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a b s t r a c t

Disseminating and incorporating logic rules into deep neural networks has been extensively explored
for sentiment classification in recent years. In particular, most methods and algorithms proposed
for this purpose rely on a specific component that aims to capture and model logic rules, followed
by a sequence model to process the input sequence. While the authors of these methods claim
that they effectively capture syntactic structures that affect sentiment classification, they only show
improvement in accuracy to support their claims without further analysis. Focusing on various
syntactic structures, particularly contrastive discourse relations such as the A-but-B structure, we
introduce the PERCY score, a novel Post-hoc Explanation-based Rule ConsistencY Score to analyze and
study the ability of several of these methods to identify these structures in a given sentence, and to
make their classification decisions based on the appropriate conjunct. Specifically, we explore the use
of model-agnostic post-hoc explanation frameworks to explain the predictions of any classifier in an
interpretable and faithful manner. These model explainability frameworks provide feature attribution
scores to estimate each word’s impact on the final classification decision. Then, they are combined
to check whether the model has based its decision on the right conjunct. Our experiments show
that (a) accuracy – or any other performance metric – can be misleading in assessing the ability of
logic rule dissemination methods to base their decisions on the right conjunct, (b) not all analyzed
methods effectively capture syntactic structures, (c) often, the underlying sequence model is what
captures the structure, and (d) for the best method, less than 25% of the test examples are classified
based on the appropriate conjunct, indicating that a lot of research needs to be done on this topic.
Finally, we experimentally demonstrate that the PERCY scores calculated are robust and stable w.r.t.
the feature-attribution frameworks used.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Deep Neural Networks (DNNs) provide extraordinary perfor-
ance across a broad spectrum of Natural Language Processing

NLP) tasks such as Sentiment Classification [1], Machine Trans-
ation [2], Text Summarizing [3], etc. This is mainly due to their
haracteristic of hierarchical feature representation [4], which can
e learned automatically through purely data-driven approaches
i.e., without any external supervision) using a gradient-based
ptimization algorithm with a task-specific objective.
However, these hierarchical representations of features, when

earned through purely data-driven approaches, suffer from sev-
ral drawbacks including: (i) their complexity, which often leads
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to the extraction of human-uninterpretable features and hin-
ders their application in high-stakes domains where automated
decision-making systems must have a human understanding of
their internal process, requiring the user to trust their outputs [5],
(ii) DNNs are treated as essentially black-box models, where no
meaningful relationship in terms of ‘‘how?’’ and ‘‘why?’’ can be
established between inputs and outputs; (iii) a huge amount
of labeled training data is required to construct these models,
which is both expensive and time-consuming [6]; and (iv) pre-
vious ablation studies on DNNs [7,8] have shown that purely
data-driven training may also lead to the learning of spurious
feature representations, which can provide unreasonable outputs
and make them prone to malicious attacks based on adversarial
examples [9,10].

To combat these drawbacks, several solutions aim to make
these networks inherently interpretable by augmenting them
with some task-specific or domain-specific expert prior knowl-
edge. These solutions are collectively called Neural-Symbolic
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.knosys.2023.110685
https://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2023.110685&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:guptashas@deakin.edu.au
mailto:reda.bouadjenek@deakin.edu.au
mailto:antonio.robleskelly@defence.gov.au
https://doi.org/10.1016/j.knosys.2023.110685
http://creativecommons.org/licenses/by/4.0/


S. Gupta, M.R. Bouadjenek and A. Robles-Kelly Knowledge-Based Systems 275 (2023) 110685

m
r
b
c
t
g
i
r
(
(
m
E
i
p

c
o
h
t
a
m
t
c
b
i
i
f
c
i
s
i
(
o
c

t
B
P
u
r
I
o
i
a
c
i
t
S
t
s
o
t
m
w
m
w

r
l

S
f
d
a
r
f

2

a
f
t
a
r
f
m
p

2

s
s
c
m
o
d
a
s

s
t
c

ethods [11] as they aim to combine symbolic knowledge rep-
esented by logical rules with Deep Neural Networks. They have
een extensively explored for various NLP tasks such as sentiment
lassification [12], question answering [13], machine transla-
ion [14], and information extraction [15], where the ultimate
oal is to model and transfer various human interpretable log-
cal rules to a neural network in order to improve its accu-
acy and causal interpretability. These methods usually rely on
1) a component aimed at capturing and modeling logic rules
e.g., the teacher network in the Iterative Knowledge Distillation
ethod [12], the ELMo component in the Contextualized Word
mbeddings approach [16], or the Semantic Composition Module
n SentiBERT [17]), (2) followed by a Neural Network model to
rocess the input sequence, (e.g., 1-D CNN [18], RNN, etc.).
While authors of these methods claim that they effectively

apture syntactic structures in an input sentence that affect the
utcome of a particular task (e.g., sentiment classification), they
ave only shown improvement in terms of accuracy to support
heir claim with no further analysis provided. However, achieving
high classification accuracy does not necessarily indicate that a
ethod has effectively captured and encoded such logical syn-

actic structures. For example, let us consider the sentence ‘‘the
asting was not bad but the movie was horrible’’ that has an A-
ut-B structure – a component A being followed by but, which
s followed by a component B. In this example, the conjunction
s interpreted as an argument for the second conjunct, with the
irst functioning concessively [19,20]. While a sentiment classifier
an correctly identify that this sentence has a negative sentiment,
t may fail to infer its decision based only on the B part of the
entence (i.e., ‘‘the movie was horrible’’), but instead, it may base
t’s decision on individual negative words also present in Part A
i.e., ‘‘bad’’). Thus, we argue in this paper that the high accuracy
f a classifier does not necessarily indicate that it has effectively
aptured textual structures of input sentences.
Focusing on various syntactic structures, in particular con-

rastive discourse relations such as the A-but-B, A-yet-B, A-though-
, or A-while-B structures, we introduce the PERCY score, a novel
ost-hoc Explanation-based Rule ConsistencY Score, which is
sed to evaluate both the task-specific performance and logic-
ule dissemination performance of a Neural-Symbolic system.
n particular, PERCY is used to analyze and study the ability
f various knowledge dissemination methods1 to: (i) effectively
dentifying a syntactic structure in an input sentence, (ii) encode
nd model these structures in sequences, and (iii) make their
lassification decisions based on the appropriate conjunct. Specif-
cally, we explore the use of post-hoc explanation frameworks
hat are agnostic to the underlying model such as LIME [21],
HAP [22], and Integrated-gradients (IG) [23], which explain
he predictions of any classifier by providing feature-attribution
cores. Furthermore, we use these scores to evaluate the impact
f each conjunct in a sentence with a syntactic structure on
he decision made by a classifier. Going back to the example
entioned above (i.e., ‘‘the casting was not bad but the movie
as horrible’’), PERCY helps users understand if a classification
odel has made its decision based on the B conjunct or individual
ords of this sentence.
The contributions of this paper are summarized as follows:

• We present a novel Post-hoc Explanation-based Rule Consis-
tencY Score called ‘‘PERCY’’, that we use to quantitatively as-
sess the ability of various knowledge dissemination methods
to encode logic rules and text syntactic structures.

1 In this paper, we use the term ‘‘knowledge dissemination methods’’ to
efer specifically to techniques for incorporating explicit logic rules into machine
earning models, with the aim of improving their performance on specific tasks.
2

• We conduct an exhaustive experimental evaluation on two
datasets, Sentiment140 [24] and SST2 [25], on which we
compare various methods for logic rule dissemination with
diverse classification methods – a total of 40 sentiment
classifiers are evaluated. Briefly, we demonstrate that:

1. Accuracy or any other performance-based metric can
be misleading in assessing methods for capturing
logic rules.

2. Not all methods are effectively capturing syntactic
structures as they claim to do.

3. Their sequence model is often what captures the syn-
tactic structure.

4. The best method makes its decision based on the
appropriate conjunct in less than 25% of the test ex-
amples.

• We experimentally demonstrate that the PERCY scores cal-
culated are robust and stable w.r.t. the Feature-attribution
based Local Post-hoc Explanation frameworks used in this
study.

The rest of the paper is organized as follows: Section 2 covers
related work and puts our work in perspective. Section 3 de-
scribes the post-hoc explanation frameworks that we use in this
paper, followed by a detailed presentation of the PERCY score.
ection 4 gives a brief overview of the analyzed sentiment classi-
iers and a thorough presentation of the investigated logic rule
issemination methods. Sections 5 and 6 respectively provide
description of our experimental setup and an analysis of the

esults we obtained. Finally, in Section 7 we conclude and suggest
uture research directions.

. Related work

There is a substantial body of research related to disseminating
nd incorporating logic rules in deep neural networks. Below, we
irst describe the main text syntactic structures we consider in
his paper, and then, we review Neural-Symbolic models, which
re DNN models augmented with symbolic domain knowledge
elated to a specific task. Next, we discuss Neural-Symbolic models
or NLP and then we provide a description of how these aug-
ented models are often evaluated — mainly by focusing on their
erformance.

.1. Logic rules for sentence-level sentiment classification

Text sentiment classification has a long and rich history of re-
earch due to its various practical applications, e.g., e-commerce,
ocial media analysis, etc. In particular, sentence-level sentiment
lassification is the task that consists of determining the senti-
ent of a sentence by classifying it often as Positive, Negative,
r Neutral. One important challenge in this regard is to model
iscourse relations between phrases and clauses in a sentence
nd to identify which part of a sentence will determine its overall
entiment [26–28].
In linguistics, a discourse relation is a description of how two

egments of a sentence are logically connected to each other
hrough a discourse marker or connector. Prasad et al. [29] have
lassified discourse markers as follows:

1. Contingency relations: which include markers like be-
cause, therefore, if, so, since to convey cause–effect relations
between segments.

2. Contrast relations: which include markers like but, al-
though, though, however, whereas, while to convey con-
trastive sense relations between segments.
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Table 1
List of syntactic structures that we consider with the PERCY score. Rule conjunct denotes the dominant clause that determines the
overall sentiment of the sentence.
Logic rule Keyword Rule conjunct Example

A− but− B but B [26] Yes there is an emergency called
covid-19 but victory is worth celebration

A− yet− B yet B [26] Even though we can’t travel yet
we can enjoy each other and what we have

A− though− B though A [26] You are having an amazing time though
we are having this awful pandemic

A−while− B while A [31] Stupid people are not social distancing while
there’s a global pandemic
3. Temporal relations: which include markers like before,
after, when, since, while to convey the order of occurrence
of segments.

4. Expansion relations: which include markers like and, in
addition to convey that a latter segment elaborates on the
former.

Previous work has shown that Contrastive Discourse Relations
CDRs) are hard to capture by general DNN models like CNNs or
NNs for sentence-level binary sentiment classification through
urely data-driven learning [16,30]. Thus, Prasad et al. [29] de-
ine such relations as sentences containing A-keyword-B syntactic
tructure where two clauses A and B are connected through a
discourse marker (the keyword) and have contrastive polarities
of sentiment. Mukherjee and Bhattacharyya [26] argue that these
relations need to be learned by the model while determining the
overall sentence sentiment.

Table 1 summarizes all logic rules that we consider in this
paper with the PERCY score, where we show the structure, the
rule conjunct, and an example sentence. We selected these struc-
tures because they are examples of contrastive discourse relations
that are commonly used in natural language to express com-
plex ideas and opinions. These structures introduce a sense of
contrast or opposition between two clauses or ideas, which can
have a significant impact on the overall sentiment expressed in
a sentence. Our study focuses on these structures in particular
because they have been shown to be particularly challenging for
sentiment classification models to accurately identify and classify.
As a result, we believe that exploring how different knowledge
dissemination methods perform on these specific structures will
help shed light on the strengths and weaknesses of these methods
when dealing with complex and nuanced linguistic phenomena.

2.2. Neural symbolic models

While traditional DNN models provide state-of-the-art per-
formance on various pattern recognition tasks, they lack reason-
ing capabilities and act as black-box function approximators. On
the other hand, symbolic models such as Decision Trees [32]
or Inductive Logic Reasoning-based approaches [33,34] are in-
herently interpretable as they manipulate discrete categorical
variables, but they show lower performance capabilities com-
pared to DNNs [35]. Hence, a hybrid model called Neural Symbolic
Model that combines both approaches has been proposed with the
aim of equipping the hierarchical feature representation learning
of Neural Networks with some real-world rules to make their pre-
diction, coherent, consistent, and easily interpretable [11,36,37].
However, even before the advent of modern Neural Networks,
constructing such knowledge and rule-augmented models has
been extensively explored. For example, Towell and Shavlik [38]
developed Knowledge-Based Artificial Neural Networks (KBANN)
to combine symbolic domain knowledge abstracted as proposi-
tional logic rules with neural networks via a three-step pipelined
3

framework. Later on, França et al. [36] constructed a neural model
called CLIP++, which learns first-order relations from structured
data through Inductive Logic Programming. More recently, Evans
and Grefenstette [39] proposed a differentiable Inductive Learn-
ing framework to train a neural network via back-propagation
on unstructured data. Instead of integrating Logic Rules as hard
constraints, Manhaeve et al. [40] and Xu et al. [41] convert them
into probabilistic soft-logic and integrate them with Deep Learn-
ing frameworks as soft-constraints. More recently, Lin et al. [42]
proposed to fuse domain knowledge as topology contexts and
logical rules of Knowledge Graphs into Language Models as soft
constraints via Knowledge Distillation [43]. In this paper, our
contribution is more analytical and focused on effectively test-
ing such methods for their ability to encode and disseminate
knowledge.

2.3. Neural symbolic models for natural language processing

A lot of research has been done on developing Neural-Symbolic
Models for various Natural Language Processing tasks, where per-
formance metrics have been mainly used to report their efficacy.
For example, Hu et al. [12] fused domain knowledge abstracted
as First Order Logic Rules with Deep Neural Networks via EM
style algorithm called Iterative Knowledge Distillation. An updated
version of this algorithm called Mutual Distillation [30] introduced
some learnable parameters with Logic Rules to incorporate the
fuzzy nature of domain knowledge. Zhang et al. [44] introduced
a critic learning framework to augment a CNN-based model with
various syntactical logical rules via Knowledge Distillation [43].
Cambria et al. [45] introduces a model called SenticNet 7 which
builds a hierarchical knowledge graph from the input sentence
using kernel methods and auto-regressive language models and
uses linguistic patterns to determine the sentiment polarity.
Also, Chen et al. [46] introduced a feedback masking method
where redundant parts of the input sequence (i.e., A tokens of
a sentence with an A-but-B structure) are masked out before
being fed to a Recurrent Neural Network fusing it with logical
knowledge. More recently, Wang and Pan [15,47] developed a dis-
crepancy loss to fuse First Order Logic Rules with Neural Networks
for Information Extraction tasks like Opinion Target Extraction
and Relation Extraction. On the other hand, instead of imposing
constraints on loss function, Li and Srikumar [48] developed
constrained neural layers, where logical constraints govern the for-
ward computation operations in each neuron. Instead of changing
either the loss function or the architecture, Wang and Poon [49]
and Gu et al. [50] performed manipulation on input training data
to induce logical domain knowledge. Finally, while not proposed
to construct Neural-Symbolic models, Krishna et al. [16] showed
that contextualized word embeddings constructed from large pre-
trained models like ELMo [51] can inherently capture the logical
relationships like A-but-B for sentiment classification, but again,
they have use accuracy to prove their claims.
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.4. Evaluation of neural-symbolic models

All of the work mentioned above has reported results using
erformance metrics such as accuracy [12,30,44,46,48–50] or F1-
core [15,47,48] to support the claim that their methods have
ffectively captured logical domain knowledge. In this paper, we
laim that while these performance metrics reflect the ability
f a model to correctly identify the true class, they may fail to
ssess whether the classifier has actually captured logic rules and
ther syntactic structures. Hence, in this paper, we follow a dif-
erent approach to evaluate such logic rule-augmented models by
xploring the use of model-agnostic post-hoc explanation frame-
orks such as LIME [21], SHAP [22], and Integrated-gradients
IG) [23], which gives a local explanation for each output in terms
f input features. This approach helps to provide a causal explana-
ion as quantifiable feature-attribution scores for an output given
n input sentence with a certain rule syntactic structure, which
e use to formulate our metric. To the best of our knowledge,
his is the first work to provide a quantitative evaluation of such
models using post-hoc explanation methods. While there have
been various proposed Neural-Symbolic models for a wide range
of tasks, our paper specifically concentrates on sentence-level
sentiment classification. It is important to note that the analysis of
other models for different tasks is beyond the scope of our study.

3. Methodology

As mentioned earlier, our main goal in this paper is to as-
sess a sentiment classifier for its ability to correctly classify a
test example with a logical syntactic structure on the basis of
the appropriate conjunct. There are many methods proposed for
generating explanations and incorporating interpretability and
transparency into machine learning models [52]. Some methods
provide explanations prior to their training, which typically in-
volves designing models that are inherently more interpretable,
such as rule-based systems [53,54] or decision trees [55–57], or
incorporating specific features or constraints into the learning
process to ensure that the resulting model is more transparent
and easier to understand [58]. On the other hand, model-specific
explainable AI involve developing techniques for analyzing and
interpreting the internal workings of these models to better un-
derstand how they arrive at their predictions. Some common
approaches include model simplification [59,60], visual attribu-
tion methods [61–63], feature relevance estimation [64,65], and
other attention-based methods [66]. In contrast to these explain-
able methods, our approach requires generating explanations
post-modeling. This is because we aim to answer the question of
why a given model produces a certain output for a given input,
regardless of the specific model architecture used. Therefore,
we use local post-hoc explanation frameworks, whose output is a
causal mapping from the input datapoint to the model prediction.
We distinguish diverse frameworks that are different depending
upon the nature of the explanation provided, for instance: feature
attribution scores [21–23], natural language explanations like
Counterfactuals [67,68], or if–then–else type logical rules such as
Scoped-rules in [69].

In this paper, we rely on Feature Attribution (also called Fea-
ture Importance) to calculate our PERCY score. Feature Attribu-
tions are obtained using model-agnostic Local Post-hoc expla-
nation frameworks, which operate at the level of an individual
input/prediction pair, producing an explanation for why a model
predicted an output for a particular input. Fig. 1 provides a visual
representation of the method we propose in this paper. It offers a
general overview of the steps involved in our approach and how
they relate to each other. By referring to this figure, readers can
get a better understanding of the PERCY score calculation process.
4

3.1. Feature attribution based local post-hoc explanation frame-
works

Local Post-hoc Explanation Frameworks have been used to
explain outputs of various machine learning models ranging from
a simple logistic regression to complex deep neural networks like
Inception network [70–73]. The output of these frameworks is
usually a list of weights, where each reflects the contribution
of a particular feature to the prediction of a test datapoint. This
provides local interpretability, and it also allows to determine
which feature changes will have most impact on the prediction.
Such approaches can be built on different types of features, such
as manual features obtained from feature engineering, lexical
features including words/tokens and n-gram, or latent features
learned by NNs. In the next sections, we provide details about
three local post-hoc explanation frameworks used in this paper
and how feature-attribution scores are calculated using these
frameworks.

3.1.1. LIME
Local Interpretable Model-agnostic Explanations (LIME) is a

framework developed by Ribeiro et al. [21] that can explain the
output prediction of any classifier or a regressor in a faithful
way, by approximating it locally with a simpler and interpretable
model on an input instance. LIME learns surrogate models using
an operation called input perturbation and can be used to achieve
either local [21] or global explanations [74].

Let’s consider a model f and a sentence s ∈ S represented
with an n-dimensional token sequence vector s = {t1t2 · · · tn}.
LIME proceeds by assigning to each token ti a weight wi that
reveals its importance in influencing the output prediction of f .
LIME assigns these weights as ‘‘Sparse Linear Models’’, which are
surrogate linear models learned in the vicinity of the input s.
These surrogate models are computed by solving the following
optimization:

argmin
g∈G

∑
z,z′∈Z

exp(−cos(s, z)2/σ 2)(f (z)− g(z′))2 +Ω(g) (1)

where Z is a set of all perturbations computed for s, cos is the
cosine distance, G is the set of interpretable linear surrogate
models, and Ω(g) denotes the measure of complexity of g (for
explanations as linear models, it is the number of weights in every
model). The optimal solution of Eq. (1) denotes the preciseness of
surrogate model g in approximating model f around the locality
of s defined by Ω(g).

3.1.2. SHAP
Shapley Additive Explanations (SHAP) is a framework devel-

oped by Lundberg and Lee [22] to provide model-agnostic local
explanations based on feature-attribution. SHAP is based on the
game theoretically optimal Shapley values. Specifically, given a
model f and an input sentence s, to produce an interpretable
model, SHAP defines an output model g(s′) with simplified input
s′ as a linear addition of all input tokens as follows:

f (s) = g(s′) = φ0 +
∑
ti∈s′

φit ′i (2)

where s is the original sentence, s′ is a simplified input sentence
with a mapping function s = hs(s′) between s and s′, and φ0 =

f (hs(0)) is the model output without all of the simplified inputs.
A detailed description of SHAP and a possible solution for Eq. (2)
can be found in the literature [22].
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3.1.3. IG
Integrated Gradients (IG) is a simple, yet powerful axiomatic

ttribution method developed by [23], which provides feature
mportance scores using product of their gradients and values.
hile the previous two frameworks are based on local perturba-

ions, IG is based on a Gradient perturbation method to calculate
eature Attribution scores. Specifically, let’s suppose we aim to
xplain the prediction of a model f for an input sentence s.
he integrated gradient for the token ti of the input sentence is

defined as follows:

IG(s) = (ti − t ′i )
∫ 1

α=0

∂ f (t ′i + α(ti − t ′i ))
∂ti

dα (3)

where the gradient of f for the token ti is denoted by ∂ f (s)
ti

, and t ′i is
he ith token in a selected sentence baseline s′. For most models,
t is recommended to choose a baseline such that the prediction at
he baseline is near zero (f (s′) ≈ 0). A more detailed explanation
f IG can be found in [23].

.2. PERCY: Post-hoc explanation-based rule consistency score

Let’s consider a model f and a sentence s ∈ S that is rep-
resented with an n-dimensional token sequence vector s =
t1t2 · · · tn}. All feature attribution frameworks described above
ssign a weight wi for each term ti ∈ s to estimate its contribution
o the prediction of f . Often, a positive weight wi > 0 indicates
hat ti contributes and supports the positive class, whereas a
egative weight wi < 0 indicates a contribution of ti towards a
egative prediction. Hence, given a sentence s that contains an A-
eyword-B syntactic structure, we first define the sub-sequences
= {t1 · · · tk−1} and b = {tk+1 · · · tn} as respectively the left and

right sub-sequences w.r.t. the word ‘‘but’’ indexed by k.

3.2.1. Calculating the conjunct contribution
Next, we estimate the contribution of each sub-sequence a and

b to the prediction of f as an expectation over a and b using a
weighted average of all tokens in each part as follows:

E[a] =

E[a]+  
k−1∑
i=1

wi × p(y = 1|s)+

E[a]−  
k−1∑
i=1

|wi| × p(y = 0|s)

E[b] =

E[b]+  
n∑

wi × p(y = 1|s)+

E[b]−  
n∑
|wi| × p(y = 0|s)

(4)
i=k+1 i=k+1

5

here k is the index of the ‘‘keyword’’, p(y = 0|s) and p(y = 1|s)
re the probabilities to predict respectively the class 0 and 1
iven a sentence s, wi is the feature attribution weight given
o a term ti, and E(·)+ (E(·)−) is the expected value over terms
ontributing to the positive class (resp. negative class). Following
hese estimations, the PERCY score of a sentence s is calculated
epending on the rule as detailed in Table 2.
In Table 2, ‘‘f (s) = y’’ aims to check that the prediction

s correct — accuracy, ‘‘E[a] < E[b]’’ ensures that the sub-
equence b has contributed more to the prediction of f , and
he p-value aims to make sure that the difference between E[a]
nd E[b] is statistically significant. When a sentence contains
ultiple syntactic structures, such as a combination of ‘‘A-but-
’’ and ‘‘not only’’, the PERCY score can be calculated for each
yntactic structure separately.
Finally, the PERCY score of a collection of sentences S is calcu-

ated by averaging as follows:

ERCY (S) =
1
|S|

∑
i=1

PERCY (si) (7)

We note that in the experimental evaluation we present in
Section 6, we mainly report the PERCY at the collection level
(Eq. (7)) to compare and contrast the different sentiment classifi-
cation methods we describe in the next section. In Section 6.3, we
provide justification behind each step involved in the calculation
of PERCY score in 2 using qualitative analysis of A-but-B type
sentences.

4. Sentiment classification methods

In this section, we provide a succinct description of the senti-
ment classification methods used in our experimental analysis.

4.1. Logic rules dissemination methods

In this section, we describe the main methods we analyze
to disseminate logic rule knowledge into the Neural Network
models described in Section 4.2.

4.1.1. Iterative knowledge distillation
The Iterative rule knowledge distillation method proposed

by Hu et al. [12] aims to transfer the domain knowledge en-
coded in first order logic rules into a neural network defined
by a conditional probability p (y|x) where θ is a parameter to
θ
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Table 2
PERCY score.
Logic rule Rule conjunct Equation

A− but− B
A− yet− B

B [26] PERCY (s) =

{
1, if (f (s) = y) AND [(E[a] < E[b]) AND (p-value ≤ 0.05)]
0, otherwise

(5)

A− though−B
A−while− B

A [26] PERCY (s) =

{
1, if (f (s) = y) AND [(E[a] > E[b]) AND (p-value ≤ 0.05)]
0, otherwise

(6)
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learn. To integrate the information encoded in the rules, Hu
et al. [12] have proposed to train the network via knowledge
distillation as proposed in Hinton et al. [43] where hard tar-
gets are provided through labeled training data and soft targets
are constructed through rule constrained projection of posterior
pθ (y|x) as proposed in Posterior Regularization [75].

Specifically, during training, a posterior q(y|x) is constructed
by projecting pθ (y|x) into a subspace constrained by the rules to
encode the desirable properties as follows:

min
q,ξ≥0

KL(q(y|x) ∥ pθ (y|x))+ C
∑
x∈X

ξx

s.t. (1− Ey←−q(y|x)[rθ (x, y)]) ≤ ξx

where q(y|x) denotes the distribution of (x, y) when x is drawn
uniformly from the train set X and y is drawn according to q(y|x),
θ (x, y) ∈ [0, 1] is a variable that indicates how well labeling
with y satisfies the rule, ξx ≤ 0 is the slack variable for

espective logic constraint, and C is the regularization parameter.
he closed form solution for q(y|x) is used as soft targets to
mitate the outputs of a rule-regularized projection of pθ (y|x),
hich explicitly includes rule knowledge as regularization terms.
Next, the rule knowledge is transferred to the posterior pθ (y|x)

hrough knowledge distillation optimization objective:

1− π )× L(pθ , Ptrue)+ π × L(pθ , q)

here Ptrue denotes the distribution implied by the ground truth,
(•, •) denotes the cross-entropy function, and π is a hyper-
arameter that needs to be tuned to calibrate the relative impor-
ance of the two objectives. Following the terminologies used by
uthors in Hinton et al. [43], pθ is called a ‘‘student’’ network and
is called a ‘‘teacher’’ network, which is intuitively analogous to
uman education where a teacher is aware of systematic general
ules and instructs students. Overall, the Iterative rule knowledge
istillation method is agnostic to the network architecture, and
hus is applicable to general types of neural models such as those
epicted in Fig. 2.

.1.2. Word embeddings
Traditional word embedding methods like Word2vec [76] and

love [77] provide a unique and fixed vector for each word in
he vocabulary. However, language is complex and context can
ompletely change the meaning of a word in a sentence. Hence,
ontextual word embeddings methods have emerged as a way
o capture the different nuances of the meaning of words given
he surrounding text. Krishna et al. [16] have advocated that
ord embeddings when fine-tuned with downstream sentiment
nalysis task might capture logic rules and thus disseminate that
atent information, for example in the 1D CNN sequence models
f the neural network in Fig. 2(a). In this paper, we experiment
ith the following word embedding methods:

1. Word2vec: which is one of the most popular methods to
efficiently create word embeddings developed by Mikolov
et al. [76]. Briefly, word2vec embeddings are computed

from a two-layer neural network. Word2vec maps each W

6

token to a vector space, typically of several hundred di-
mensions, where word vectors are positioned in the vector
space such that words that share common contexts (se-
mantically similar) are located close to each other in the
space.

2. Glove: is an unsupervised learning algorithm for obtaining
vector representations for words developed by Pennington
et al. [77]. Training is performed on the non-zero entries of
a global word-to-word co-occurrence matrix, which tabu-
lates how frequently words co-occur with one another in
a given corpus. A matrix factorization algorithm is applied
to efficiently extract the embeddings.

3. ELMo: stands for Embeddings from Language Models is a
pre-trained model developed by Peters et al. [51]. Instead
of using a fixed embedding for each word, ELMo looks
at the entire sentence before assigning each word in it
an embedding. It uses a bi-directional LSTM trained on a
specific task to be able to create those embeddings. Krishna
et al. [16] proposed to use ELMo in their method.

4. BERT: stands for Bidirectional Encoder Representations
from transformers. This is also a pre-trained model de-
veloped by Devlin et al. [78]. Briefly, the BERT is a model
based on Encoder Transformer blocks [79], which processes
each element of the input sequence by incorporating and
estimating the influence of other elements in the sequence
to create embeddings.

.1.3. Modeling semantic composition using self-attention
Large pre-trained models like BERT [78] and GPT [80] have

chieved state-of-the-art performance on various NLP tasks. Usu-
lly, these models follow a pre-training step on a large language
orpus and then fine-tuning on the downstream NLP task coupled
ith a smaller Neural Network model. Recent work [81,82] has
hown that inducing domain or task specific knowledge during
heir pre-training phase improves performance on the down-
tream task. Following this line of research, other work [50,
3–85] has sought to develop methods and frameworks to in-
uce domain-specific or task knowledge into pre-training of large
anguage models.

In particular, SentiBERT developed by Yin et al. [17] focuses
n sentence-level sentiment analysis task and develops a self-
ttention based mechanism on top of BERT to capture rule-
yntactic structures like A-but-B in input sentences. The authors
rgue that combining contextual information generated from a
anguage model like BERT [78] with constituency parse-trees like
hat generated by Socher et al. [25] can better capture composi-
ion semantic relations in an input sentence. In this paper, we use
he pre-trained weights of SentiBERT provided by the authors2

nstead of training the Language Model from scratch.

2 The implementation and weights can be found here: https://github.com/
adeYin9712/SentiBERT.

https://github.com/WadeYin9712/SentiBERT
https://github.com/WadeYin9712/SentiBERT
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Fig. 2. Backbone Neural Network models used for the construction of the
sentiment classifiers.

4.2. Backbone models

We use in this paper the following two backbone neural net-
ork models:

NN model: which is depicted in Fig. 2(a) and used in [18,86]
for sentence-level sentiment classification. It takes as input a
sequence of tokens, which are first processed by an embedding
layer and converted into dense vectors of fixed size. Next, three
1D CNN sequence models (kernel size of 3, 4, and 5) process
the embeddings in parallel in order to extract diverse features
from the input sequence. These 1D CNN sequence models may
learn various internal properties of the sequence that are useful
for sentiment classification. Finally, the outputs of the three 1D
 t

7

CNNs are concatenated before being fed into a feed-forward
binary classification layer with a sigmoid activation to extract the
sentiment of the input sentence – 0 for a negative sentiment and
1 for a positive sentiment.

LSTM model: which is illustrated in Fig. 2(b) and is based on
recurrent neural networks [87]. Similar to the CNN model, it
also takes as input a sequence of tokens, which are converted
into dense vectors by an embedding layer. Next, the token em-
beddings are passed to a many-to-one sequence model layer
consisting of 128 LSTM units, which learn hidden features in the
sequence relevant to the understanding of the sentiment of the
sentence. Finally, the output corresponding to the last token of
the sequence model layer is fed to a dense layer consisting of a
single sigmoid activation unit which classifies the entire sequence
as — 0 for a negative sentiment and 1 for a positive sentiment.

4.3. Sentiment classification methods

To conduct a thorough evaluation, we consider all possible
configuration options that we discussed above as follows: {CNN,
LSTM} × {Distillation, No Distillation} × {Fine-tuning, No Fine-
tuning } × {word2vec, glove, elmo, bert, sentibert}, which gives a
total of 40 sentiment classifiers that are summarized in Table 3.
For example, the classifier CDFB in Table 3 indicates that the
base neural network used is the CNN model, word embeddings
are created using BERT, which is fine-tuned on the downstream
sentiment classification task, and the training was done using
Iterative Knowledge Distillation method.

5. Experimental setup

In this section, we describe the experimental setup we use
in our evaluations, including a description of the datasets, the
metrics used, and the details of our implementation.

5.1. Datasets

We train the sentiment classification models discussed in the
previous section on two popular sentence-level sentiment classi-
fication datasets.

Stanford Sentiment Treebank (SST2): This dataset proposed
in [25] is a binary sentiment classification dataset and consists
of 9,613 single sentences extracted from movie reviews, where
sentences are labeled as either positive or negative each account-
ing for about 51.6% and 48.3%. A total of 1,078 sentences contain
a syntactic structure, which accounts for about 11.2% of the
dataset. We report our results only on test examples that contain
a syntactic structure to demonstrate the ability of a classifier to
capture the pattern.

Sentiment140: Since SST2 dataset contains low amount of sen-
tences containing a syntactic structure, we complement it with
Sentiment140 dataset, which contains a significant proportion
of such sentences. Constructed from twitter corpus, Go et al.
[24] released this dataset to perform sentence-level sentiment
analysis on public domain tweets. It consists of 1.6M tweets
scrapped from twitter using their API3 divided into 3 categories —
positive, negative and neutral. For our evaluation, we rejected the
neutral tweets and randomly selected 50,000 tweets containing
equiproportion distribution of positive and negative sentiment
tweets. Out of these 50,000 tweets, approximately 51% tweets
contain a syntactic structure. Again, we report our results only
on test examples that contain these syntactic structures.

Fig. 3 shows the complete distribution of these two datasets.

3 More information about the Twitter API can be found at http://apiwiki.
witter.com/.

http://apiwiki.twitter.com/
http://apiwiki.twitter.com/
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Table 3
Summary of the sentiment classification methods used in our experimental evaluation.
Model no. Classifier Base model Distillation Fine-tuning WE WE LRD

1 CW CNN (C) x x word2vec (W) x
2 CG CNN (C) x x glove (G) x
3 CE CNN (C) x x elmo (E) x
4 CB CNN (C) x x bert (B) x
5 CsB CNN (C) x x sentibert (sB) ✓
6 CFW CNN (C) x ✓(F) word2vec (W) x
7 CFG CNN (C) x ✓(F) glove (G) x
8 CFE CNN (C) x ✓(F) elmo (E) ✓
9 CFB CNN (C) x ✓(F) bert (B) ✓
10 CFsB CNN (C) x ✓(F) sentibert (sB) ✓
11 CDW CNN (C) ✓(D) x word2vec (W) ✓
12 CDG CNN (C) ✓(D) x glove (G) ✓
13 CDE CNN (C) ✓(D) x elmo (E) ✓
14 CDB CNN (C) ✓(D) x bert (B) ✓
15 CDsB CNN (C) ✓(D) x sentibert (sB) ✓
16 CDFW CNN (C) ✓(D) ✓(F) word2vec (W) ✓
17 CDFG CNN (C) ✓(D) ✓(F) glove (G) ✓
18 CDFE CNN (C) ✓(D) ✓(F) elmo (E) ✓
19 CDFB CNN (C) ✓(D) ✓(F) bert (B) ✓
20 CDFsB CNN (C) ✓(D) ✓(F) sentibert (sB) ✓
21 LW LSTM (L) x x word2vec (W) x
22 LG LSTM (L) x x glove (G) x
23 LE LSTM (L) x x elmo (E) x
24 LB LSTM (L) x x bert (B) x
25 LsB LSTM (L) x x sentibert (sB) ✓
26 LFW LSTM (L) x ✓(F) word2vec (W) x
27 LFG LSTM (L) x ✓(F) glove (G) x
28 LFE LSTM (L) x ✓(F) elmo (E) ✓
29 LFB LSTM (L) x ✓(F) bert (B) ✓
30 LFsB LSTM (L) x ✓(F) sentibert (sB) ✓
31 LDW LSTM (L) ✓(D) x word2vec (W) ✓
32 LDG LSTM (L) ✓(D) x glove (G) ✓
33 LDE LSTM (L) ✓(D) x elmo (E) ✓
34 LDB LSTM (L) ✓(D) x bert (B) ✓
35 LDsB LSTM (L) ✓(D) x sentibert (sB) ✓
36 LDFW LSTM (L) ✓(D) ✓(F) word2vec (W) ✓
37 LDFG LSTM (L) ✓(D) ✓(F) glove (G) ✓
38 LDFE LSTM (L) ✓(D) ✓(F) elmo (E) ✓
39 LDFB LSTM (L) ✓(D) ✓(F) bert (B) ✓
40 LDFsB LSTM (L) ✓(D) ✓(F) sentibert (sB) ✓

WE=Word Embeddings used by the model.
LRD=Whether model is proposed for Logic Rule Dissemination or not.
F=Word embeddings were fined tuned on the downstream task.
D=Trained via Iterative Knowledge Distillation [12].
Fig. 3. Distributions of datasets used in our experimental evaluation. The inner-most layer gives the total number of instances in each dataset, 2nd layer indicates
the total number of instances with positive and negative sentiment labels, and the outer-most layer gives the number of instances containing syntactic structures
for each sentiment label.
8
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.2. Metrics

The performance is measured using the following conven-
ional classification evaluation metrics: (i) Accuracy, (ii) Precision,
iii) Recall, and (iv) F1-score. In addition, we report the PERCY
cores as described in Section 3 using the three explanation
rameworks: LIME [69], SHAP [22] and IG [23], which we refer to
s L-PERCY, S-PERCY, and I-PERCY scores respectively. We aim to
ssess the robustness of PERCY w.r.t. the explanation framework
sed and to compare the classification performance metrics with
he PERCY score to ultimately assess how correlated these metrics
re.

.3. Implementation details

We divide the Sentiment140 dataset into train, val, and test
plits using 60%, 20%, and 20% proportion of sentences respec-
ively. Each split contains similar distributions for various subsets
no structure-positive, no structure-negative, syntactic structure-
ositive, syntactic structure-negative – as present in the complete
ataset in Fig. 3(b). For SST2 dataset, since the sample size of
est instances is very small (1,078 sentences), all classifier are
rained, tuned, and tested using stratified nested k-fold cross-
alidation and evaluated primarily according to accuracy. This is
one to increase the size of test instances and to reduce high
ariance. For Sentiment140, we use standard training procedure
ith Early-Stopping.
We optimize all models using mini-batch gradient descent

ith batch size = 50 using an Adam optimizer [88] with learning
ate η = 3e − 5. We also use early stopping and a dropout
= 0.5 regularization techniques to get the best weights for the
models. For nested k-fold cross-validation in SST2, we set the
value of k = 5 and the value of inner fold l = 3. The code of our
mplementation can be found at: https://github.com/shashgpt/
ERCY.

. Experimental evaluation

In this section, we discuss and analyze the results obtained
or the sentiment classification models described in Section 4.3.
riefly, we first discuss their performance using conventional
lassification performance metrics as detailed in Section 5.2 and
ERCY scores. Next, we analyze the correlation of PERCY with
espect to the classification performance metrics. Finally, we dis-
uss and evaluate the consistency and robustness of the PERCY
core across the different explainability frameworks we use —
IME, SHAP, and IG.

.1. Performance evaluation

Tables 4 and 5 show the performance of all classifiers de-
cribed in Table 3 on SST2 and Sentiment140 respectively. We
how the performance using all sentiment classification metrics
Classification Accuracy, Weighted Precision, Weighted Recall and
eighted F-1 scores) and the PERCY score with three explainabil-

ty frameworks (LIME, SHAP and IG), which are called L-PERCY,
-PERCY and I-PERCY respectively. Briefly, we make the following
ey observations:

1. For all classifiers, PERCY score values are less than 25%,
which indicates that less than 25% of the test examples
are correctly classified based on the correct conjunct. This
suggests that the performance claimed by the logic rule
dissemination methods analyzed in Sections 4.1.1, 4.1.2,
and 4.1.3 is far from being achieved and that there is a lot

of research that needs to be done on this topic.

9

2. There is major discrepancy between the classification per-
formance metrics and the PERCY score values — the values
of the classification performance metrics are much higher.
The reason for this difference is discussed with anecdo-
tal examples further in Section 6.3. In short, we observe
that often, the two conjuncts contain the same number
of sentiment-sensitive words. Hence, we argue that the
classifiers are using those individual tokens to base their
sentiment decision.

3. The BERT word-embeddings dissemination method (Sec-
tion 4.1.2) provides the best classification performance
values, whereas ELMo word-embeddings provides the best
PERCY score values. This indicates that contextualized
word-embeddings are better at capturing and disseminat-
ing logic rules.

4. We note that the classifiers that use the Iterative Knowl-
edge Distillation method show almost no improvement on
all metrics, e.g., in Table 4, CW and CDW classifiers provide
similar values for all metrics. This simply suggests that [12]
is not efficient and that it is the underlying sequence model
that is capturing to some extent the syntactic structure.

5. Finally, we also observe that the SentiBERT method (Sec-
tion 4.1.3) is not efficient at capturing syntactic structures
as the performance using the PERCY score is always very
low.

.2. Correlation between PERCY scores and performance metrics

To analyze the correlation between performance metric val-
es and PERCY score values, we show in Figs. 4(a) and 4(b)
catterplots with best fit linear regression of the rankings ob-
ained using PERCY scores vs. Accuracy scores of all classifiers
escribed above. The correlation is quantified using the Kendall’s
orrelation coefficient (τ ) [89].
Briefly, at first glance we observe that in all plots there is
little to no correlation between the rankings obtained using
ERCY scores and Accuracy scores — the highest Kendall τ is

0.1487. This indicates clearly that higher accuracy cannot be used
to claim that a classifier is performing well on rule dissemination
since there is no-correlation between them. Probable reason for
no correlation can be attributed to the classifiers using individual
sentiment sensitive tokens in A conjunct. We note that we do not
how the rank correlation plots for precision, recall and F1-scores
s. PERCY scores as we found them to be identical to those we
how in Figs. 4(a) and 4(b).

.3. Qualitative analysis

In order to provide insight into the factors behind specific
ERCY scores, explore the lack of correlation between PERCY
cores and Accuracy scores, and strengthen our analysis, we
resent in Table 6 examples of sentences exhibiting an A-but-B

syntactic structure divided into three categories:

1. Examples where the sentiment prediction of the classifier
is correct and the decision was based on the ‘‘B’’ conjunct to
provide intuitive sense on why the sentiment of sentences
containing A-but-B syntactic structures should be based on
the ‘‘B’’ conjunct. These examples are shown in Table 6a.

2. Examples where the sentiment prediction of the classifier
is correct but the decision was based on the ‘‘A’’ conjunct
according to the PERCY score to show that accuracy can
be misleading to assess rule-dissemination performance.
These examples are shown in Table 6b.

https://github.com/shashgpt/PERCY.git
https://github.com/shashgpt/PERCY.git
https://github.com/shashgpt/PERCY.git


S. Gupta, M.R. Bouadjenek and A. Robles-Kelly Knowledge-Based Systems 275 (2023) 110685
Table 4
Performance of the classifiers described in Table 3 on the SST2 dataset.
Classifier Sentiment classification specific performance metrics PERCY scores

Accuracy Precision Recall F1-score L-PERCY S-PERCY I-PERCY

CW 0.7537 0.7543 0.7537 0.7539 0.1336 0.0765 0.0629
CG 0.7326 0.7326 0.7326 0.7326 0.1383 0.0888 0.0548
CE 0.8193 0.8193 0.8193 0.8192 0.2229 0.2028 0.1927
CB 0.8258 0.8258 0.8258 0.8258 0.2038 0.1837 0.1737
CsB 0.8811 0.8811 0.8811 0.8811 0.0888 0.0686 0.0587
CFW 0.763 0.7629 0.763 0.7629 0.1493 0.0803 0.055
CFG 0.7495 0.7496 0.7495 0.7496 0.1483 0.09 0.0622
CFE 0.9752 0.9752 0.9752 0.9752 0.2262 0.2061 0.1962
CFB 0.9833 0.9833 0.9833 0.9833 0.2266 0.2064 0.1964
CFsB 0.8771 0.8774 0.8771 0.8772 0.0698 0.0495 0.0397
CDW 0.743 0.7448 0.743 0.7433 0.1316 0.1009 0.0882
CDG 0.712 0.712 0.712 0.712 0.1252 0.1164 0.0781
CDE 0.8221 0.8231 0.8221 0.8223 0.2468 0.2267 0.2166
CDB 0.8242 0.8245 0.8242 0.8243 0.2059 0.1858 0.1758
CDsB 0.878 0.878 0.878 0.878 0.0839 0.0637 0.0538
CDFW 0.7523 0.7524 0.7523 0.7523 0.1418 0.1181 0.0877
CDFG 0.7365 0.7366 0.7365 0.7357 0.1273 0.1215 0.079
CDFE 0.9726 0.9727 0.9726 0.9726 0.1458 0.1356 0.1157
CDFB 0.9833 0.9833 0.9833 0.9833 0.2338 0.2235 0.2036
CDFsB 0.8823 0.8823 0.8823 0.8823 0.0762 0.0661 0.0461
LW 0.7203 0.725 0.7203 0.7203 0.101 0.0713 0.0829
LG 0.7189 0.7216 0.7189 0.7191 0.088 0.0647 0.0555
LE 0.7136 0.7154 0.7136 0.7138 0.165 0.1348 0.1448
LB 0.8103 0.8104 0.8103 0.8103 0.1652 0.135 0.145
LsB 0.8553 0.8557 0.8553 0.855 0.0791 0.0489 0.0591
LFW 0.7491 0.75 0.7491 0.7493 0.0914 0.0603 0.0789
LFG 0.7426 0.7426 0.7426 0.7426 0.0893 0.0571 0.0513
LFE 0.8998 0.9008 0.8998 0.8996 0.1288 0.0986 0.1086
LFB 0.9722 0.9722 0.9722 0.9722 0.2149 0.1848 0.1948
LFsB 0.8759 0.8765 0.8759 0.876 0.0704 0.0403 0.0501
LDW 0.7124 0.7172 0.7124 0.7124 0.113 0.0994 0.1365
LDG 0.7141 0.7151 0.7141 0.7143 0.0981 0.0807 0.1009
LDE 0.654 0.6682 0.654 0.6391 0.1484 0.1183 0.1282
LDB 0.8031 0.803 0.8031 0.8031 0.1599 0.1297 0.1397
LDsB 0.8593 0.8593 0.8593 0.8592 0.0808 0.0507 0.0607
LDFW 0.7539 0.7552 0.7539 0.7541 0.1202 0.1095 0.1269
LDFG 0.7289 0.7289 0.7289 0.7289 0.0986 0.0796 0.0974
LDFE 0.7795 0.7823 0.7795 0.7778 0.1531 0.1329 0.1329
LDFB 0.9791 0.9792 0.9791 0.9791 0.2324 0.2122 0.2122
LDFsB 0.8794 0.8796 0.8794 0.8795 0.0746 0.0546 0.0546

C=CNN, L=LSTM.
D=Distillation.
F=Fine-tuning.
W=word2vec, G=Glove, E=elmo, B=bert, sB=sentibert.
3. Examples where the sentiment prediction is correct and
conjunct contribution of ‘‘A’’ is greater than ‘‘B’’ but the
‘‘B’’ conjunct contains a single token having a higher score
than all ‘‘A’’ conjunct tokens, i.e., E[a] > E[b] but max[a] <
max[b]. These examples show that using an additive oper-
ation like ‘‘expectation’’ is better suited from a robustness
point of view than using any other operation like ‘‘max’’ to
calculate the conjunct contribution in PERCY scores. These
examples are shown in Table 6c.

For each category, we provide two examples in which one has
a positive ground-truth sentiment and the other has a negative
ground-truth sentiment. Briefly, we observe that:

1. In Table 6a, A and B conjuncts of both examples con-
tain a comparable amount of sentiment-sensitive tokens
to each other and the feature attribution scores assigned
to B conjunct tokens are higher than the scores assigned
to tokens in the conjunct A. Observing the nature of the
sentiment switch from A to B, we can see that it makes
sense to base the decision on the B conjunct to determine
the sentence-level sentiment. This observation is consis-
tent with the general Linguistics study of contrastive dis-
course relations like A-but-B done in [19,20]. Thus, there
10
are neural-symbolic methods (Section 4.1) proposed to dis-
seminate this A-but-B rule knowledge into a general DNN
model (Section 4.2) to force the model to make sentiment-
prediction as per the B conjunct.

2. In Table 6b, we observe that A conjunct contain more
sentiment-sensitive tokens than B conjunct and have a
similar sense of sentiment i.e. they do not have any con-
trastive sentiment polarities. Thus, the classifier uses the
individual tokens in A conjunct to base its decision, which
is consistent with the ground-truth sentiment. This obser-
vation proves that A-but-B rule-dissemination performance
and sentiment classification performance cannot be inter-
linked as the former checks whether the methods of rule-
dissemination actually enable the classifier to learn and
recognize A-but-B syntactic structures and forces the model
to base its decision on the B conjunct.

3. Finally, in Table 6c, we observe that in both examples, A
conjuncts contain more sentiment-sensitive tokens than
B conjuncts and the conjuncts do not have contrastive
sentiment polarities. Moreover, in both examples, the to-
kens that get the highest feature-attribution score in B
conjunct are non-sentiment sensitive tokens (e.g., ‘‘value’’
and ‘‘too’’). We note that the sentiment of the sentence is
consistent with the sentiment of A conjunct and it makes
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Table 5
Performance of the classifiers described in Table 3 on the Sentiment140 dataset.
Classifier Sentiment classification specific performance metrics PERCY scores

Accuracy Precision Recall F1-score L-PERCY S-PERCY I-PERCY

CW 0.6697 0.6704 0.6697 0.668 0.0876 0.0664 0.084
CG 0.6626 0.6629 0.6626 0.6611 0.0803 0.0639 0.0868
CE 0.7552 0.7554 0.7552 0.7549 0.1091 0.099 0.0891
CB 0.7603 0.7602 0.7603 0.7602 0.115 0.105 0.0949
CsB 0.7229 0.7338 0.7229 0.7177 0.064 0.0538 0.0438
CFW 0.7003 0.7003 0.7003 0.6998 0.1027 0.0819 0.0954
CFG 0.6976 0.6975 0.6976 0.6971 0.1014 0.0729 0.0876
CFE 0.7636 0.7635 0.7636 0.7635 0.0828 0.0727 0.0577
CFB 0.7798 0.7822 0.7798 0.7798 0.0901 0.0801 0.065
CFsB 0.749 0.7584 0.749 0.7451 0.0663 0.0561 0.0412
CDW 0.6727 0.676 0.6727 0.6689 0.1058 0.0861 0.0943
CDG 0.6725 0.6745 0.6725 0.6696 0.0903 0.0767 0.096
CDE 0.7607 0.7609 0.7607 0.7603 0.1473 0.1371 0.1072
CDB 0.7647 0.7646 0.7647 0.7646 0.1083 0.0983 0.0683
CDsB 0.7267 0.7291 0.7267 0.725 0.0602 0.0501 0.0201
CDFW 0.7052 0.7054 0.7052 0.7043 0.1123 0.0943 0.1071
CDFG 0.6938 0.6945 0.6938 0.6926 0.1113 0.0821 0.0956
CDFE 0.7615 0.7615 0.7615 0.7613 0.0912 0.0811 0.0512
CDFB 0.7726 0.7734 0.7726 0.7727 0.1182 0.1081 0.0782
CDFsB 0.7611 0.7623 0.7611 0.7612 0.0691 0.059 0.0289
LW 0.7056 0.7073 0.7056 0.7038 0.0637 0.0505 0.0522
LG 0.7272 0.7276 0.7272 0.7264 0.0635 0.0497 0.0557
LE 0.7251 0.7259 0.7251 0.724 0.1044 0.0943 0.0843
LB 0.7399 0.741 0.7399 0.74 0.1025 0.0924 0.0824
LsB 0.7173 0.7206 0.7173 0.7149 0.0656 0.0556 0.0455
LFW 0.7165 0.7169 0.7165 0.7156 0.0702 0.0675 0.0507
LFG 0.7194 0.7203 0.7194 0.7183 0.0484 0.0335 0.0247
LFE 0.746 0.746 0.746 0.7458 0.0853 0.0752 0.0551
LFB 0.7783 0.7831 0.7783 0.778 0.093 0.083 0.0629
LFsB 0.7636 0.7639 0.7636 0.7637 0.0695 0.0593 0.0394
LDW 0.6991 0.7047 0.6991 0.695 0.105 0.141 0.0922
LDG 0.7219 0.7248 0.7219 0.7198 0.1162 0.1632 0.2173
LDE 0.7221 0.7254 0.7221 0.7198 0.1344 0.1442 0.2343
LDB 0.7416 0.7417 0.7416 0.7417 0.0922 0.1021 0.1922
LDsB 0.7066 0.7163 0.7066 0.701 0.0605 0.0704 0.1604
LDFW 0.7179 0.7198 0.7179 0.7162 0.0617 0.0501 0.0155
LDFG 0.7228 0.7267 0.7228 0.7202 0.0717 0.0792 0.0712
LDFE 0.7569 0.7576 0.7569 0.7562 0.0893 0.0991 0.0591
LDFB 0.7588 0.7594 0.7588 0.7582 0.1304 0.1402 0.1002
LDFsB 0.7586 0.7593 0.7586 0.7587 0.0692 0.0791 0.039

C=CNN, L=LSTM.
D=Distillation.
F=Fine-tuning.
W=word2vec, G=Glove, E=elmo, B=bert, sB=sentibert.
s
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intuitive sense to use an additive operation like ‘‘expecta-
tion over weights’’ as shown in Section 3.2.1 to calculate
the conjunct contribution, which determines the overall
contribution of all the tokens in a conjunct.

.4. Robustness of explanation frameworks for PERCY

Feature attribution based local post-hoc explanation E on a
entence s ∈ S for the model f can be viewed on a higher level
s a function of both s and f [90] as follows:

s = g(s, f ) (8)

This is true for all frameworks that we use in our analysis —
IME [21], SHAP [22] and IG [23]. As we can see in Eq. (8), the
xplanation E depends on both the sentence s and the model to
e explained f .
Previous studies like [90,91] have shown that these explana-

ion frameworks suffer from non-robustness issues, i.e., they pro-
ide substantially different explanations on a locally perturbed
ample z of the input sentence s (the sample sentence z is locally
erturbed to s if ∥s− z∥ ≈ 0). Alvarez-Melis and S. Jaakkola [90]
rgues that the explanations can only be considered meaningful
r valid if they fulfill the criteria of being robust to the local
erturbations of the input sentence s. Intuitively, similar inputs
11
hould provide similar explanations. Hence, in the following, we
nalyze the robustness of explanation frameworks for PERCY
sing two methods.

.4.1. Local lipschitz estimates
Mathematically, a post-hoc explanation E in Eq. (8) is robust

f ∥Es−Ez∥ ≈ 0 for ∥s−z∥ ≈ 0 given ∥P(y|s;w)−P(y|z;w)∥ ≈ 0.
o quantify this robustness, Alvarez-Melis and S. Jaakkola [90]
ropose to calculate the Local Lipschitz Estimate of E. Inspired by
ipschitz continuity in calculus, which measures relative changes
n function output with respect to function input in the entire
omain, Alvarez-Melis and S. Jaakkola [90] propose to calculate
he point-wise, neighborhood-based Local Lipschitz Estimate of E
n an input sentence s of interest. Specifically, given a set of
sentences S = {s(0), s(1), . . . , s(N)

}, they propose to define for
very sentence s(i) ∈ S a set of all local perturbations to Z (i) as
ollows:
(i)
ϵ = {z

(i,j)
| ∥s(i) − z(i,j)∥ ≤ ϵ} (9)

where they set ϵ = 0.1 to obtain local perturbations. Then,
hey propose to calculate the Lipschitz Estimate for each sentence
(i)
∈ S as follows:

S(s(i)) = argmax
(i)

∥Es − Ez∥2
∥s− z∥2 (10)
z(i,j)∈Zϵ
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Fig. 4. Rank correlation scatter plots between sentiment classification accuracy values vs. PERCY score values on SST2 and Sentiment140 datasets. Green points
represent classifiers proposed for Logic Rule Dissemination (LRD) in Table 3 whereas red points represent classifiers constructed for general sentiment classification
(non-LRD).
Intuitively, the fraction ∥Es−Ez∥2
∥s−z∥2

in Eq. (10) should be bounded
by a constant value L where L ≈ 0 for all s ∈ S. Hence, the higher
the value of L, the lower the stability of explanations E, which
in turn means that the explanatory framework that generated
E is less robust. Although the Lipschitz Estimate is a unit-less
quantity, Alvarez-Melis and S. Jaakkola [90] states that it has no
‘‘ideal’’ universally desirable value and its acceptable value will
depend on the end use of the generated explanations. In our
case, we use the generated explanations to compute PERCY scores
as shown in Section 3. Moreover, as it can be seen in Eq. (8),
the generated explanations are dependent upon the dataset and
model, which means lower values of Lipschitz scores on one set
of {dataset, model} does not mean it will be lower on another set
of {dataset, model}.

In Fig. 5, we show the obtained local Lipschitz scores for all
the classifiers in Table 3 using the three explanation frameworks
used in our analysis – LIME, SHAP, and IG – on our two datasets
— Sentiment140 and SST2. Overall, we make the following key
observations:

1. We observe that SHAP has the lowest overall scores as the
median values are lowest and thus, has the highest stability
among all frameworks.

2. Moreover, the two other frameworks provide comparable
scores as well which are low as compared to the ones
reported in Alvarez-Melis and S. Jaakkola [90]. We note that
these results are not contradictory but as stated by Alvarez-
Melis and S. Jaakkola [90] and can be seen in Eq. (8), Local
12
Lipschitz Estimates depend on the dataset and model to
be explained, which are different in our paper compared
to [90]. Thus, in our case, we can reach the conclusion that
the explanation frameworks seems to provide robust-enough
explanations on datasets and classifiers used.

6.4.2. Correlation between PERCY scores
As mentioned earlier, the end use of the generated explana-

tions from all frameworks is to calculate PERCY scores as detailed
in Section 3. While Lipschitz scores in Fig. 5 are quite low, they
are still unable to tell whether the generated explanations are
robust-enough so as not to influence the final PERCY score cal-
culation. To measure the impact of explanations instability on
final PERCY scores calculations, we compute correlations between
PERCY scores calculated from all three explanation frameworks –
LIME, SHAP, and IG – as shown in Figs. 6 and 7.

In particular, we show in Fig. 6 scatterplots with best fit
linear regression of the rankings obtained using PERCY scores
with the different explanation frameworks of all classifiers de-
scribed above. Also, the correlation is quantified using Kendall’s
correlation coefficient (τ ) [89]. On top of these plots, we also
calculate the Pearson’s correlation between PERCY scores from
different frameworks as distributions, i.e., PERCY scores calcu-
lated from each explanation framework – LIME, SHAP, and IG –
are represented respectively as:

PERCYfrdist =

{
1, if PERCYfr (xi) = 1
0, if PERCYfr (xi) = 0 (11)

∀xi ∈ Xtest = {Xtestc1 + Xtestc2 + · · · + Xtestcn}
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Table 6
Anecdotal examples containing A-but-B syntactic structures. In each conjunct, we highlight tokens based on their feature-attribution
weights assigned from an explanation framework. Darker color indicates a higher token score while lighter color indicates a lower
token score. We show the scores obtained for the CDE classifier in Table 4 since it is an LRD classifier and it has the highest PERCY
score values on all three explanation frameworks.

(a) Examples where the predicted sentiment was correct and the decision was based on the B conjunct.
Sentences Ground truth sentiment

lots of effort and intelligence are on display but in execution it is all awkward

, static , and lifeless rumblings . Negative

often messy and frustrating , but very pleasing at its best moments , it ’s

very much like life itself. Positive

(b) Examples where the predicted sentiment was correct but the decision was based on the A conjunct.
Sentences Ground truth sentiment

‘‘ analyze that ’’ is one of those crass , contrived sequels that not only fails on its

own , but makes you second guess your affection for the original . Negative

a gorgeously strange movie , heaven is deeply concerned with morality

, but it refuses to spell things out for viewers . Positive

(c) Examples to support using the ‘‘Expectation’’ operation instead of the ‘‘Max’’ for calculating conjunct contribution. The
sentiments of these examples were correctly predicted.

Sentences Ground truth sentiment
a fine , rousing , g rated family film , aimed mainly at little kids but with plenty

of entertainment value to keep grown ups from squirming in their seats . Positive

tries to add some spice to its dull sentiments but the taste

is all too familiar . Negative
Fig. 5. Lipschitz scores of the explanation frameworks we use in our analysis. Each box plot denotes the Lipschitz values for all the classifiers in Table 3 of all the
test data points on a particular dataset from a particular explanation framework.
where PERCYfr means PERCY score calculated from a particular
explanation framework (LIME, SHAP, or IG) and Xtestci means set
f test-datapoints for a ith classifier in Table 3 on which PERCY
cores were calculated from PERCYfr . The results are shown in
ig. 7.
Overall, we observe that there is a significant correlation

etween the PERCY scores estimated using the three explana-
ion methods as shown in Fig. 6 – all Kendall’s τ values are
bove 0.5 indicating the classifiers share similar ranks of PERCY
cores and the explanations instability do not influence the final
ERCY scores calculation. These findings can be further supple-
ented with more granular level correlation results between
ERCY scores as shown in Fig. 7 where LIME & SHAP, LIME & IG
nd SHAP & IG frameworks have significant positive correlation
enoted by high positive Pearson’s values. These values further
enote that even on the data-point level, the frameworks provide
imilar PERCY score values.
13
6.5. Limitations and discussion

While we believe that PERCY can provide valuable insights
into the ability of knowledge dissemination methods to identify
and classify contrastive discourse relations, we acknowledge that
there are several limitations to our method that should be noted.

One limitation is that PERCY relies on post-hoc explanation
frameworks to analyze the predictions of a given classifier. While
these frameworks provide valuable insights into how a model ar-
rived at its decision, they are not perfect and may not capture all
the relevant syntactic structures in a given sentence. Additionally,
PERCY assumes that the correct conjunct can be identified and
extracted from the sentence, which may not always be the case in
practice. Another limitation is that our study focuses specifically
on contrastive discourse relations, and may not generalize to
other syntactic structures or linguistic phenomena. For example,
PERCY may not be effective at identifying and classifying more
complex syntactic structures such as:
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Fig. 6. Ranked correlation scatter plots between L-PERCY, S-PERCY, and I-PERCY scores on SST2 and Sentiment140 datasets — each dot point represents a method
in Table 3 with its ranking on each axis. The line y = x (black) is also included to convey whether the rank of a particular method is consistent with respect to the
different explainability frameworks used. Also, we include the regression line (green) to show the general trend of the data points, making it easier to observe the
positive relationship between the rankings.

Fig. 7. Pearson Correlation Heatmaps between L-PERCY, S-PERCY, and I-PERCY scores distributions on SST2 and Sentiment140 datasets respectively.

14
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• Complex subordination structures: PERCY relies on iden-
tifying and extracting the correct conjunct in a sentence,
which may be difficult or impossible in cases where the
sentence contains complex subordination structures such as
relative clauses or nested clauses.
• Ambiguous discourse relations: Some sentences may con-

tain ambiguous discourse relations where it is not clear
which conjunct should be considered as the main clause. For
example, consider the sentence ‘‘Although he was tired, he
went for a run and felt better.’’ It is not clear whether the
main clause is ‘‘he went for a run’’ or ‘‘he felt better’’, which
may make it difficult to identify the appropriate conjunct to
use for sentiment classification.
• Negation and polarity: Our method assume that the senti-

ment expressed in a sentence can be determined based on
the sentiment words and discourse relations present in the
sentence. However, in cases where the sentence contains
negation or conflicting polarity, the overall sentiment may
not be easily inferred from these features alone.
• Irony and sarcasm: Our method focuses on identifying and

classifying sentiment expressed in a straightforward man-
ner. However, some sentences may contain irony, sarcasm,
or other forms of figurative language that may require a
more nuanced approach to sentiment analysis.

It is important to note that there may be many other types of
syntactic structures that PERCY may not be able to process effec-
tively. We believe that further research is needed to address these
limitations and to develop more robust and effective methods for
incorporating logic rules into machine learning models.

7. Conclusion

This paper provides an analysis and a study of neural-symbolic
methods focused on their ability to effectively disseminate logic
rule knowledge in a DNN model for sentence-level binary senti-
ment classification task. This includes enabling a DNN model to
effectively identify syntactic structures in a sentence and force
the DNN model to base its decision on the appropriate conjunct.
We show that accuracy or task-specific performance metric can
be misleading in effectively assessing this ability. Hence, we
proposed an alternative metric called PERCY, which stands for
Post-hoc Explanation-based Rule ConsistencY Score to effectively
assess the ability of a method to encode syntactic structures.
We conducted an exhaustive set of experiments to support our
hypothesis and concluded that the high performance of sentiment
classification metrics does not necessarily indicate high rule-
dissemination performance. Specific findings of our paper include
that (a) accuracy – or any other performance metric – can be
misleading in assessing the ability of logic rule dissemination
methods to base their decisions on the right conjunct, (b) not
all analyzed methods effectively capture syntactic structures, (c)
often, the underlying sequence model is what captures the syn-
tactic structure, and (d) for the best method less than 25% of test
examples are classified based on the right conjunct indicating a
lot of research needs to be done on this topic. Last but not least,
we experimentally demonstrate that the PERCY scores calculated
are robust and stable w.r.t. the feature-attribution frameworks
used.

Our experiments demonstrated that in cases where a weaker
sentiment is expressed in the rule conjunct of a discourse rela-
tions (e.g., after the ‘‘but’’ in a sentence), a naive model (e.g., CW
in Table 3) that is solely based on the number or intensity of
sentiment words may incorrectly classify the sentiment of the
sentence based on the stronger sentiment that comes in the
other conjunct (e.g., before the ‘‘but’’). To address this issue, a

model could incorporate a mechanism that takes into account

15
the discourse relations in the sentence. One interesting approach
to explore is to use a Rule-Mask Mechanism with, which given
an input sequence predicts a vector that captures there exists
an applicable logic rule on the input sequence [92]. Another
approach is to use attention mechanisms that selectively focus
on the important parts of the sentence, taking into account the
discourse relations. For example, a model could use self-attention
to weigh the importance of different words in the sentence based
on their relation to other words, allowing the model to give
more weight to the sentiment expression that is in the rule
conjunct (e.g., after the ‘‘but’’). Incorporating discourse relations
and attention mechanisms can help improve the PERCY score of
sentiment classification. Future work includes exploring the use
of light-wise explanation frameworks to ease the calculation of
the PERCY score.
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