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We investigate and analyse the data quality of nucleotide sequence databases with the objective of auto-
matic detection of data anomalies and suspicious records. Specifically, we demonstrate that the pub-
lished literature associated with each data record can be used to automatically evaluate its quality, by
cross-checking the consistency of the key content of the database record with the referenced publica-
tions. Focusing on GenBank, we describe a set of quality indicators based on the relevance paradigm of
information retrieval (IR). Then, we use these quality indicators to train an anomaly detection algorithm
to classify records as ‘‘confident” or ‘‘suspicious”.
Our experiments on the PubMed Central collection show assessing the coherence between the litera-

ture and database records, through our algorithms, is an effective mechanism for assisting curators to
perform data cleansing. Although fewer than 0.25% of the records in our data set are known to be faulty,
we would expect that there are many more in GenBank that have not yet been identified. By automated
comparison with literature they can be identified with a precision of up to 10% and a recall of up to 30%,
while strongly outperforming several baselines. While these results leave substantial room for improve-
ment, they reflect both the very imbalanced nature of the data, and the limited explicitly labelled data
that is available. Overall, the obtained results show promise for the development of a new kind of
approach to detecting low-quality and suspicious sequence records based on literature analysis and con-
sistency. From a practical point of view, this will greatly help curators in identifying inconsistent records
in large-scale sequence databases by highlighting records that are likely to be inconsistent with the
literature.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction

Bioinformatics sequence databases such as GenBank or UniProt
contain large numbers of nucleic acid sequences and protein
sequences. In 2017, GenBank alone contained over 228 billion
nucleotide bases in more than 199 million sequences – a number
that is growing at an exponential rate, doubling every 18 months.1

In commercial organizations, the primary reason for creating and
maintaining such databases is their importance in the process of
drug discovery, while in research they are used to understand the
biological basis of disease. Thus, a high level of data quality is crucial.

However, since these databases are fed by direct submissions
from individual laboratories and by bulk submissions from large-
scale sequencing centers, they suffer from a range of data quality
issues [1] including errors, redundancies, ambiguities, incomplete-
ness, and as we will show, discrepancies such as inconsistency
with the literature. Most of these records are linked to research
articles in which the sequence was reported, but the need to man-
ually create the records on such a large scale means that errors
creep in and, given the volume, human curation alone is not suffi-
cient for detection of these errors.

In this work, we seek to investigate and analyse the data quality
of sequence databases from the perspective of a curator, who must
detect anomalous and suspicious records. In contrast to previous
research, which has concerned detection of duplicate records [2–
4] and erroneous annotations [5–7], we emphasize detection of
low-quality records that we define as being inconsistent with the
published literature. Specifically, we propose that the literature
that is linked to records in their ‘‘reference” fields be automatically
used as background knowledge to check their quality. We explore a
combination of information retrieval (IR) and machine learning
techniques to identify records that are anomalous and thus merit
analysis by a curator.
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Fig. 1. Overlap similarity between a record definition field and different sections of
its associated document.
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To provide insight into the data quality of the nucleotide
records cited by articles available in PubMed Central2 (PMC) from
a literature consistency point of view, we analyzed these records
as illustrated in Fig. 1. This figure shows the term overlap similarity3

between the record definition and different sections of its associated
article(s) (representing the title, abstract, body, and the full text).
There are three notable trends here: first, term overlap increases
from title to body and full text since the size grows accordingly; sec-
ond, there is a high term overlap of roughly 80% between the record
description field and the literature body section; and third, when
considering the overlap similarity between the description field of
the records and the full text of their associated articles, for a small
number of records in which the overlap similarity is below the value
of the minimum whisker (0.4), there is low overlap or no overlap at
all, thus statistically suggesting a data quality problem.

As an example, the record with accession number KM4033694

doesn’t share any terms with the article PMC44656675 that is sup-
posed to report on that record. Compared to the median value, which
is roughly 80% similarity between a record description field and the
body section of the article (see Fig. 1), this association can be consid-
ered an outlier from a statistical perspective, and can be argued to be
weak. While this observation is purely statistical, it may be an indi-
cator of a low confidence in that record. Although this record is not
necessary faulty, its characteristics in relation to the overall statisti-
cal distribution clearly suggest that it should be flagged as ‘‘suspi-
cious”, and should be sent to a curator for further investigation.

Usually, a suspicious record is reported manually, by a curator
whose the job consists mainly to check the database records, the
record’s original submitter, or a third person who may use the
database and notice the inconsistency of that record. To illustrate
the difficulty of the task of identifying failing records, we analysed
the distribution of record ages, for records which have been
removed. This analysis showed that removed records have an aver-
age age of about 1 month at their removal time. This leads us to
make two hypotheses: either (i) it takes about one month for a
problematic record to be detected, or (ii) curators focus only on
new records, while neglecting older ones. Either way, it is clear that
there is a time window of only 1 month during which curators act.
Hence, if a suspicious record is not identified in this time frame, it
has a low probability of being spotted. These observations show
the difficulty of the curator’s job, and the need for the development
of automatic methods to assist them.

With the aim of assisting curators, and while focusing on Gen-
Bank, we present in this paper a method for detection of suspicious
records based on their associated articles and also on the collection
of articles as a whole. To the best of our knowledge, this work is the
first to use the literature for data quality assessment of bioinfor-
matics sequence databases. The contributions of this paper are as
follows:

� We demonstrate that the research literature can be automati-
cally used for assessing the quality of a record.

� We propose a list of quality indicators that correlate with the
quality of a record. The quality indicators are then used to train
a learning anomaly detection algorithm.

� Our experiments on the full PubMed Central collection show
that, although less than 0.25% of the records in our data set
are faulty, by automated comparison with literature they can
2 http://www.ncbi.nlm.nih.gov/pmc/.
3 We use the overlap similarity to emphasize the number of terms of a record

definit ion that are in its associated artic le . Here , OverlapðX1;X2Þ ¼
X1 \ X2j j=minð X1j j; X2j jÞ.
4 http://www.ncbi.nlm.nih.gov/nuccore/KM403369.
5 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465667/.
be identified with a precision of up to 10% and a recall of up
to 30%, while greatly outperforming the best baseline.

2. Related work

There is a substantial body of research related to data quality in
bioinformatics databases. Previous research has focused mainly on
duplicate record detection and erroneous annotations, as reviewed
below.

2.1. Duplicate records

Koh et al. [4] use association rule mining to check for duplicate
records with per-field exact, edit distance, or BLAST sequence [8]
alignment matching. Drawbacks of this method, and its poor per-
formance, have been shown by Chen et al. [2,3]. Similarly, Apiletti
et al. [9] proposed extraction of association rules among attribute
values to find causality relationships among them. By analysing
the support and confidence of each rule, the method can show
the presence of erroneous data. Other approaches also use approx-
imate string matching to compute metadata similarity [10–12].
However, as they focus only on metadata, the underlying interpre-
tation is that duplicates are assumed to have high metadata simi-
larity, or that their sequences are identical.

Other approaches consider duplicates at the sequence level;
they examine sequence similarity and use a similarity threshold
to identify duplicates. For example, Holm and Sander [13] identi-
fied pairs of records with over 90% mutual sequence identity.
Heuristics have been used in some of these methods to skip unnec-
essary pairwise comparisons, thus improving the efficiency. Li and
Godzik [14] proposed CD-HIT, a fast sequence clustering method
that uses heuristics to estimate the anticipated sequence identity
and will skip the sequence alignment if the pair is expected to have
low identity. Recently, Zorita et al. [15] proposed Star Code to
detect duplicate sequences, which uses the edit distance as a
threshold and will skip pairs exceeding the threshold. Such meth-
ods are valuable for this task, but do not address the problem of
consistency or anomaly.

2.2. Erroneous annotations

Sequence databases exist as a resource for biomedicine, but the
utility of the sequence of an organism depends on the quality of its
annotations [12]. The annotations indicate the locations of genes
and the coding regions in a sequence, and indicate what those
genes do. That is, annotations serve as a reading guide to a
sequence, which makes the scientific community highly reliant
on this information. Although the research and development of
algorithms for identifying coding sequences (CDSs) is still an active
area in bioinformatics research, genome annotation has evolved
greatly during past few years [16–19]. However, the functional
annotation of CDSs is particularly difficult to automate [20].
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Current state-of-the-art functional annotation methods integrate
multiple types of evidences [21–23], but unfortunately the quality
of functional annotations remains generally poor [24–26] and is
highly dependent on resource-intensive manual curation [27,28].

Previous research work on function annotation identified
potential problems with large-scale annotation efforts [5,29,30],
and misannotation is a growing concern among the general
research community, as misannotations can have a several impacts
in diverse biological areas [31–33]. Even in very small bacterial
genomes, many misannotations may arise [34]. As for high-
throughput functional annotations, errors may occur due to a
variety of factors [35,36], but the most common errors are over-
annotations, in which a gene is given a specific but incorrect func-
tion [26,34,37]. Once made, functional annotation errors can be
difficult to correct in large scale sequence databases and as func-
tional annotations are often inferred from sequence similarity to
other annotated sequences, errors may ‘‘propagate” to newly
sequenced genomes through ‘‘(mis) annotation transfer” [38,39,7].

Overall, existing data quality analysis methods for sequence
databases focus only on the internal characteristics of records.
Our work demonstrates that the literature associated to records
is a valuable external source of information for assessing the qual-
ity of sequence database records.

3. Background and problem definition

In this section, we first provide an overview of GenBank, the
most commonly used sequence database, and we describe the
structure of a sequence record in GenBank. Next, we discuss sev-
eral kinds of data issues in bioinformatics sequence databases,
and finally, we define in detail the problem we study.

3.1. GenBank overview

In this work, we mainly focus on GenBank as it is the most
important and most influential sequence archive repository for
research in almost all biological fields, whose data are accessed
and cited by millions of researchers around the world. GenBank
is produced and maintained by the National Center for Biotechnol-
ogy Information (NCBI), and is considered to be an archive rather
than a database, because multiple versions of a given record may
be maintained for historical purposes. The sequence submission
to GenBank can occur through: (i) direct submissions from scien-
tists using BankIt,6 which is a Web-based form, or the stand-alone
submission program, Sequin,7 or (ii) bulk submissions most often
done by large-scale sequencing centers, which include Expressed
Sequence Tag (EST), Sequence-tagged site (STS), Genome Survey
Sequence (GSS), and High-Throughput Genome Sequence (HTGS).
Upon receipt of a sequence submission, an accession number is
assigned to the sequence, and then, it is released to the public data-
base, where the entry is retrievable using Entrez.8

Due to the fact that records can be submitted by multiple
research actors without any particular data quality control, errors
may occur. Errors can seriously hamper the efficacy of analysis,
data mining, and machine learning algorithms. Hence, a faulty
record is usually reported manually, by a database curator, the
record’s original submitter, or a third person who may use the
database and notice the inconsistency of that record. However,
updates and revisions of a GenBank sequence can also be made
by the submitters at any time.
6 https://www.ncbi.nlm.nih.gov/WebSub/?tool=GenBank.
7 https://www.ncbi.nlm.nih.gov/Sequin/.
8 The Entrez Global Query Cross-Database Search System is a federated search

engine, or web portal that allows users to search many discrete health sciences
databases at the National Center for Biotechnology Information (NCBI) website.
In addition to GenBank which can be considered as an unre-
viewed repository and thus may contain low quality sequences,
NCBI also maintains other curated sequence databases such as
the Reference Sequence (RefSeq). RefSeq provides a comprehen-
sive, integrated, non-redundant, well-annotated set of sequences,
including genomic DNA, transcripts, and proteins. RefSeq genomes
are copies of selected assembled genomes available in GenBank,
which have been generated by several processes including manual
curation, which is known to be a tedious and painful task.

3.2. GenBank sequence record structure

The format of a sequence record can be regarded as having
three parts: the header, which contains the information that
applies to the whole record; the features, which are the annota-
tions on the sequence; and the sequence itself. The header section
is composed of several fields:

� LOCUS field: contains a number of different data elements,
including locus name, sequence length, molecule type, and
modification date. The locus name is designed to help group
entries with similar sequences: the first three characters
usually designate the organism; the fourth and fifth charac-
ters can be used to show other group designations, such as
gene product; for segmented entries the last character is
one of a series of sequential integers;

� DEFINITION field: a brief description of sequence or
sequence’s function;

� ACCESSION field: a unique identifier for the record;
� SOURCE field: gives information about the sequence’s

organism;
� REFERENCE field: lists a set of publications by the authors of

the sequence that discuss the data reported in the record.

It is clear that the header part represents in itself a rich source
of information.

Based on the fact that articles discuss the data reported in the
records, and that there is high term overlap between the record
definition and its associated articles as reported in Fig. 1, we will
primarily focus on the record definitions to assess the quality of
the records from a literature consistency point of view.

3.3. Classification of biological data quality issues

Given a sequence record with its multiple data elements, the
complex sequence submission process and the data integration
pipeline defined to exchange data with other sequence databases,
data quality issues may have physical or conceptual sources.
Hence, Koh et al. [40,1] proposed to classify biological data issues
according to their presence in data items at mainly four levels of
detail – individual attributes, individual records, individual data-
bases, and multiple databases, as shown in Fig. 2. Below, we briefly
discuss these data quality issues.

3.3.1. Attribute-level data quality issues
Attribute level data issues are field values with uninformative,

invalid, erroneous or ambiguous content. Koh et al. [1] observed
four main types of attribute level data quality issues – invalid attri-
bute values, ambiguous attribute values, dubious sequences, and
contaminated sequences.

Invalid values: Header data issues result from the use of non-
standard names, free-text entries, and from the diversity of data-
base schema used in different databases. The header information
is usually entered and provided by the person who submits the
original record to the database (such as the description). Hence,
the header information may contain spelling errors or invalid field

https://www.ncbi.nlm.nih.gov/WebSub/?tool=GenBank
https://www.ncbi.nlm.nih.gov/Sequin/


Fig. 2. Classification of biological data issues by Koh et al. [40,1].
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values. Koh et al. [1] identified 569 possible misspelled words
affecting up to 20,505 nucleotide records in Entrez. For example,
‘‘immunoglobulin” is misspelled as ‘‘immunoglobin” in the record
with accession number AB122023.9 Another example is the organ-
ism ‘‘brachydanio rerio” (zebrafish) which is misspelled ‘‘brachi-
danio rerio” as in the record with accession numbers L25057.10

Ambiguity: As there is a lack of standardized naming conven-
tions and controlled vocabulary use, vastly different definitions
may be used in database records to refer to the same sequence.
The naming errors include use of different names for the same
sequence (synonym problem) or the same name for different
sequences (homonym problem) [41]. For example, the scorpion
neurotoxin ‘‘BmK-X” precursor has many possibly synonymous
permutations. It is also known as ‘‘BmKX”, ‘‘BmK10”, ‘‘BmK-
M10”, ‘‘Bmk M10”, ‘‘Neurotoxin M10”, ‘‘Alpha-neurotoxin TX9”,
and ‘‘BmKalphaTx9”.11

Another type of error is the use of abbreviations, which may
result in ambiguities. For example, the abbreviation BMK stands
for ‘‘Big Map Kinase”, ‘‘B-cell/myeloid kinase”, ‘‘bovine midkine”,
as well as for ‘‘Bradykinin-potentiating peptide”. GK is the abbrevi-
ation for both ‘‘Glycerol Kinase” and ‘‘Geko” gene of Drosophila
melanogaster (Fruit fly).

In free-text fields, a wrong piece of information can be entered
as field value. For example, the description of the sequence with
the accession number AP01161512 is ‘‘Arthrospira platensis NIES-
39, ⁄⁄⁄ SEQUENCING IN PROGRESS ⁄⁄⁄, 19 ordered pieces”.
9 http://www.ncbi.nlm.nih.gov/nuccore/AB122023.
10 http://www.ncbi.nlm.nih.gov/nuccore/L25057.
11 http://www.uniprot.org/uniprot/O61705.
12 http://www.ncbi.nlm.nih.gov/nuccore/AP011615.
Dubious sequences: The sequence is represented as a string of
letters denoting the 20 amino acids in the case of a protein
sequence and the 4 nucleotides in the case of nucleotide
sequence. Each base or residue is thus limited to it alphabetical
representation and ‘‘X” is used to denote an unknown residue,
and ‘‘N” to denote an unknown base. A base or residue which
doesn’t correspond to its set of special letters is invalid and can
be caused by an erroneous data entry. For example, the sequence
with the accession number AC00001613 contains 11% of unknown
bases.

A sequence may also contain invalid symbols for nucleotides or
amino acids, or it can be shorter than its logical size. The length of
protein sequences usually ranges from 6 to a few thousands resi-
dues. However, Koh et al. [1] found 3327 undersized protein
sequences which are shorter than six residues in the public data-
bases using Entrez (as of Sep 2004), among which 1887 contain
only one residue.

Contaminated sequences: There are cases where a DNA
sequence contains vectors used for cloning; vector-contaminated
sequences may be submitted to the database. Vectors are agents
that carry DNA fragments into a host cell. The vector sequences
probe and bind the DNA fragments at the 5’ and 3’ sites. The
DNA fragment is then isolated from its vectors by cutting at the
restriction enzyme sites. The existence of vector-contaminated
sequences was first reported in 1992; 0.23% of 20,000 eukaryotic
entries were found to be contaminated [42]. In 1999, [43] reported
that up to 0.36% or 3029 of the sequences in GenBank contain con-
tamination of the cloning vectors.
13 https://www.ncbi.nlm.nih.gov/nuccore/AC000016.1?fmt_mask=65536.
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3.3.2. Record-level data quality issues
Conflicting information exists in the single record among two or

more attributes – Koh et al. [40] call them the record-level data
quality issues. Two types of record-level data quality issue are
found in sequence records: sequence structure violations and
inconsistent content with related references.

Sequence structure violations: It is known that a gene struc-
ture has a set of logical constraints, and any infringement of these
constraints constitutes a possible feature issue. Such logical con-
straints include that introns and exons must be non-overlapping
except in cases of alternative splicing. Koh et al. [1] observed that
12 out of 42,359 nucleotide sequences had overlapping intron/
exon regions. For example, Syn7 gene of putative polyketide syn-
thase in NCBI TPA record BN00050714 has overlapping intron 5
and exon 6. The rpb7 + RNA polymerase II subunit in GenBank record
AF05591615 has overlapping exon 1 and exon 2.

Inconsistent with the literature: Usually, each record is asso-
ciated with a list of publications by the authors of the sequence
that discuss the data reported in the record. However, it is possible
that a record is inconsistent with the information provided in the
literature in general, and in the articles related to that record in
particular.

For example, in the study of Dengue virus, Koh et al. [40]
observed mis-annotations in Swiss-Prot record P2791516 and PIR
record GNWVD3 [44]. The NS1/NS2A and NS4A/NS4B junctions
given in these Dengue type 3 complete RNA sequences did not match
the regions given in the reference of these records [45]. While man-
ual checking of such inconsistencies by cross-referencing the data-
base content with their corresponding literature is tedious,
computational detection of discrepancies of the sequence annota-
tions with its references is also non-trivial and may require complex
text-mining solutions.
3.3.3. Single database level data quality issues
Annotation errors: The features of a sequence are often directly

submitted by the author of the sequence. The features can be derived
experimentally or inferred. Computationally inferred features are
usually based on sequence homologues and are derived using anno-
tation tools. Hence,multiple database records of the same nucleotide
or protein sequences may contain inconsistent or conflicting feature
annotations. Koh et al. [1] refer to such data issues as cross-
annotation errors. They identify possible causes of cross-annotation
errors as: (i) different expert interpretations, (ii) mis-annotation of
sequence function, and (iii) inference of features or annotation trans-
fer based on best matches of low sequence similarity.

Annotation errors commonly result from mis-annotation or
from data entry errors. In GenBank entries that contain splice site
features in Arabidopsis thaliana, some 15% were found to have
incorrect annotations [46]. Another study [39] found that 24% of
the Chlamydia trachomatis sequences contained erroneous func-
tional assignments. Another form of annotation error is caused
by inaccurate inference of features from homologues.

Sequence duplication: Sequence duplication is also observed in
sequence databases [2]. There are three types of redundancy: (1) the
same sequence and annotations can be found inmultiple records, (2)
the same sequence but different annotations are found in multiple
records, and (3) partially overlapping annotations of the same
sequence exist in multiple databases which have different data
views. For example, the records AAG3964217 and AAG3964318

contain identical sequences with exactly the same annotations.
14 https://www.ncbi.nlm.nih.gov/nuccore/BN000507.
15 https://www.ncbi.nlm.nih.gov/nuccore/AF055916.
16 http://www.uniprot.org/uniprot/P27915.
17 https://www.ncbi.nlm.nih.gov/protein/AAG39642.
18 https://www.ncbi.nlm.nih.gov/protein/AAG39643.
3.3.4. Multiple database level data quality issues
Due to the existence of heterogeneous database schema, mas-

sive data transformation is carried out in the databases during
large-scale uploads or during data exchange. The transformation
of data records from one schema to another may cause data inte-
gration problems, where data may be mapped to the wrong fields.

3.3.5. Summary
In this work, we are interested in the detection of records that

contain errors and inconsistencies through the analysis of the
header section, and through a cross validation with the published
literature. Thus, the model we built will not be able to detect errors
related to the features or the sequence itself such as contamina-
tions, undersized sequences, cross annotation errors, etc. Rather,
we focus exclusively on detecting inconsistencies with the pub-
lished literature as discussed in Section 3.3.2. While this represents
only a portion of the potential errors, the method will be shown to
add value to the broader task.

3.4. Research problem statement

We propose to follow an IR approach, where a database record
is regarded as a query, and its associated articles as the relevant
documents. We use the term ‘‘query” to refer to a record, and the
term ‘‘relevant documents” to refer to the set of its associated arti-
cles in its reference field.

We define the problem we study in this paper as follows. Given:

� a collection of documents which represents the domain liter-
ature knowledge D ¼ hd1; d2; . . . ; dni

� a set of annotated queries Q ¼ hðq1; y1Þ; ðq2; y2Þ; . . . ; ðqm; ymÞi,
where ym 2 fconfident; suspiciousg

� the set of relevant documents that meet the information
need of each query DR ¼ hDR1 ;DR2 ; . . . ;DRm i

we aim to retrieve and identify queries that are not consistent
with their relevant documents or with the collection as whole,
indicating that their description in the database record is incom-
patible with the information given in the corresponding publica-
tion, and which can therefore be flagged as ‘‘suspicious”. The
resulting tool is expected to be used at curation time, and should
send such ‘‘suspicious” records to curators for review.
4. Quality factors

In this section, we introduce the features that we will consider
as record quality indicators. We describe two kinds of features:
record-based features, which mainly focus on the characteristics
of the records; and IR-based features, which mainly focus on query
quality predictors. Our approach here is to define a wide variety of
features and then identify which of them are most valuable in
classification.

4.1. Record-based features (9 features)

The characteristics of a record are strong indicators of its qual-
ity. We define several features that consider a record as a whole.
Hence, we mainly rely on basic and intuitive quality factors, such
as the record popularity, as well as building on recommendations
given by the International Nucleotide Sequence Database Collabo-
ration (INSDC) for the record structure.

Organism popularity (1 feature): Based on the intuition that
organisms that have rarely been sequenced and deposited in a
sequence database are more likely to have suspicious records, we
consider the popularity of the main organism of a record as a

https://www.ncbi.nlm.nih.gov/nuccore/BN000507
https://www.ncbi.nlm.nih.gov/nuccore/AF055916
http://www.uniprot.org/uniprot/P27915
https://www.ncbi.nlm.nih.gov/protein/AAG39642
https://www.ncbi.nlm.nih.gov/protein/AAG39643
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quality feature. We define the popularity of an organism as the
number of records that relate to that organism divided by the total
number of records.

Record definition structure (3 features): The INSDC suggests
that the record definition should have the following specific for-
mat19: (i) it should start with the common name of the source
organism; (ii) it gives the criteria by which this sequence is distin-
guished from the remainder of the source genome, such as the gene
name and what it codes for, or the protein name and mRNA, or some
description of the sequence’s function (if the sequence is non-
coding); (iii) if the sequence has a coding region, the description
may be followed by a completeness qualifier, such as ‘cds’ (complete
coding sequence). We define boolean attributes to indicate whether
each of these rules is respected in a record or not.

Record popularity (1 feature): a popular sequence record is
more expected to have been checked by other users, and hence
be a confident record. Thus, we include the popularity as a quality
feature and define it simply as the number of citations the record
has.

Coding sequence (3 features): For a sequence with a coding
region, the coding sequence (CDS) field in the features section of
the records is one of the most important fields. Based on the fea-
ture table format designed jointly by GenBank, the EMBL Nucleo-
tide Sequence Data Library, and the DNA Data Bank of Japan,20

the CDS field should specify: (i) the region of nucleotides that corre-
sponds with the sequence of amino acids in a protein (location
including start and stop codons), (ii) the gene name, and (iii) the pro-
duct/protein name. For each CDS field of a record, we check its valid-
ity (i) by ensuring that the CDS region is within the sequence range,
(ii) by ensuring that the gene name is valid and is given into the
annotations of Gene Ontology (GO) [47], and (iii) by ensuring that
the gene exists and is described in the NCBI gene database [48].21

Hence, we define three quality attributes for (i), (ii), and (iii) based
on an aggregation of all CDS fields of each record.

Definition length (1 feature): the length of the definition may
indicate the degree of precision given to describe a record. Hence,
we include the length as a quality factor, and we define it as the
total number of terms.
4.2. IR-based features (203 features)

To find indicators or features to represent the quality of each
query (record), we draw on the large body of previous work on
query quality prediction [49–51]. While some of these features
such as Overlap Similarity are stand-alone, other features such as
Average Term Frequency are derived from term level statistics
[51]. These include predicting the quality of queries using either
pre-retrieval indicators like Query Scope, that is, they are calcu-
lated for a query as a whole, or post-retrieval indicators like Query
Clarity, that is, they involve performing an initial retrieval and
hence are more expensive to compute. We describe the set of
query quality predictors we used. As stated previously, to compute
these IR-based features, we consider the record definition field as
the query.

Query clarity (QC) (18 features): Developed by [49], this post-
retrieval factor is the Kullback-Leibler divergence of the query
model from the collection model. QC is computed as:

QC ¼
X
w2q

PðwjqÞ � log2
PðwjqÞ
PCðwÞ ð1Þ
19 ftp://ftp.ncbi.nih.gov/GenBank/gbrel.txt.
20 http://www.insdc.org/documents/feature-table.
21 https://www.ncbi.nlm.nih.gov/gene.
where PðwjqÞ is the probability of the occurrence of the word w in
the query model, and PCðwÞ is the probability of the occurrence of
w in the collection. The query model is estimated from the top-k
ranked documents retrieved after an initial run of the original query.
We computed different QC scores based on different configuration
options k 2 f1;5;10;20;50;100g �w 2 ftitle; abstract;bodyg.

Simplified clarity score (SCS) (3 features): To avoid the expen-
sive computation of query clarity, [52] proposed simplified clarity
score as a comparable pre-retrieval performance factor. It is calcu-
lated as:

SCS ¼
X
w2q

PmlðwjqÞ � log2
PmlðwjqÞ
PCðwÞ ð2Þ

where PmlðwjqÞ is the probability of the occurrence of the word w in
the query. We also computed SCS based on different configuration
options of word 2 ftitle; abstract;bodyg.

Relevant-documents clarity score (RDCS) (3 features): We
also propose to compute the clarity score based on a query model
estimated from the relevant documents themselves, while consid-
ering separately three different fields of the relevant documents
ftitle; abstract;bodyg.

IDF-based features (24 features):We calculate the Inverse Doc-
ument Frequency (IDF) of each query term w as:

IDFw ¼ log 1þ N
Nw

� �
ð3Þ

where Nw is the document frequency of w while considering sepa-
rately three different fields ftitle; abstract;bodyg, and N is the num-
ber of documents in the collection. For each query we calculate the
sum, standard deviation, minimum, maximum, arithmetic mean,
geometric mean, harmonic mean, and coefficient of variation of
the IDFs of constituent terms.

TF-based features (24 features): We calculate the Term Fre-
quency (TF) of each query term w in a relevant document d as:

TFw ¼ logð1þ f w;dÞ ð4Þ
where f w;d is the number of time w occurs in d while considering
separately three different fields ftitle; abstract;bodyg. For each TF
value of each term, we calculate aggregate values similar to those
for IDF as quality factors.

Similarity of collection– query (SCQ) (24 features): Proposed
by [53], this query quality factor is based on the hypothesis that
queries that have higher similarity to the collection as a whole will
be of higher quality. For each termw in the query, SCQ is computed
as:

SCQw ¼ 1þ lnðnðwÞÞ � ln 1þ N
Nw

� �� �
ð5Þ

where nðwÞ is the frequency of the term w in the collection while
also considering separately three different fields ftitle; abstract;
bodyg. Based on the SCQ values of each term, we also calculated
aggregate values similar to those for IDF.

Inverse collection term frequency features (ICTF) (24 fea-
tures): The inverse collection term frequency of a termw is defined
as:

ICTFw ¼ log 1þ T
nðwÞ

� �
ð6Þ

where nðwÞ is the frequency of the term w in the collection and T is
the number of term occurrences in the collection while considering
separately three different fields ftitle; abstract;bodyg. Using the
ICTF values, we calculate aggregate statistics similar to those for
IDF.

Query scope (QS) (4 features): Query scope [52] is a measure of
the size of the retrieved document set relative to the size of the

http://www.insdc.org/documents/feature-table
https://www.ncbi.nlm.nih.gov/gene
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collection. We can expect that high values of query scope are pre-
dictive of poor-quality queries as they retrieve far too many docu-
ments. QS is computed as:

QS ¼ log 1þ N
nq

� �
ð7Þ

where nq is the number of documents that match the query terms
while considering separately four different fields ftitle;
abstract;body; alldocumentg.

Similarity of relevant documents– query features (48 fea-
tures): Based on the fact that a high similarity value between a
query and its relevant documents reflects a high query quality,
we include several information-theoretic, statistical, and practical
similaritymeasures as quality indicators. These similaritymeasures
are: matching, overlap, Jaccard, Dice, cosine, mutual information
(MI), and Okapi BM25. We also used various IR similarity ranking
functions including: the sum of TFIDF scores (SumTFIDF), the
Lucene vector-space model score (LuceneVSM),22 the BM25 score
[54], language model scores based on (i) the Jelinek-Mercer smooth-
ing (LMJelinekMercer) [55] and on (ii) a Bayesian smoothing using
Dirichlet priors (LMDirichlet) [55], and an information-based score
(IBSimilarity) [56]. These similarities are computedwhile considering
separately four different fields ftitle; abstract;body; alldocumentg.

Retrieval performance score (RPS) (28 features): Based on the
relevance paradigm of IR, we assume that a good quality record
should rank its corresponding articles highly. Thus, we use the
reciprocal rank evaluation measure to define the RPS as follows:

RR ¼ 1
ranki

ð8Þ

where ranki is the rank of the first relevant document in the
retrieved list of documents that matches the query qi returned by
the system. We have also considered query expansion using the fol-
lowing terms related to the organism: (i) scientific name, (ii) com-
mon names, (iii) synonyms, (iv) abbreviations, (v) misnomers, and
(vi) misspellings. These terms are extracted from the NCBI Taxon-
omy,23 which is a curated classification and nomenclature for all of
the organisms in the public sequence databases. The basic intuition
is that: if (i), (ii), (iii), and (iv) improve the retrieval performance,
there is a mismatch between the record and its corresponding arti-
cle, and thus, the record may be of low quality. Also, if (v) and (vi)
improve the retrieval performance, the article is clearly reporting
the record using incorrect terms, and thus, the record is probably
of low quality. Here we consider querying separately four different
fields ftitle; abstract;body; alldocumentg.

Citation of the main organism in the article (3 features): The
citation of the main organism in the relevant document is an
important quality factor since the article is and supposed to report
the content of the record. Hence, we include this quality factor a
binary feature while considering separately four different fields
ftitle; abstract;bodyg.

In total, we have defined 9 record-based features and 203 IR-
based features, for a total of 212 features that characterize the
quality records.
24 http://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/ The version used was down-
loaded on October 2015.
25 http://lucene.apache.org/.
26
5. Experimental setup

In this section, we describe the dataset we have constructed
from publicly available resources, and then introduce the learning
algorithm we used to classify records as ‘‘confident” or ‘‘suspicious”.
22 https://lucene.apache.org/core/6_1_0/core/org/apache/lucene/search/similari-
ties/TFIDFSimilarity.html.
23 http://www.ncbi.nlm.nih.gov/taxonomy.
5.1. Data description

Now we provide details of the dataset that we evaluate in this
paper.

Articles: We used the PubMed Central Open Access collec-
tion24 (OA), which is a free full-text archive of biomedical and life
sciences journal literature at the U.S. National Institutes of Health’s
National Library of Medicine. The release of PMC OA we used con-
tains roughly 1.13 million articles, which are provided in an XML
format with specific fields corresponding to each section or sub-
section in the article. We used the Lucene IR System25 to index
the collection, with the default settings for stemming and English
stop-word removal. We defined a list of biomedical keywords,
which should not be stemmed or considered as stop-words, such
as the protein names ‘‘THE” and ‘‘Is”. Each section of an article
(title, abstract, body) is indexed separately, so that different sec-
tions can be used and queried separately to compute the quality
features.

Sequences: We work with the GenBank nucleotide database,
but limit the sequence database records we work with to those
that are cited by the PMC OA article collection. Specifically, we
used a regular expression to extract GenBank accession numbers
mentioned in the PMC OA articles, thereby identifying literature
that refers to at least one GenBank identifier. This resulted in a list
of 733,779 putative accession numbers. Of these, 494,142 were
valid GenBank nucleotide records that we were able to download
using the e-utilities API [57].26 Among the valid records, only
162,913 records also cite the corresponding articles (as determined
by matching their titles). This process gave us a list of 162,913 pairs
of record accession numbers and PMC article identifiers, which cite
each other. Note that for the 331,229 records that we have put aside,
each record cites an article; however, we do not have access to all
articles through PMC OA.

Each record in this dataset was labelled as ‘‘alive” or ‘‘dead”, an
attribute that we obtained using the eSummary API [57]. Note that
the records that are reported as ‘‘dead” are explicitly labelled as
such in GenBank. For example, the record with the accession num-
ber DW40727027 is explicitly reported as ‘‘dead” as it is currently
removed from GenBank. However, records that are ‘‘alive”are implic-
itly labelled by not being dead. In the classification task, we consider
dead records to be ‘‘suspicious” and all other records to be ‘‘confident”
in our labelling. We acknowledge that an ‘‘alive” record does not nec-
essarily indicate that it is of good quality. However, we made this
assumption motivated by the fact that, overall, the records are of
good quality, whereas only a small fraction of the data may be faulty.
The set of unidentified faulty records can be regarded as ‘‘zombie”
records. This has been observed and reported in [58], where the
authors carried out a biocuration task. The authors randomly
selected a sample of 100 alive records in the dataset, and a biocura-
tor manually found 5 records to be faulty (‘‘zombie” records).
Although the sample of records was small,28 we believe that the rate
of faulty records in the whole dataset is of the order of roughly 5%.
We rather give this number to support our decision to let this small
fraction of ‘‘zombie” records to be in our dataset, as they would have
an insignificant impact on the learned model.

We provide more detailed statistics on our final dataset in
Table 1. For example, an article cites 0.51 records on average; the
The sequences were downloaded on October 2015.
27 https://www.ncbi.nlm.nih.gov/nucest/DW407270.
28 The biocuration task carried out in [58] was done for a different context in which
analyzing a small sample of records was enough to prove the outcomes claimed in
that paper.

https://lucene.apache.org/core/6_1_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
https://lucene.apache.org/core/6_1_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
http://www.ncbi.nlm.nih.gov/taxonomy
http://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
http://lucene.apache.org/
https://www.ncbi.nlm.nih.gov/nucest/DW407270


Table 1
Dataset statistics.

Articles statistics
Citations of records

# articles Avg Median Max Max entity

1,135,611 0.5114 1 8062 PMC2848993

Sequence statistics
Record citations

# articles Avg Median Max Max entity

494,142 1.1755 1 783 A23187

Records for which the relevant article is in our PMC OA dataset

#records Alive records Dead records

162,913 162,486 427
Organism taxonomy statistics 77,632 genus and 1,118,198 species

Class name Total Avg Max

Scientific names 1,195,830 1 1
Synonyms 165,867 0.1387 55
Misspellings 24,776 0.0207 14

Common names 12,820 0.0107 10
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article PMC284899329 cites 8062 records. A record is cited on aver-
age 1.17 times, while the record A2318730 is the most cited. Among
the 162,913 records for which the relevant articles are in the PMC OA
dataset, 162,486 are alive and only 427 are dead. Hence, our dataset
is skewed toward negative examples (alive records) with only a few
positive examples (dead records).

Organism taxonomy: To gather more information about the
record organisms, such as the list of synonyms, acronyms and com-
mon names, we used the NCBI Taxonomy database. This is a
curated classification of all of the organisms in the public sequence
databases. The NCBI taxonomy contains and describes of roughly
10% of the existing species of life on the planet.
5.2. Anomaly detection algorithm

Given as input a set of quality indicators for each record, our
goal is to combine these inputs to produce a value indicating
whether the record is ‘‘confident” or ‘‘suspicious”. To accomplish
this, we used the Support Vector Machines (SVM) classification
algorithm [59], which is one of the most widely-used and effective
classification algorithm.

Each recordm is represented by its vector of k quality indicators
xm ¼ ½xm1; xm2; . . . ; xmk� and its associated label ym 2 fconfident,
suspiciousg. We used the SVM implementation available in the
LibSVM [60] package. Both Linear and RBF kernels were considered
in our experiments. The regularization parameter C (the trade-off
between training error and margin), the gamma parameter of the
RBF kernel, and the penalty parameter wi that penalizes negative
examples due to the skewed nature of the dataset were selected
from a search within the discrete sets f10�5;10�3; . . ., 1013;1015g;
f10�15;10�13; . . . ;101;103g, and f10;20; . . . ;50;100;200g respec-
tively, using 10-fold cross validation.

Although the differences were not substantial, experiments
with the best RBF kernel parameters performed slightly better than
the best linear kernel parameters for the majority of the validation
experiments. Unless otherwise noted, all presented results were
obtained using an RBF kernel, with C set to 10�3, gamma set to
10�3, and wi set to 100.
29 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848993/.
30 http://www.ncbi.nlm.nih.gov/nuccore/A23187.
6. Experimental evaluation

We now report and discuss the main results of the experimental
evaluation, considering both the effectiveness of the method and
our interpretation of which features are valuable in classification.
6.1. Feature analysis

To explore the relationship between features and the record
quality labels, we undertook a feature analysis task. A general
method for measuring the amount of information that a feature
xk provides w.r.t. predicting a class label y (‘‘confident” or ‘‘suspi-
cious”) is to calculate its mutual information (MI) Iðxk; yÞ or Pear-
son’s chi-squared test v2ðxk; yÞ. In Table 2, we present the list of
ten top-ranked features using these two metrics. The two lists
are roughly similar except for the tenth line, where MI introduces
a record-based feature. These two lists led us to make the following
observations:

1. Features based on the similarity between the relevant docu-
ments and the record are the most informative (8/10 for mutual
information and 9/10 for chi-squared). This confirms that a
good and a confident record is highly discussed in its associated
articles.

2. IR similarity ranking functions are the most informative fea-
tures. They take into account the information carried in both
the query and the documents, in contrast to statistical similarity
measures.

3. For both rankings, the top feature is a language-model similar-
ity score. It computes the similarity between the record defini-
tion and the title of the relevant document, using Bayesian
smoothing with Dirichlet priors. This shows that a confident
record is one in which the description has a high probability
of having been generated from the title of its associated
document.

4. Top features are mainly based on short and medium document
fields (that is, title and abstract). This reflects the fact that con-
fident records can be expected to be referenced and discussed
earlier in the article.

5. Almost all top features are IR-based features. Only one record-
based feature appears in the two rankings (popularity of the
organism in the MI ranking). This confirms our initial assump-
tion that the literature is a strong resource for checking the
quality of a record.

6. Finally, some features that we experimented with were identi-
fied as being entirely uninformative; the mutual information
values obtained were null (0). This includes: the popularity of
the organism, some scores based on the standard deviation,
and some scores based on the coefficient of variation.

6.2. Classification performance

The effectiveness of our method (denoted SVM LBF + RBF, for
SVM with Literature-based Features and Record-based Features),
is summarized in Table 3, broken down by the two classes in the
data. The last column of the table shows the harmonic mean
between the F1-Scores of the two classes. We provide a compar-
ison with two variants of this method and four baseline methods:

� SVM RBF: SVM classifier trained with only record-based
features.

� SVM LBF: SVM classifier trained with only IR-based features.
� Majority class: a naïve approach that simply predicts the

most common class in the data (that is, classify everything
as ‘‘confident”).

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848993/
http://www.ncbi.nlm.nih.gov/nuccore/A23187


Table 3
The results of the classification accuracy.

Algorithm Confident records Suspicious records Harmonic Mean Improvement

Precision Recall F1-Score TN FN Precision Recall F1-Score TP FP of F1-Scores rate (%)

SVM LBF + RBFa 0.998 0.993 0.995 161,380 300 0.103 0.299 0.154 127 1106 0.267 –
SVM RBFb 0.997 0.982 0.997 162,195 412 0.049 0.035 0.041 15 291 0.078 242.31
SVM LBFc 0.998 0.989 0.993 160,746 312 0.062 0.269 0.101 115 1740 0.183 45.90
Majority class 1.000 1.000 1.000 162,486 427 0.000 0.000 0.000 0 0 0.000 þ1
Random classification 1 0.997 0.499 0.666 57,696 217 0.002 0.494 0.005 210 104,790 0.009 2866
Random classification 2 0.997 0.997 0.997 161,987 426 0.002 0.002 0.002 1 499 0.003 8800
RPS-based classification 0.997 0.927 0.960 150,285 378 0.004 0.114 0.007 49 12,201 0.013 1953

a SVM LBF + RBF: using both Record-Based Features and Literature-Based Features.
b SVM RBF: using only record-based features.
c SVM LBF: using only IR-based features.

Table 2
Ranking of the most important features using two different metrics.

Rank Mutal Information Pearson’s chi-squared test

Field Feature Field Feature

1 title LMDirichlet Score title LMDirichlet Score
2 abstract SumTFIDF score abstract SumTFIDF Score
3 abstract LMDirichlet Score abstract RDCS
4 abstract BM25 Score abstract LMDirichlet Score
5 abstract RDCS abstract BM25 Score
6 abstract IBSimilarity Score abstract IBSimilarity Score
7 title SumTFIDF Score title BM25 Score
8 title BM25 Score title IBSimilarity Score
9 title IBSimilarity Score title SumTFIDF Score
10 x Popularity Organism abstract LMJelinekMercer Score

31 http://www.ncbi.nlm.nih.gov/nuccore/FJ824848.
32 A cloning vector is a small piece of DNA, taken from a virus, a plasmid, or the cell
of a higher organism, that can be stably maintained in an organism, and into which a
foreign DNA fragment can be inserted for cloning purposes.
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� Random classification 1: which classifies a record as ‘‘confi-
dent” or ‘‘suspicious” with a 50% probability. The classification
was performed 1000 times independently over the full data-
set; we report average results.

� Random classification 2: classifies a record as ‘‘confident” or
‘‘suspicious” with a 99.73% probability of being classified as
confident. This value reflects the natural distribution of the
source data, since 99.73% of the records are ‘alive’. The clas-
sification was also performed 1000 times independently over
the full dataset; we report average results.

� RPS-based classification: classifies a record as ‘‘confident” or
‘‘suspicious” based on a fixed threshold (0.05) for the RPS value.

Our method (SVM LBF + RBF) shows a statistically significant
improvement over the best baseline (relatively, 45.90% over SVM
LBF). Second, the results confirm again our initial assumption that
the literature is a strong support to assess the quality of records in
sequence databases. Third, by comparing SVM RBF and SVM LBF,
we conclude that the associated literature provides better evalua-
tion of quality than can be obtained by examining only the records.
This has also been shown in the previous section through the fea-
ture analysis. Due to the skewed nature of the dataset, all algo-
rithms tend to classify the records as ‘‘confident”, which results in
high precision and recall values for this class, but these results
are not very informative. It is more meaningful to consider the per-
formance over the class of ‘‘suspicious” records.

The instance-level TP and FP values given in Table 2 for each
method illustrate howmany FP records would need to be reviewed
in order to find the small number of TPs in each case. This allows to
compare the curator task difficulty for each method; the curator
would need to examine everything retrieved (all Positives) and
then make a decision as to whether it was a correct retrieval of a
suspicious record (TP) or a perfectly valid record (FP from the per-
spective of ‘‘suspicious”). The table shows how much work needs to
be done in each scenario, and demonstrates that our method
considerably reduces the curation workload. In particular, to get
reasonable recall with the random approach, the curator needs to
review more than 100,000 records. Indeed, the curator would need
to review 85x as many records with a random approach as com-
pared to our method, for a gain of only 83 TP records (respectively:
1233 vs. 105,000 positive records; 127 vs. 210 true positives iden-
tified). This highlights the substantial amount of effort saved using
the approach we are proposing.

Table 3 shows relatively low values for precision and recall
compared with some other machine learning problems. However,
first, the dataset is highly imbalanced, with far more records
labelled as ‘‘confident” than labelled as ‘‘suspicious”. Second, the
records that are labelled as ‘‘suspicious” have been explicitly
labelled, whereas records that are ‘‘alive” are implicitly labelled
and assumed (perhaps wrongly) to be ‘‘confident”; an alive record
may be a low-quality record that was missed in error. Hence, train-
ing a learning algorithm on unlabelled data leads to poor effective-
ness, particularly when the minority class is the most likely class to
be missed. Probably some of the records which have been classified
as ‘‘suspicious” by our learning algorithm are ‘‘zombie” records;
meaning that they are labelled in the data set as ‘‘confident”, but
are in fact problematic. We discuss below typical examples of
records which have been incorrectly classified by our method
(false positives and false negatives). The profile of each example
is given in Table 4, using the top 7 features obtained in the feature
analysis in Section 6.1.

Example 1 (False Positive). The record with accession number
FJ82484831 has been classified as ‘‘suspicious” by the algorithm, and
presents the typical profile of a suspicious record as given in Table 4.
This record presents the complete sequence of the cloning vector
pDMK3.32 First, the record definition does not give much informa-

http://www.ncbi.nlm.nih.gov/nuccore/FJ824848


Table 4
Example profiles.

Example 1 Example 2 Example 3 Example 4
Accession FJ824848 CP006742 BK008760 DW407270
PMC PMC2675058 PMC3923885 PMC4233938 PMC1621083
Type FP FP FP FN

1 Tit. LMDir. 0.00 0.00 1.4194 18.78
2 Abs. SumTFIDF 0.00 0.00 2.25 27.04
3 Abs. LMDir. 0.00 0.00 3.3450 30.26
4 Abs. BM25 0.00 0.00 2.80 65.00
5 Abs. RDCS 0.00 0.0302 0.034 0.68
6 Pop. Organism 0.00000613 0.00 2.4828 0.00086
7 RPS 0.00 0.0019 0.20 1.00
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tion. Second, this record presents an organism for which there are
relatively few other records. Third, the content of the record is
mentioned neither in the title of the article nor in the abstract of the
article with PMC identifier PMC2675058.33 By examining the
content of the article, we have noted that this cloning vector is
mentioned as pDMK2. This case leads us to make two inferences:
either the title of the record is incorrect, or the article uses an
incorrect term to refer to this cloning vector. Consequently, we
contacted the corresponding author of PMC2675058, Anders Sjöst-
edt, who acknowledged the error by saying: ‘‘For practical purposes
this doesn’t matter since the two vectors are identical with the
exception of two additional restriction sites in pDMK3. We should
have stated pDMK3 in the paper so it can be denoted as a
typographical error.” (personal communication, Anders Sjöstedt).
However, since both pDMK2 and pDMK3 exist, we believe that this
error cannot be considered as typographical error, but rather as a
confusion and inconsistency between that record and its associated
article.

Example 2 (False Positive). The record with accession number
CP00674234 has also been classified as ‘‘suspicious” by the algorithm,
and also presents the typical profile of a suspicious record as given in
Table 4. This record presents the complete genome of the Bacillus
anthracis organism. In fact, according to the article that reports the
content of that record (accession number PMC392388535), this
record is supposed to present the chromosome Cow1. However, this
chromosome is not mentioned in the record. We have contacted the
corresponding author, and he answered as follows: ‘‘After some rea-
soning, we decided to call the isolates cow 1, 2, 3, etc. in the paper to
increase readability. Their names in our strain collection is however
different. As far as I can see CP006742 is the B. anthracis chromo-
some sequence that we submitted, although I haven’t checked every
basepair. . .” (personal communication, Bo Segerman). Hence, we
believe that this little inconsistency between the record and its asso-
ciated article has prompted the algorithm to classify this record as
‘‘suspicious”.
Example 3 (False Positive). The record with accession number
BK00876036 has also been classified as ‘‘suspicious” by the algorithm.
This record presents relatively low values in its profile compared to
the false negative example presented as given in Table 4. According
to the article that reports the content of that record (PMC identifier
PMC423393837), this article is supposed to show two genes, Atg8a
and Atg8b. However, the record is only showing the coding sequence
of the gene Atg8a. We also have contacted the paper’s authors who
acknowledged the error by saying: ‘‘Thanks for your important noti-
33 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2675058/.
34 http://www.ncbi.nlm.nih.gov/nuccore/CP006742.
35 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3923885/.
36 http://www.ncbi.nlm.nih.gov/nuccore/BK008760.
37 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4233938/.
fication. Indeed this is an entry error. The error was corrected in a
Corrigendum that was published soon after the original paper”
[61] (personal communication, Assaf Vardi). Although the error is
again in the research article itself, this shows another record-
literature inconsistency example, which illustrates a false positive
that contributed to the low precision-recall values obtained.
Example 4 (False Negative). In contrast, the record with the acces-
sion number DW40727038 has been classified ‘‘confident” by our
method, while its current status is ‘‘dead”. The record references a
popular organism and is correctly discussed in its associated article.
We did not discover any mismatch or conflict between this record
and its associated article (PMC identifier PMC162108339). In fact,
this record has been removed because the underlying biological
material suffered from bacterial contamination with pseudomonas
fluorescens, an issue that could only be resolved upon consideration
of the similarity of the record sequence to other sequences via a
BLAST search. This example leads us to identify an important distinc-
tion – a record can be coherent from one perspective (literature con-
sistency) while being inconsistent from another (biological content).
It highlights the need to consider data quality from more than one
perspective, and demonstrates that literature alone is insufficient
to detect all suspicious records. It further explains the limitations
on performance of our method.

The examples discussed above in this section are not necessar-
ily faulty records. We have rather presented these examples to pro-
vide a brief justification for why we obtained low precision-recall
values. This motivates us to build a manually curated dataset in
order to remove any ambiguous and noisy records that may lead
to the build of a biased model, and to develop features that will
capture further aspects of sequence record quality. This will form
part of our future work.
7. Conclusions and future work

In this paper we have introduced a list of factors that correlate
with the quality of a record. We used these quality indicators to
train an anomaly detection algorithm based on supervised learning
to classify records as ‘‘confident” or ‘‘suspicious”. We then per-
formed a complete analysis on the full PubMed Central collection.
The main outcome of this work is evidence that, in addition to the
sequence itself, the literature is a valuable external resource that
can be used to assess the quality of a database record.

Despite the fact that our method significantly outperforms the
suggested baselines, we obtained somewhat low effectiveness
scores, compared to some other common machine learning prob-
lems. Therefore, we undertook a feature analysis and a failure anal-
ysis, examining specific cases that indicate causes of this
38 http://www.ncbi.nlm.nih.gov/nuccore/DW407270.
39 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1621083/.
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performance – in particular, identifying that the ground truth may
contain errors as well as recognising that literature alone is insuf-
ficient to represent the full spectrum of data quality issues.

This work is to the best of our knowledge the first use of the lit-
erature as a tool for addressing the data quality problem in
biomedical sequence databases. We have shown that the approach
can identify problematic records with enough accuracy to be of
value to curators, potentially reducing the effort required to
remove low-quality records by nearly two orders of magnitude.

Our current dataset relies on data from GenBank to obtain
labels, and the negative labels are only derived implicitly. This sug-
gests two directions for future work. First, it would be desirable to
construct a manually curated dataset explicitly for development of
automated quality analysis techniques. Second, there is a need for
new unsupervised learning methods for anomaly detection. It may
be, for example, that good and bad records have distinct distribu-
tions of attribute values, so that methods such as k-nearest neigh-
bour or local outlier factor [62] could be applied. Having
established that automated literature analysis can be applied in
practice to this task, the challenge now is to improve performance
and further reduce the effort needed to clean databases. We also
expect that leveraging external textual information to support data
cleaning will have broader application in other database contexts.
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