word embeddings that are given input to the
DNN models.

3) MARKS-mech classifiers: Similar to the RMM
method, we create a total of 16 classifiers for our
MARKS-mech to provide an exhaustive empirical
analysis. We create multiple configurations like
GRU-mask+GRU-contrast, where we use a GRU
sequence layer in Rule-mask Blocks and Contrast
Blocks. Again, this is done to propose the best
configuration of our method for each DNN model.

TABLE 2: Sentiment Accuracy results for the sentiment
classifiers on the Rule subset of dataset under-study.

Rule subset
Sentiment Classifiers DNN models

GRU BiGRU LSTM BiLSTM
Flat classifiers 0.95 0.955 0.925 0.93

Baseline classifiers
BERTweet [22] 0.963 0.959 0.959 0.962

GPT-2 [26] 0.965 0.965 0.969 0.966
RMM classifiers [9]

GRU-mask 0.944 0.946 0.94 0.937
BiGRU-mask 0.93 0.938 0.94 0.941
LSTM-mask 0.945 0.948 0.936 0.94

BiLSTM-mask 0.95 0.935 0.939 0.941
MARKS-mech classifiers
GRU-mask+GRU-contrast 0.946 0.944 0.943 0.945

BiGRU-mask+BiGRU-contrast 0.95 0.951 0.941 0.944
LSTM-mask+LSTM-contrast 0.948 0.945 0.943 0.939

BiLSTM-mask+BiLSTM-contrast 0.946 0.947 0.937 0.94

4.3. Metrics

We use the Sentiment Accuracy to quantify the senti-
ment classification performance of classifiers and a recently
developed metric called Post-hoc Explanation based Rule
ConsistencY (PERCY) score [10] to assess their CDR
dissemination performance. Often, Sentiment Accuracy is
used in the literature to assess both performances, but Gupta
et al. [10] show that it is misleading to assess the CDR
dissemination performance. For example, a classifier may
correctly predict the sentiment of the sentence “the casting
was not bad but the movie was awful” as negative but may
base its decision on individual negative words like “not” in
the “a” conjunct instead of using the “b” conjunct. Thus,
we use the PERCY score to specifically quantify the CDR
dissemination performance of sentiment classifiers. PERCY
uses feature attribution-based explanation frameworks like
LIME [27] to calculate the contribution of each conjunct to
the classifier prediction. The conjunct with the highest con-
tribution score determines the basis of classifier prediction.

5. Performance Analysis

5.1. Sentiment Classification Performance

In Table 2, we show the sentiment accuracy results
and find that our method performs better compared to
flat classifiers and provides comparable performance to the
baseline classifiers. We further note that the bidirectional
configurations of our method provide the best performance
among all other configurations, which means that bidirec-
tional models can learn the CDRs better than uni-directional
ones. In particular, the performance improvement over flat
classifiers confirms our hypothesis that CDRs like “a-but-b”
need to be learned by a model in order to provide better
empirical performance.

5.2. CDR Dissemination Performance

In Table 3, we show the PERCY score results
and find that our method outperforms all the classi-
fiers. This implies that classifiers constructed from our
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TABLE 3: PERCY scores for the sentiment classifiers Rule
subset of dataset under-study.

Rule subset
Sentiment Classifiers DNN models

GRU BiGRU LSTM BiLSTM
Flat classifiers 0.114 0.104 0.093 0.092

Baseline classifiers
BERTweet [22] 0.108 0.109 0.110 0.109

GPT-2 [26] 0.098 0.094 0.095 0.097
RMM classifiers [9]

GRU-mask 0.099 0.091 0.095 0.088
BiGRU-mask 0.113 0.103 0.114 0.102
LSTM-mask 0.101 0.097 0.099 0.091

BiLSTM-mask 0.115 0.106 0.111 0.109
MARKS-mech classifiers
GRU-mask+GRU-contrast 0.093 0.109 0.118 0.093

BiGRU-mask+BiGRU-contrast 0.114 0.127 0.129 0.13
LSTM-mask+LSTM-contrast 0.115 0.113 0.121 0.116

BiLSTM-mask+BiLSTM-contrast 0.13 0.128 0.118 0.124

TABLE 4: Anecdotal example to demonstrate the CDR dis-
semination performance of our method. In each conjunct, we
highlight tokens based on their contribution to the sentiment
prediction.

Classifier Sentence
BERTweet GRU me and my summer camp job that wouldve

started this week but got cancelled in march

BiLSTM-mask+BiLSTM-contrast GRU me and my summer camp job that wouldve

started this week but got cancelled in march

TABLE 5: Anecdotal example to demonstrate that Sentiment
Accuracy and PERCY scores are not correlated. In each
conjunct, we highlight tokens based on their contribution to
the sentiment prediction.

Sentences Ground truth sentiment
absolutely right sad sad loss but the gentleman Negative

died of pneumonia another statistic for the covid regime its a joke

method can better identify the CDR on input sentences
and pass the dominant-conjunct information to the DNN
model. Further, we observe that the bidirectional con-
figurations - BiGRU-mask+BiGRU-contrast and BiLSTM-
mask+BiLSTM-contrast - of our method perform the best
which implies that bidirectional models can learn the CDRs
better than the unidirectional ones.

In Table 4, we visualize the feature attribution scores of
an example predicted by the BERTweet GRU classifier and
the BiLSTM-mask+BiLSTM-contrast GRU classifier. As we
observe, our method better enables the GRU model to weigh
the decision on “b” conjunct.

Note that the classifiers providing a high sentiment
accuracy may not provide high PERCY score values as both
metrics assess different tasks - Sentiment Accuracy assesses
the performance on sentiment classification task while the
PERCY scores provide an assessment of the knowledge
dissemination task i.e. how effectively the classifiers are
able to identify CDRs and base their decisions correctly
about sentence sentiment as per the dominant conjunct. We
show an anecdotal example in Table 5 where the classifier
can provide a correct sentiment decision but based on the
wrong conjunct. We observe that it is using some individual
negative words in the “a” conjunct to base its decision.

TABLE 6: Rule-mask m accuracy results for different con-
figurations of the RMM method and our method.

Rule subset
Sentiment Classifiers DNN models

GRU BiGRU LSTM BiLSTM
RMM classifiers [9]

GRU-mask 0.353 0.347 0.331 0.319
BiGRU-mask 0.479 0.511 0.487 0.476
LSTM-mask 0.361 0.345 0.351 0.352

BiLSTM-mask 0.5 0.524 0.539 0.529
MARKS-mech classifiers
GRU-mask+GRU-contrast 0.617 0.612 0.616 0.627

BiGRU-mask+BiGRU-contrast 0.721 0.719 0.704 0.722
LSTM-mask+LSTM-contrast 0.603 0.592 0.609 0.586

BiLSTM-mask+BiLSTM-contrast 0.699 0.68 0.692 0.686

5.3. Rule-mask prediction performance

Our method predicts a rule-mask output, which is ap-
plied to the input sentence to extract features consistent
with the logic rule. For a sentence s = [t1, t2, · · · , tn]
as an ordered sequence of n tokens, given the actual
rule-mask value y = [y1, y2, · · · , yn] as an ordered se-
quence of n values, and its prediction value as p(y|s) =
[pθ1(y1|t1), pθ1(y2|t2), · · · , pθ1(yn|tn)], we calculate the
rule-mask prediction accuracy as:

o(s) =

{
1, if (p(y|s) = y)

0, otherwise
(4)

For a collection of sentences S, rule-mask accuracy is cal-
culated as follows:

o(S) =
1

|S|
∑
i=1

o(si) (5)

In Table 6, we show the rule-mask accuracy of the RMM
method and our MARKS-mech method. We find that our
method significantly outperforms the RMM method, which
implies that the RMM method confuses between sentences
containing a CDR and just a CDR-syntactic structure, hence
outputs the incorrect rule-masks. The rule-mask correction
module in our method works as intended and thus, our
method can better recognize the CDRs in input sentences
and can correctly pass the dominant conjunct to the DNN.

6. Conclusion

We presented a novel IML method called MARKS-mech
to disseminate logical prior knowledge in DNN models. Our
method employs Feature Manipulation which transforms in-
put data to represent the prior knowledge on its features. We
test our method on the sentence-level sentiment classifica-
tion task and disseminate complex linguistic relations called
Contrastive Discourse Relations (CDRs) in DNNs. For our
experiments, we utilize a recently constructed Twitter-based
dataset specifically designed to test the CDR dissemination
performance of IML methods. We conduct a thorough anal-
ysis of our method by creating its multiple configurations
and calculating multiple metrics, to assess both its sentiment
classification and CDR dissemination performances. Our
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results demonstrate that it provides superior CDR dissem-
ination performance compared to existing methods in the
literature. As our method is simple, intuitive, and model-
agnostic, it can be easily utilized by ML practitioners to
create IML models.

7. Limitations and Future work

Currently, our method is only applicable to logical rules,
which are based on structures like a-but-b, and does not gen-
eralize to other syntactic structures or linguistic phenomena.
In the future, we plan to upgrade it to accommodate more
complex representations of linguistic knowledge.
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