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 a b s t r a c t

Hierarchical multi-label classification in computer vision presents significant challenges in maintaining consis-
tency across different levels of class granularity while capturing fine-grained visual details. This paper presents 
Taxonomy-aware Capsule Network (HT-CapsNet), a novel capsule network architecture that explicitly incorpo-
rates taxonomic relationships into its routing mechanism to address these challenges. Our key innovation lies 
in a taxonomy-aware routing algorithm that dynamically adjusts capsule connections based on known hierar-
chical relationships, enabling more effective learning of hierarchical features while enforcing taxonomic con-
sistency. Extensive experiments on six benchmark datasets, including Fashion-MNIST, Marine-Tree, CIFAR-10, 
CIFAR-100, CUB-200-2011, and Stanford Cars, demonstrate that HT-CapsNet significantly outperforms existing 
methods across various hierarchical classification metrics. Notably, on CUB-200-2011, HT-CapsNet achieves ab-
solute improvements of 10.32%, 10.2%, 10.3%, and 8.55% in hierarchical accuracy, F1-score, consistency, and 
exact match, respectively, compared to the best-performing baseline. On the Stanford Cars dataset, the model 
improves upon the best baseline by 21.69%, 18.29%, 37.34%, and 19.95% in the same metrics, demonstrating the 
robustness and effectiveness of our approach for complex hierarchical classification tasks.

1.  Introduction

Image classification presents a fundamental challenge in computer 
vision, particularly when dealing with real-world scenarios where im-
ages exhibit complex semantic relationships. While traditional clas-
sification approaches assign single labels to images, many practical
applications require understanding multiple levels of abstraction simul-
taneously. Hierarchical Multi-Label Classification (HMC) emerges as a 
critical paradigm that addresses these complexities by enabling images 
to be classified across multiple semantic levels while respecting prede-
fined taxonomic relationships [1,2]. Unlike standard multi-label clas-
sification, where labels are treated independently [3], HMC explicitly 
models the intrinsic parent-child relationships between classes [4], cre-
ating a structured prediction framework that mirrors natural object cat-
egorisation, making it particularly valuable in domains such as image 
recognition, document categorisation [5], protein function prediction 
[6], and fine-grained image classification [7]. For instance, in visual 
recognition tasks, an image might be classified as “vehicle” at the coars-
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est level, “land vehicle” at an intermediate level, and “car” at the finest 
level, with each level providing increasingly specific information [8].

This hierarchical approach offers several distinct advantages over 
alternative methods. First, it enables more nuanced and interpretable 
predictions by capturing the natural taxonomy of visual concepts [9]. 
Second, it allows for flexible querying and retrieval at different levels of 
granularity, making it particularly valuable for applications like content-
based image retrieval and visual search [10]. Third, by leveraging hier-
archical relationships, these systems can potentially achieve better gen-
eralisation, especially for fine-grained categories with limited training 
data [7]. These capabilities have made HMC increasingly relevant across 
diverse domains, from fine-grained object recognition to medical image 
analysis [11].

Despite its practical importance, developing effective HMC systems 
presents several significant challenges. A fundamental difficulty lies in 
maintaining hierarchical consistency, which requires ensuring that pre-
dictions respect the parent-child relationships in the label hierarchy 
[12,13]. Traditional deep learning approaches, while powerful for flat 
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Fig. 1. Class Activation Maps (CAMs) for our proposed HT-CapsNet, capsule based HD-CapsNet [19] and convolution based B-CNN [16] baseline models across 
different hierarchical levels (𝑙 = 1, 2, 3). Each row shows a different image, with columns showing the input image and corresponding CAMs at each level. HT-
CapsNet demonstrates more focused and coherent attention patterns that progressively refine from coarse to fine levels, maintaining hierarchical consistency. For 
instance, in vehicle images (rows 1–3), attention begins with focused discriminative regions at level 1, gradually expanding to capture broader contextual features at 
level 3. Similarly, for animal images (rows 4–6), the attention patterns progress from precise focal points to more comprehensive feature regions, demonstrating HT-
CapsNet’s ability to leverage both fine-grained and holistic features across the hierarchy. This hierarchical attention pattern is notably more coherent in HT-CapsNet 
compared to the baseline models, which show less structured progression across levels.

classification and multi-label classification, often struggle to maintain 
these hierarchical constraints, potentially predicting incompatible label 
combinations that violate the underlying taxonomy. Additionally, most 
existing methods treat the hierarchical structure as a post-processing 
constraint rather than integrating it directly into the learning process 
[14,15], leading to suboptimal use of taxonomical information. The 
inherent complexity of simultaneously modelling multiple hierarchical 
levels while preserving label dependencies increases computational de-
mands and model complexity [14,16,17]. These challenges are further 
compounded in real-world applications where the label hierarchy can 
be deep and complex [18], with varying numbers of classes at different 
levels and intricate inter-level relationships.

The critical nature of modelling hierarchical feature dependencies is 
visually demonstrated in Fig. 1, which illustrates Class Activation Maps 
(CAMs) across different hierarchical levels. These visualisations reveal 
how visual attention patterns should naturally evolve from coarse to 
fine semantic levels during classification. For example, when classify-
ing vehicles, effective hierarchical models should first attend to general 
shape and structure at coarse levels (e.g., “transport”), then progres-
sively focus on more specific discriminative features at finer levels (e.g., 
“automobile” vs “truck”). However, as shown in the figure, traditional 
approaches often fail to maintain this hierarchical consistency in fea-
ture attention, leading to fragmented or inconsistent feature localisation 
across levels. This inconsistency can result in reduced interpretability 

and reliability of classifications, particularly in fine-grained scenarios 
where subtle feature differences determine class membership [10]. The 
importance of coherent feature relationships across hierarchical levels 
is highlighted as a significant challenge that current methods have not 
adequately addressed.

Capsule Networks [20], with their routing-by-agreement mecha-
nism, offer a promising framework for modelling hierarchical relation-
ships in visual data. However, existing capsule network architectures 
have not been fully optimised for hierarchical multi-label classification 
tasks. While the routing-by-agreement mechanism shows promise for 
hierarchical learning, current approaches do not explicitly incorporate 
label taxonomy information into the routing process [21,22]. This lim-
itation results in routing decisions that may not align with known hier-
archical relationships between classes. Furthermore, existing methods 
often treat each level of the hierarchy independently during the routing 
process [13,19], missing opportunities to leverage cross-level dependen-
cies and enforce consistency constraints.

To address these limitations, we propose Hierarchical Taxonomy-
aware Capsule Network (HT-CapsNet), a novel architecture that explic-
itly incorporates taxonomical information into the capsule routing pro-
cess. Our approach introduces a taxonomy-guided routing mechanism 
that dynamically adjusts routing weights based on known hierarchical 
relationships between classes. This is achieved through a specialised 
routing algorithm that combines traditional routing-by-agreement with 
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a taxonomy-aware attention mechanism, ensuring that capsule connec-
tions respect the natural hierarchy of the classification task. HT-CapsNet 
employs a multi-level architecture where each level corresponds to 
a different granularity in the label hierarchy. The forward routing 
is explicitly top-down, with higher-level capsules guiding the forma-
tion of lower-level representations. Simultaneously, refinement also oc-
curs implicitly in the opposite direction, since routing-by-agreement 
and hierarchical consistency regularisation allow child-level predic-
tions and loss signals to influence parent-level activations during train-
ing. This ensures that information is propagated in a manner that en-
forces hierarchical consistency while retaining the benefits of capsule
agreement.

The main contributions of this work can be summarised as:
i) We propose an end-to-end capsule network architecture for hierar-
chical multi-label classification that naturally captures label depen-
dencies through its capsule structure while explicitly incorporating 
the hierarchical taxonomy information into the network design.

ii) We introduce a novel hierarchical routing algorithm that en-
hances the traditional dynamic routing mechanism by incorporat-
ing taxonomy-awareness, enabling more effective learning of hier-
archical features while maintaining taxonomical consistency across 
different levels of the hierarchy.

iii) Through extensive experiments on multiple benchmark datasets, we 
demonstrate that HT-CapsNet achieves superior performance com-
pared to existing methods across various hierarchical classification 
metrics. The taxonomy-guided routing mechanism significantly im-
proves both classification accuracy and hierarchical consistency. Our 
approach maintains computational efficiency while handling com-
plex hierarchical relationships.
The remainder of this paper is organised as follows: Section 2 reviews 

related work in deep neural networks for hierarchical classification and 
capsule networks. Section 3 presents our proposed HT-CapsNet archi-
tecture and taxonomy-aware routing mechanism in detail. Section 4 de-
scribes our experimental setup and results. Section 5 discusses the im-
plications and limitations of our approach, and Section 6 concludes the 
paper with final remarks and future directions.

2.  Related work

The evolution of deep learning approaches for HMC represents a crit-
ical intersection of structured prediction and representation learning. 
While significant advances have been made in both hierarchical classifi-
cation methodologies and neural network architectures, the challenge of 
effectively modelling complex taxonomic relationships while maintain-
ing computational efficiency remains at the forefront of computer vision 
research [23]. This section examines two streams of research that in-
form our work: deep neural networks for hierarchical classification and 
developments in capsule network architectures. We first analyse how 
deep learning approaches have progressively addressed the challenges 
of hierarchical classification, highlighting both their contributions and 
limitations. We then explore the evolution of capsule networks, focusing 
particularly on their potential for modelling hierarchical relationships 
and the current gaps in their application to taxonomic learning tasks.

2.1.  Deep neural networks for HMC

Hierarchical multi-label classification has seen significant develop-
ments with the advent of deep learning approaches. Early work in this 
domain focused on adapting traditional neural networks to handle hier-
archical relationships [14,16,24], primarily through modified loss func-
tions [25] and output layer structuring [26]. These initial approaches, 
while innovative, often struggled with maintaining consistency across 
hierarchical levels. The emergence of convolutional neural networks 
(CNNs) marked a significant advancement in hierarchical image classi-
fication. Several pioneering works proposed architectures that leverage 

the inherent hierarchical nature of CNN feature maps [15]. A notable 
approach introduced branched architectures [16,24], where different 
network branches are specialised in different levels of the hierarchy. 
These branched architectures address the varying granularity require-
ments across hierarchical levels by maintaining separate feature extrac-
tion pathways, allowing each branch to focus on features relevant to its 
specific level of abstraction. This architectural pattern proved particu-
larly effective in capturing both coarse-grained features necessary for 
high-level categorisation and fine-grained details required for specific 
classification. The approach was further enhanced by methods that in-
corporated attention mechanisms to dynamically weigh features based 
on their relevance to different hierarchical levels [27]. These attention-
enhanced models demonstrated improved performance by learning to 
focus on discriminative features specific to each level while maintain-
ing overall hierarchical consistency. The success of these approaches 
highlighted the importance of level-specific feature learning in hier-
archical classification tasks, though challenges remained in efficiently
coordinating information flow between different branches and main-
taining consistent predictions across levels.

Recent developments have focused on more sophisticated ap-
proaches to handling hierarchical relationships. One significant line of 
research explores graph-based neural networks [28,29], where class hi-
erarchies are explicitly modelled as graphs, allowing the network to 
learn relationships between different levels directly. Another promising 
direction involves transformer-based architectures [30] that leverage 
self-attention mechanisms to capture long-range dependencies across hi-
erarchical levels. Several approaches have been proposed to address the 
challenge of maintaining hierarchical consistency. These include hier-
archical loss functions [19,25], which explicitly penalise violations of 
taxonomic constraints, and regularisation techniques [31] that encour-
age feature sharing between related classes across different levels. More 
recent work has explored probabilistic approaches [7] that model the 
uncertainty in hierarchical predictions.

Despite these advances, several challenges remain. Most existing ap-
proaches treat hierarchical relationships as static constraints rather than 
learnable structures [14,16,32]. Additionally, many methods struggle 
with the trade-off between global hierarchical consistency and local clas-
sification accuracy [17,21]. This often results in inconsistent predictions 
across levels or increased computational complexity without leveraging 
the structural dependencies between labels, particularly for deep hier-
archies with many classes.

2.2.  Capsule networks

Capsule Networks (CapsNets), introduced by Sabour et al. in [20], 
represent a significant advancement in deep learning architecture de-
sign. Unlike traditional convolutional neural networks (CNNs) that rely 
solely on scalar-valued feature maps [33], CapsNets employ groups of 
neurons called capsules that output vectors representing entity proper-
ties and their instantiation parameters. The key innovation of CapsNets 
lies in their dynamic routing-by-agreement mechanism [20], which en-
ables parts-to-whole relationships to be learned through iterative refine-
ment of connections between capsules at different levels. This archi-
tectural characteristic makes CapsNets inherently suitable for capturing 
hierarchical relationships [13], as they naturally model the composi-
tional nature of features and their hierarchical organisation. The dy-
namic routing-by-agreement mechanism has seen several important de-
velopments. Initial work focused on improving the routing algorithm’s 
efficiency and stability [34,35]. Subsequent research introduced varia-
tions such as self-routing [36], SDA-routing [37], and attention-based 
routing [38,39], each offering different approaches to establishing con-
nections between capsules.

Several studies have explored modifications to the basic capsule ar-
chitecture to enhance its capabilities. These include approaches for han-
dling varying architecture sizes [40], methods for incorporating spatial 
relationships more effectively [41], and techniques for improving the 
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network’s scalability to larger datasets [42]. Recent work has also in-
vestigated the integration of modern deep learning concepts such as 
self-attention mechanisms [39] and residual connections [13] into the 
capsule framework. In the context of hierarchical classification, capsule 
networks have shown promising potential. Their ability to model part-
whole relationships naturally aligns with hierarchical structure learning 
[13,13]. Some approaches have explored using capsules for multi-level 
feature representation [13,21], while others have focused on adapting 
the routing mechanism to handle hierarchical relationships.

However, existing capsule-based approaches for hierarchical clas-
sification face several limitations. Most notably, they typically don’t 
explicitly incorporate known taxonomic relationships into the routing
process [13,19]. Additionally, the computational complexity of routing 
algorithms often limits their application to deeper hierarchies [40]. To 
overcome these limitations, we propose HT-CapsNet, which differs from 
existing methods by directly integrating taxonomic knowledge into the 
routing process, thereby maintaining hierarchical consistency without 
sacrificing computational efficiency. Our model explicitly leverages the 
taxonomy through a dedicated routing algorithm and consistency en-
forcement mechanisms, enabling robust and interpretable hierarchical 
feature learning.

3.  Method

We consider the problem of learning when the labels follow a hier-
archical taxonomy structure with multiple levels, where each level rep-
resents a different granularity of classification. Let 𝑋 =

{

𝑥𝑖
}𝑁
𝑖=1 denote 

a training dataset with 𝑁 samples. For each sample, we have labels at 
𝐿 different hierarchical levels, denoted as 𝑌 =

{

{

𝑦𝑙𝑖
}𝐿
𝑙=1

}𝑁

𝑖=1
 where 𝑦𝑙𝑖 ∈

{0, 1}𝐾𝑙  is a one-hot encoded vector subject to ∑𝐾𝑙
𝑘=1 𝑦

𝑙
𝑖,𝑘 = 1. Here, 𝐾𝑙

denotes the number of classes at level 𝑙, typically 𝐾𝐿 > 𝐾𝐿−1 > … > 𝐾1. 
The label 𝑦𝑙𝑖 represents the label for sample 𝑥𝑖 at level 𝑙.

In this work, we assume the label hierarchy follows a tree structure 
[1], where each class at a finer level has exactly one parent at the coarser 
level. This structure is encoded by the taxonomy matrix 𝑇 𝑙 for each 
level 𝑙, which enforces a one-to-many (parent-to-children) relationship 
characteristic of a tree. Here, 𝑇 𝑙 ∈ {0, 1}𝐾𝑙×𝐾𝑙+1  for 𝑙 = 1,… , 𝐿 − 1. Each 
entry 𝑇 𝑙

𝑖,𝑗 indicates whether class 𝑗 at level 𝑙 + 1 is a child of class 𝑖 at 
level 𝑙, such that,

𝑇 𝑙
𝑖,𝑗 =

{

1, if𝑗 ∈ {children of class𝑖}
0, otherwise

(1)

For any sample 𝑥𝑖, the consistency constraint can be expressed as:

𝑦𝑙𝑖 = 𝑦𝑙+1𝑖
(

𝑇 𝑙)𝑇 ; ∀ 𝑙 ∈ {1,… , 𝐿 − 1} (2)

This ensures that if the sample belongs to a class at level 𝑙 + 1, it must 
also belong to the corresponding parent class at level 𝑙.

In our formulation, the hierarchy level 𝐿 is fixed to the maximum 
depth of the dataset taxonomy. This means that for a given dataset, 
all samples are represented with the same number of levels. To address 
this hierarchical classification problem, we propose HT-CapsNet, a novel 
capsule network architecture that explicitly incorporates taxonomical 
relationships into its architecture and routing mechanism.

3.1.  Hierarchical taxonomy-aware capsule network

In this work, we propose Hierarchical Taxonomy-aware Capsule 
Network (HT-CapsNet1), which explicitly incorporates class taxonomy
information into the routing mechanism of capsule networks. Our ar-
chitecture leverages the hierarchical structure of class labels while en-
forcing taxonomic consistency through a specialised routing algorithm. 

1 Our implementation of HT-CapsNet is available at https://github.com/
tasrif-khondaker/HT-CapsNet

The overall architecture of HT-CapsNet is illustrated in Fig. 2, which 
consists of three primary components: a feature extraction backbone, 
multiple primary capsule layers (𝑃𝑙), and multiple taxonomy-aware sec-
ondary capsule layers (𝑆𝑙) for 𝑙𝑡ℎ hierarchical level. Since 𝐿 is fixed per 
data hierarchy, the architecture of HT-CapsNet is defined with respect 
to this hierarchical structure. This ensures a consistent network design, 
maintaining parent-child relationships across all levels.

The feature extraction block in our network is responsible for ex-
tracting high-level features from the input data. We employ a convolu-
tional backbone network, a standard deep CNN architecture that trans-
forms raw input images into spatially arranged feature maps encoding 
semantically meaningful information (e.g., VGG [43], ResNet [44] or 
EfficientNet [45]). This backbone serves as the initial stage of feature 
extraction in our model. Let 𝜙(𝑥𝑖 | 𝜃

)

∈ ℝ𝐻×𝑊 ×𝐶 denote the feature 
maps extracted from input 𝑥𝑖 through a convolutional backbone net-
work 𝜙(⋅ | 𝜃

)

:

𝐹 = 𝜙
(

𝑥𝑖 | 𝜃
)

∈ ℝ𝐻×𝑊 ×𝐶 (3)

where 𝐻 , 𝑊  are the spatial dimensions of the feature maps, 𝐶 is the 
number of channels and 𝜃 represents the parameters of the backbone 
network.

In the primary capsule layer (𝑃 ), as outlined in [20,34], an essential 
process is undertaken to transform the feature maps 𝐹  into capsule vec-
tors. The primary capsule layer is formed by reshaping these features 
into a set of 𝑁 𝑙

𝑝 primary capsules, where each capsule is represented by 
a 𝑑𝑙𝑝-dimensional vector:

𝑃𝑙 = squash
(

reshape(𝐹 )
)

∈ ℝ𝑁 𝑙
𝑝×𝑑

𝑙
𝑝 (4)

where 𝑁 𝑙
𝑝 =

𝐻×𝑊 ×𝐶
𝑑𝑙𝑝

 represents the number of primary capsules after 
reshaping the feature maps into capsules of dimension 𝑑𝑙𝑝. Each primary 
capsule is denoted as:

𝑝𝑙𝑖 ∈ ℝ𝑑𝑙𝑝 , 𝑖 ∈
{

1,… , 𝑁 𝑙
𝑝

}

(5)

The squash function in Eq. (4) is a non-linear activation function that 
ensures the length of each capsule vector is within the range [0, 1], while 
preserving its orientation. It is defined as:

𝑣𝑜 = squash(𝑣𝑖𝑛) =
||𝑣𝑖𝑛||2

1 + ||𝑣𝑖𝑛||2
𝑣𝑖𝑛

||𝑣𝑖𝑛||
(6)

where 𝑣𝑖𝑛 and 𝑣𝑜 represent the input and output capsule vectors, respec-
tively. In this squashing nonlinearity, a smooth sigmoidal factor com-
presses the vector length, whilst the unit vector preserves the direction. 
Following the design principle in [20], the length of the output vector 
encodes the probability that the entity exists, while its orientation cap-
tures the instantiation parameters. The explicit separation of length and 
orientation in this formulation makes the semantic roles of probability 
and feature representation more transparent.

The secondary capsule layers (𝑆𝑙) in HT-CapsNet are constructed to 
capture hierarchical relationships across multiple levels. For each hier-
archical level 𝑙, there is a taxonomy-aware secondary capsule layer that 
processes information from two sources: the level-specific primary cap-
sules and, for levels beyond the first, the predictions from the previous 
level. This dual-input structure enables both feature preservation and 
hierarchical information propagation. Each secondary capsule layer 𝑆𝑙
contains 𝐾𝑙 capsules, corresponding to the number of classes at level 
𝑙. Each capsule represents a distinct class and is characterised by a 𝑑𝑙𝑠-
dimensional vector that encodes the instantiation parameters of that 
class:

𝑆𝑙 =
{

𝑠𝑙𝑘 ∈ ℝ𝑑𝑙𝑠
}𝐾𝑙

𝑘=1
(7)

where 𝑠𝑙𝑘 represents the capsule vector associated with class 𝑘 at level 
𝑙. The connections between these capsules are governed by our novel 
taxonomy-aware routing mechanism (detailed in Section 3.2), which 
plays a crucial role in enforcing hierarchical consistency while allowing 
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Fig. 2. Architecture of the proposed Hierarchical Taxonomy-aware Capsule Network (HT-CapsNet). The network consists of a feature extraction backbone, and 
for each hierarchical level 𝑙, one primary capsule layer (𝑃𝑙) and one taxonomy-aware secondary capsule layer (𝑆𝑙). The primary capsules are reshaped from the 
feature maps extracted by the backbone network. Each secondary capsule layer is formed using the corresponding level’s primary capsules and the output from the 
previous secondary layer. Connections between secondary capsules represent hierarchical relationships defined by the taxonomy. Primary capsules are not connected 
across layers, as each layer’s 𝑃𝑙 is independently derived from the shared feature maps and used solely as input to its corresponding secondary capsule layer. The 
routing process between capsules (𝑃𝑙 to 𝑆𝑙 and 𝑆𝑙 to 𝑆𝑙+1) is guided by the taxonomy-aware routing mechanism (Algorithm 1) to enforce hierarchical consistency. 
Final predictions are obtained from the normalised lengths of secondary capsule vectors. The network is trained end-to-end with a multi-level loss incorporating 
classification and hierarchical consistency constraints.

flexible learning of part-whole relationships. This specialised routing al-
gorithm incorporates the predefined class taxonomy to guide the routing 
process, ensuring that capsule agreements respect the known hierarchi-
cal structure while maintaining the network’s ability to discover and 
learn meaningful hierarchical patterns in the data. The input to each 
secondary capsule layer is carefully structured to preserve both the low-
level feature representations and the hierarchical context. For each level 
𝑙, the input 𝑍𝑙 is initially formed as follows:

𝑍𝑙 =

{

𝑃𝑙 , if 𝑙 = 1
([

𝑃𝑙;𝑆𝑙−1
]

, 𝑆𝑙−1
)

, if 𝑙 > 1
(8)

Here, [𝑃𝑙;𝑆𝑙−1] denotes the concatenation of the primary capsules 𝑃𝑙 and 
the previous level’s secondary capsules 𝑆𝑙−1 along the capsule dimen-
sion, serving as input to the vote generation step for the taxonomy-aware 
routing mechanism. The second component 𝑆𝑙−1 is separately passed to 
the hierarchical agreement mechanism. Thus, for 𝑙 > 1, 𝑍𝑙 is a tuple 
that contains the concatenated capsules and the previous level predic-

tions. To ensure dimensional compatibility during concatenation, we 
enforce 𝑑𝑙𝑝 = 𝑑𝑙−1𝑠  for 𝑙 > 1. This formulation enables the model to re-
tain both hierarchical context and low-level feature representations at 
every level. The secondary capsules at level 𝑙 are influenced by both the 
primary capsules 𝑃𝑙 and the previous level’s secondary capsules 𝑆𝑙−1, 
enabling hierarchical message passing across semantic levels. In con-
trast, primary capsules at different levels are not directly connected, 
as each 𝑃𝑙 serves as a parallel low-level feature encoder specific to 
level 𝑙, rather than acting as a semantic unit. Hierarchical consistency 
and inter-level dependencies are enforced entirely via secondary cap-
sule routing and hierarchical agreement mechanisms, as detailed in
Section 3.2.

The final predictions at each level are obtained by computing nor-
malised lengths of the secondary capsule vectors. For each level 𝑙, the 
prediction layer 𝑌𝑙 transforms the secondary capsule representations 
into class probabilities:
𝑌𝑙 =

{

𝑦̂𝑙𝑘
}𝐾𝑙
𝑘=1, (9)
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where 𝑦̂𝑙𝑘 represents the probability of class 𝑘 at level 𝑙. The class prob-
abilities are computed as follows:

𝑦̂𝑙𝑘 =
exp

(

‖

‖

‖

𝑠𝑙𝑘
‖

‖

‖

)

∑𝐾𝑙
𝑗=1 exp

(

‖

‖

‖

𝑠𝑙𝑗
‖

‖

‖

) (10)

where ‖‖
‖

𝑠𝑙𝑘
‖

‖

‖

 denotes the Euclidean norm of the capsule vector 𝑠𝑙𝑘. The 
softmax normalisation ensures a proper probability distribution over the 
classes at each level.

While the architectural design of HT-CapsNet provides the founda-
tion for hierarchical learning, the key innovation lies in how informa-
tion flows through these components via our proposed taxonomy-aware 
routing mechanism. Unlike conventional routing mechanisms for cap-
sule networks that overlook hierarchical relationships, our approach 
explicitly incorporates taxonomic constraints into the routing process, 
ensuring that the network learns meaningful hierarchical patterns while 
maintaining taxonomic consistency. This specialised routing algorithm 
guides the flow of information between capsules, enabling the network 
to capture both local and global hierarchical relationships in the data.

3.2.  Taxonomy-aware routing

The key innovation in HT-CapsNet lies in our taxonomy-aware rout-
ing algorithm, which explicitly incorporates hierarchical class relation-
ships into the routing process to enforce taxonomic consistency. This 
mechanism ensures that the capsule agreements align with the known 
hierarchical structure of the classes, while maintaining the flexibility to 
learn novel hierarchical patterns. The routing process occurs between 
primary capsules and each level of secondary capsules, as well as be-
tween consecutive levels of secondary capsules, ensuring taxonomic 
consistency throughout the network. Our approach modifies the routing 
coefficients based on the predefined taxonomy matrix while maintain-
ing the network’s ability to learn flexible part-whole relationships.

The taxonomy-aware routing mechanism operates by integrating 
three key components: vote generation, taxonomy-guided coefficient 
computation, and hierarchical agreement calculation. These compo-
nents work together to ensure that the routing process respects hierar-
chical relationships while maintaining flexibility in learning part-whole 
relationships. For each level 𝑙, the routing process begins with the com-
putation of prediction vectors (votes) through learnable transformation 
matrices. Given an input capsule 𝑧𝑙𝑖 ∈ 𝑍𝑙, the vote for secondary capsule 
𝑘 is computed as:

𝑣𝑙𝑖,𝑘 = 𝑊 𝑙
𝑖,𝑘𝑧

𝑙
𝑖 (11)

where 𝑊 𝑙
𝑖,𝑘 ∈ ℝ𝑑𝑙𝑠×𝑑

𝑙
𝑝  is a learnable transformation matrix that maps the 

input capsule to the prediction vector space of level 𝑙.
The taxonomy-aware routing algorithm introduces a fundamentally 

new approach to routing in capsule networks by incorporating explicit 
hierarchical relationships into the agreement mechanism. This routing 
process adaptively guides the flow of information between capsules 
while enforcing taxonomic consistency across hierarchical levels. The 
routing coefficients 𝑐𝑙𝑖,𝑘 between input capsule 𝑖 and secondary capsule 
𝑘 at level 𝑙 are computed as:

𝑐𝑙𝑖,𝑘 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

exp
(

𝑏𝑙𝑖,𝑘
)

∑𝐾𝑙
𝑗=1 exp

(

𝑏𝑙𝑖,𝑗
) ; if 𝑙 = 1

exp
(

𝜏𝑙𝑏𝑙𝑖,𝑘⋅𝑚
𝑙
𝑖,𝑘

)

∑𝐾𝑙
𝑗=1 exp

(

𝜏𝑙𝑏𝑙𝑖,𝑗 ⋅𝑚
𝑙
𝑖,𝑗

) ; otherwise
(12)

where 𝜏𝑙 is a temperature parameter that controls the sharpness of the 
routing distribution, 𝑏𝑙𝑖,𝑘 is the pre-routing logit, and 𝑚𝑙

𝑖,𝑘 is a taxonomy-
derived mask. For the first level (𝑙 = 1), standard softmax routing is used 
since there are no parent-child relationships to consider. For higher lev-
els, the routing coefficients are modulated by the taxonomy mask to 

enforce hierarchical consistency. The mask 𝑚𝑙
𝑖,𝑘 is defined as:

𝑚𝑙
𝑖,𝑘 =

(

𝛽ℎ − 𝛽𝑙
)

⋅ 𝜎
(

𝜆𝑇
(

𝑇 𝑙
𝑖,𝑘
‖

‖

‖

𝑠𝑙−1𝐩(𝑘)
‖

‖

‖

− 𝜇𝑐
))

+ 𝛽𝑙 (13)

where 𝛽ℎ and 𝛽𝑙 are high and low threshold values that bound the mask-
ing effect, effectively creating a soft gating mechanism that allows some 
flexibility in the routing process while still enforcing taxonomic con-
straints. The parameter 𝜆𝑇  controls the concentration of the taxonomy 
influence, 𝜎(⋅) is the sigmoid function, 𝜇𝑐 is the centre value, and 𝑇 𝑙

𝑖,𝑘

is the taxonomy matrix value. ‖‖
‖

𝑠𝑙−1𝐩(𝑘)
‖

‖

‖

 represents the activation strength 
of the parent capsule, ensuring that routing decisions are influenced by 
the parent class’s confidence.

For levels beyond the first (𝑙 > 1), we introduce a hierarchical agree-
ment mechanism that ensures consistency between consecutive levels. 
This mechanism processes both the primary capsule information and the 
predictions from the previous level’s secondary capsules. The hierarchi-
cal agreement score ℎ𝑙𝑖,𝑘 for a vote 𝑣𝑙𝑖,𝑘 is computed as:

ℎ𝑙𝑖,𝑘 = 𝜎

(𝐾𝑙−1
∑

𝑗=1
𝑔𝑙𝑘,𝑗

⟨

𝑣𝑙𝑖,𝑘,𝑊
𝑙
ℎ𝑠

𝑙−1
𝑗

⟩

)

(14)

where 𝑔𝑙𝑘,𝑗 ∈ ℝ𝐾𝑙×𝐾𝑙−1  is a hierarchical gate that controls information 
flow between classes at adjacent levels, 𝑊 𝑙

ℎ ∈ ℝ𝑑𝑙𝑠×𝑑
𝑙−1
𝑠  is a dimension 

transformation matrix that aligns the dimensionality of capsules be-
tween levels, and 𝑠𝑙−1𝑗  represents the secondary capsule outputs from the 
previous level. The hierarchical gates 𝑔𝑙𝑘,𝑗 and the transformation matrix 
𝑊 𝑙

ℎ are learned parameters initialised to bias connections according to 
the taxonomy structure, allowing the network to adaptively refine these 
relationships during training. The agreement scores are then used to 
modify the vote vectors, ensuring that routing decisions at higher levels 
are influenced by the established hierarchical relationships:
𝑣𝑙𝑖,𝑘 ← ℎ𝑙𝑖,𝑘; ∀𝑙 > 1 (15)

This hierarchical agreement term ensures that the routing process 
at higher levels is influenced by hierarchically-aware representations 
based on the previous level’s predictions, maintaining hierarchical con-
sistency throughout the network.

The final secondary capsule vectors are computed through an itera-
tive routing process that integrates the taxonomy-guided routing coef-
ficients, hierarchical agreements, and attention mechanisms. The initial 
capsule updates are computed through a two-stage process. First, for 
each secondary capsule 𝑠̂𝑙𝑘 at level 𝑙, based on the routing coefficients 
𝑐𝑙𝑖,𝑘 and votes 𝑣𝑙𝑖,𝑘, an intermediate representation is determined:

𝑠̂𝑙𝑘 = squash

(𝑁𝑙
∑

𝑖=1
𝑐𝑙𝑖,𝑘𝑣

𝑙
𝑖,𝑘

)

(16)

where 𝑁𝑙 is the total number of input capsules at level 𝑙. The squash 
function ensures the capsule vectors have unit length while preserv-
ing their orientation. After each iteration, the routing logits are up-
dated based on the agreement between the transformed vote vectors 𝑣𝑙𝑖,𝑘
(which are the votes after applying hierarchical agreement) and current 
capsule outputs:
𝑏𝑙𝑖,𝑘 ← 𝑏𝑙𝑖,𝑘 +

⟨

𝑣𝑙𝑖,𝑘, 𝑠̂
𝑙
𝑘

⟩

(17)

Following the routing iterations, the intermediate capsule representa-
tions are refined through level-specific attention mechanisms. For the 
first level (𝑙 = 1), self-attention [46] is applied to capture intra-level re-
lationships. Similarly, for higher levels (𝑙 > 1), multi-head attention [46] 
is used to capture both local and global hierarchical dependencies. The 
final capsule representations are obtained through layer normalisation:
𝑠𝑙𝑘 = ‖

‖

‖

𝑠̂𝑙𝑘 + 𝐴𝑙
‖

‖

‖𝑛
(18)

where 𝐴𝑙 represents the attention output, and ‖ ⋅ ‖𝑛 denotes vector 
normalisation operation that preserves dimensionality. The normalisa-
tion process standardises the capsule vectors, ensuring they maintain 
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Algorithm 1: Hierarchical Taxonomic-Aware Routing (HTR).
Input:  Input capsules 𝑍𝑙, Taxonomy matrix 𝑇 𝑙, Level 𝑙, Previous level outputs 𝑆𝑙−1 (if 𝑙 > 1), Number of routing iterations 

𝑅, Routing Hyper Parameters: 𝜏𝑙, 𝜆𝑇 , 𝛽ℎ, 𝛽𝑙, 𝜇𝑐

Output:  Secondary capsule vectors 𝑆𝑙 = {𝑠𝑙𝑘}
𝐾𝑙
𝑘=1

1 Procedure HTR(𝑍𝑙, 𝑇 𝑙, 𝑙, 𝑆𝑙−1, 𝑅):
2 for all 𝑘 ∈ {1,… , 𝐾𝑙} and 𝑖 ∈ {1,… , 𝑁𝑙} do ⊳ 𝑁𝑙 and 𝐾𝑙 are the number capsules in 𝑍𝑙 and 𝑆𝑙
3 𝑏𝑙𝑖,𝑘 = 0 ⊳ Initialize routing logits
4 𝑣𝑙𝑖,𝑘 = 𝑊 𝑙

𝑖,𝑘𝑧
𝑙
𝑖 ⊳ Generate votes for each pairs

5 for 𝑟 ← 0 to 𝑅 do
6 for all 𝑘 ∈ {1,… , 𝐾𝑙} and 𝑖 ∈ {1,… , 𝑁𝑙} do
7 if 𝑙 > 1 then /* Process higher-level routing with taxonomy and hierarchical information */
8 𝑚𝑙

𝑖,𝑘 = TaxonomyGuidedRouting(𝑇 𝑙, 𝑘, 𝑆𝑙−1) ⊳ Taxonomy-guided mask for routing
9 ℎ𝑙

𝑖,𝑘 = HierarchicalAgreement(𝑣𝑙𝑖,𝑘, 𝑆𝑙−1) ⊳ Hierarchcial Agreement
10 𝑣𝑙𝑖,𝑘 ← ℎ𝑙

𝑖,𝑘 ⊳ Update votes with hierarchical agreement

11 𝑐𝑙𝑖,𝑘 =
exp

(

𝜏𝑙𝑏𝑙𝑖,𝑘⋅𝑚
𝑙
𝑖,𝑘

)

∑𝐾𝑙
𝑗=1 exp

(

𝜏𝑙𝑏𝑙𝑖,𝑗 ⋅𝑚
𝑙
𝑖,𝑗

)

12 else /* Process first-level routing without taxonomy */

13 𝑐𝑙𝑖,𝑘 =
exp

(

𝑏𝑙𝑖,𝑘
)

∑𝐾𝑙
𝑗=1 exp

(

𝑏𝑙𝑖,𝑗
)

14 𝑠̂𝑙𝑘 = squash
(

∑𝑁𝑙
𝑖=1 𝑐

𝑙
𝑖,𝑘𝑣

𝑙
𝑖,𝑘

)

15 𝑏𝑙𝑖,𝑘 ← 𝑏𝑙𝑖,𝑘 +
⟨

𝑣𝑙𝑖,𝑘, 𝑠̂
𝑙
𝑘

⟩

⊳ Update routing logits
16 if 𝑙 > 1 then
17 𝐴𝑙 = MHAttention(query = 𝑠̂𝑙𝑘, value = 𝑆𝑙−1, key = 𝑆𝑙−1) ⊳ Standard multi-head attention [46]
18 else
19 𝐴𝑙 = SelfAttention(𝑠̂𝑙𝑘) ⊳ For the first level standard self-attention [46] is used
20 𝑠𝑙𝑘 = ‖

‖

𝑠̂𝑙𝑘 + 𝐴𝑙
‖

‖𝑛 ⊳ Normalization process [47] with default parameters [48]
21 return 

{

𝑠𝑙𝑘
}𝐾𝑙
𝑘=1

22 Function TaxonomyGuidedRouting(𝑇 𝑙, 𝑘, 𝑆𝑙−1):

23 𝑠𝑙−1𝐩(𝑘) ∈ 𝑆𝑙−1 =
{

𝑠𝑙−1𝑗

}𝐾𝑙−1

𝑗=1
, ∀𝑘 ∈ {1,… , 𝐾𝑙} ⊳ 𝑠𝑙−1𝐩(𝑘) is the parent capsule of 𝑠𝑙𝑘

24 𝑚 =
(

𝛽ℎ − 𝛽𝑙
)

⋅ 𝜎
(

𝜆𝑇
(

𝑇 𝑙
𝑖,𝑘
‖

‖

‖

𝑠𝑙−1𝐩(𝑘)
‖

‖

‖

− 𝜇𝑐

))

+ 𝛽𝑙 ⊳ taxonomic mask
25 return 𝑚
26 Function HierarchicalAgreement(𝑣𝑙𝑖,𝑘, 𝑆𝑙−1):
27 ℎ = 𝜎

(

∑𝐾𝑙−1
𝑗=1 𝑔𝑙𝑘,𝑗

⟨

𝑣𝑙𝑖,𝑘,𝑊
𝑙
ℎ𝑠

𝑙−1
𝑗

⟩)

⊳ 𝑠𝑙−1𝑗 ∈ 𝑆𝑙−1 = {𝑠𝑙−1𝑗 }𝐾𝑙−1
𝑗=1

⊳ 𝑊 𝑙
ℎ ∈ ℝ𝑑𝑙𝑠×𝑑

𝑙−1
𝑠 ; 𝑔𝑙𝑘,𝑗 ∈ ℝ𝐾𝑙×𝐾𝑙−1  are learnable parameters

28 return ℎ

consistent magnitudes while preserving their directional information. 
This process ensures that the final capsule vectors are robust and well-
calibrated, capturing both local and global hierarchical relationships 
in the data. This three-stage process involving routing, attention, and 
normalisation creates a sophisticated mechanism for learning hierar-
chical representations. These processes allow the network to maintain 
taxonomic consistency, capture hierarchical dependencies, and discover 
complex patterns in the data while ensuring stable learning. Further, the 
interaction between the taxonomy-guided routing coefficients and hier-
archical agreements creates a powerful mechanism that can simultane-
ously respect class hierarchies while discovering novel patterns in the 
data. Specifically, hierarchical consistency is enforced by masking the 
routing coefficients using the taxonomy matrix and modulating agree-
ment scores based on parent activation strengths, thereby ensuring that 
child predictions align with their corresponding parent classes. This 
adaptive routing process allows the network to learn robust hierarchi-
cal representations while maintaining consistency with the known tax-
onomic structure.

The complete routing algorithm integrates these components into an 
iterative process that progressively refines capsule representations while 

maintaining both hierarchical consistency and taxonomic relationships. 
Algorithm 1 provides a detailed step-by-step description of this process, 
showing how the taxonomy-aware routing mechanism coordinates the 
flow of information across different levels of the hierarchy while enforc-
ing taxonomic constraints.

3.3.  Loss function

Training HT-CapsNet requires a loss function that effectively handles 
both the hierarchical nature of the classification task and the capsule-
based architecture. Our loss function combines margin-based objectives 
across different hierarchical levels while ensuring consistency with the 
taxonomic structure.

For each hierarchical level 𝑙, we employ a margin-based loss that 
operates directly on the capsule lengths. Given the predicted capsule 
vectors 𝑠𝑙𝑘 and their corresponding lengths 

‖

‖

‖

𝑠𝑙𝑘
‖

‖

‖

 from Eq. (10), the level-
specific loss is defined as:

𝑙 =
𝐾𝑙
∑

𝑘=1
𝑦𝑙𝑘 max

(

0, 𝑚+ − ‖

‖

‖

𝑠𝑙𝑘
‖

‖

‖

)2
+ 𝜆

(

1 − 𝑦𝑙𝑘
)

max
(

0, ‖‖
‖

𝑠𝑙𝑘
‖

‖

‖

− 𝑚−
)2

(19)
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where 𝑦𝑙𝑘 represents the ground truth for class 𝑘 at level 𝑙, 𝑚+ and 𝑚− are 
margin parameters that define the desired bounds for capsule lengths, 
and 𝜆 is a down-weighting coefficient for absent classes.

To effectively handle the varying complexity across hierarchical lev-
els, we introduce level-specific weights that account for the class distri-
bution. These weights are initialised based on the relative complexity of 
each level:

𝜔𝑖𝑛𝑖𝑡
𝑙 =

1 −𝐾𝑙∕
∑𝐿

𝑗=1 𝐾𝑗
∑𝐿

𝑖=1

(

1 −𝐾𝑖∕
∑𝐿

𝑗=1 𝐾𝑗

) (20)

where 𝐾𝑙 represents the number of classes at level 𝑙, and 𝐿 is the total 
number of hierarchical levels. The level weights are dynamically ad-
justed during training to adapt to the model’s performance:

𝜔(𝑡)
𝑙 = (1 − 𝛾)

𝜌(𝑡)𝑙
∑𝐿

𝑖=1 𝜌
(𝑡)
𝑖

(21)

where 𝜌(𝑡)𝑙 =
(

1 − acc(𝑡)𝑙
)

⋅ 𝜔𝑖𝑛𝑖𝑡
𝑙  represents the error-weighted initial 

weight at training iteration 𝑡, acc(𝑡)𝑙  is the classification accuracy at level 
𝑙, and 𝛾 is a hyperparameter that controls the balance between initial 
and dynamic weighting.

The final loss function combines the weighted losses from all hierar-
chical levels:

𝑡𝑜𝑡𝑎𝑙 =
𝐿
∑

𝑙=1
𝜔(𝑡)
𝑙 𝑙 (22)

This loss formulation serves multiple purposes in our architecture. 
First, the margin-based component encourages the network to learn 
discriminative capsule representations by enforcing separation between 
present and absent classes. Second, the hierarchical weighting scheme 
helps balance the learning process across levels of varying complexity. 
Finally, the dynamic weight adjustment mechanism allows the network 
to adaptively focus on challenging levels while maintaining stable train-
ing across the entire hierarchy. The loss function works in concert with 
the taxonomy-aware routing mechanism (Section 3.2) to ensure that the 
learned representations respect both the hierarchical structure of the 
classes and the part-whole relationships encoded in the capsule archi-
tecture.

4.  Experiments

In this section, we present a comprehensive overview of the experi-
ments conducted to evaluate the performance of HT-CapsNet in hierar-
chical multi-label classification tasks. In order to rigorously assess the 
efficacy of our proposed HT-CapsNet alongside other classifiers delin-
eated within existing scholarly literature, we have employed six distinct 
image datasets: Fashion-MNIST [49], Marine-Tree [50], CIFAR-10 [51], 
CIFAR-100 [51], Caltech-UCSD Birds-200-2011 (CUB-200-2011) [52], 
and Stanford Cars [53].

We conducted a comparative assessment of the effectiveness of 
our proposed HT-CapsNet against both flat classification techniques 
and hierarchical methods from the literature. For the flat classification 
method, we utilised the CapsNet framework described in [20], as well 
as VGG16 in [43], VGG19 in [43], ResNet-50 in [44], EfficientNetB7 in 
[45], and ConvNeXt in [54]. These flat classification techniques focus 
solely on the most granular class levels and overlook the hierarchical ap-
proaches. It is important to mention that the baseline CapsNet in [20] 
employs a capsule-based architecture combined with the dynamic rout-
ing algorithm.

In terms of hierarchical classification methods, we have made com-
parisons with both convolution-based and capsule-based networks. For 
the convolution-based category, we considered the CNN-based branch 
hierarchical classifier (B-CNN) from [16], the hierarchical convolutional 
neural network (H-CNN) in [24], and the Condition-CNN method in 
[55]. For the capsule-based approaches, we examined ML-CapsNet in 

[21], BUH-CapsNet in [22], the H-CapsNet approach in [13], and the 
HD-CapsNet method in [19]. The experiments are structured to rig-
orously evaluate the model’s ability to capture label correlations and
uphold the hierarchical organisation of the data. We will detail the 
benchmark datasets utilised, the experimental setup, and the evaluation 
metrics employed to measure the performance of HT-CapsNet against 
existing state-of-the-art HMC methods. Through these experiments, we 
aim to demonstrate the robustness and superiority of our proposed
method.

4.1.  Datasets

As mentioned previously, we have utilised six separate image 
datasets characterised by diverse class quantities and hierarchical rela-
tionships throughout our experimental framework. The specifics of the 
datasets are outlined below:

The Fashion-MNIST dataset constitutes a collection comprising 
70, 000 grayscale images that represent 10 distinct categories of fash-
ion merchandise. This dataset is systematically partitioned into 60, 000
images designated for training purposes and 10, 000 images allocated 
for testing. Each image is characterised by dimensions of 28 × 28 pixels. 
The dataset exhibits a balanced distribution, with each category contain-
ing 6, 000 images. The original dataset lacks any hierarchical arrange-
ment. Consequently, we have established a hierarchical framework for 
the dataset by organising the categories into two supplementary lev-
els, as detailed in [24]. The first level includes two main categories, 
while the second level contains six unique categories. In this hierarchi-
cal structure, the first level categories act as parent categories to the 
second level categories, and the second level categories serve as parent 
categories to those at the next corresponding level tied to the grouped 
categories. Thus, the categories in the hierarchical arrangement create 
a parent-child relationship dynamic.

The Marine-Tree dataset comprises a collection of 160, 000 colour 
images depicting marine organisms, categorised into tropical, temper-
ate, and combined subsets. This dataset offers a hierarchical architec-
ture consisting of five distinct levels. In the course of our experiment, 
we have implemented the settings pertaining to the combined subsets, 
which encompass 2 classes at the first level, 10 classes at the second 
level, 38 classes at the third level, 46 classes at the fourth level, and 60
classes at the fifth level. For the purpose of ensuring consistency, we 
have utilised the initial three levels of the hierarchical structure when 
conducting comparisons with the benchmark models, while employing 
all levels for the HT-CapsNet. Additionally, we have standardised the 
image dimensions to 64 × 64 pixels to facilitate simplicity.

In a similar manner, the CIFAR-10 and CIFAR-100 datasets represent 
two distinct collections comprising 60, 000 coloured images categorised 
into 10 and 100 child classes, respectively, with CIFAR-100 being fur-
ther classified into 20 parent categories. The datasets are partitioned 
into 50, 000 images designated for training and 10, 000 images allocated 
for testing purposes. Each image exhibits dimensions of 32 × 32 pixels. In 
order to establish a three-level hierarchical framework, we have incor-
porated 2 supplementary levels for the CIFAR-10 dataset and 1 supple-
mentary level for the CIFAR-100 dataset, adhering to the methodology 
outlined by [16]. Consequently, within the CIFAR-10 dataset, the initial 
supplementary level encompasses 2 classes, while the second supple-
mentary level comprises 7 classes; conversely, in the CIFAR-100 dataset, 
the initial supplementary level is constituted of 8 classes.

The CUB-200-2011 dataset comprises colour images representing 200
distinct bird species, while the Stanford Cars dataset encompasses colour 
images of 196 unique automotive models. We have adhered to the hier-
archical framework delineated in [26] for both datasets in order to im-
plement a 3-level hierarchical organisation, wherein the training, valida-
tion, and testing subsets contain 5, 944, 2, 897, and 2, 897 images for the 
CUB-200-2011 dataset, and 8, 144, 4, 020, and 4, 021 images for the Stan-
ford Cars dataset, respectively. The first, second, and third tiers comprise 
39, 123, and 200 categories for the CUB-200-2011 dataset and 13, 113, 
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and 196 categories, respectively, for the Stanford Cars dataset. In the 
course of our experiments, we have designated the image dimensions as 
64 × 64 pixels for both datasets.

To ensure computational efficiency and architectural consistency, we 
standardise all taxonomies to have uniform depth 𝐿. For classes with 
natural paths shorter than 𝐿, we employ label propagation where the 
terminal class is repeated at subsequent levels. This approach maintains 
semantic validity whilst enabling efficient batch processing and consis-
tent tensor operations across all hierarchy levels.

4.2.  Experimental setup

In our experiments, we have consistently applied a uniform approach 
to data preprocessing and augmentation across all datasets involved in 
our experiments. Specifically, we utilised the Standard Scaler for data 
processing during the training phase of all models. This method ensures 
that the features of the dataset are normalised, allowing for improved 
convergence during the training process. To enhance the diversity and 
robustness of our training data, we implemented the Mix-Up data aug-
mentation technique as introduced in [56]. Mix-Up is a straightforward 
yet powerful approach that creates new training samples by perform-
ing linear interpolation between pairs of randomly selected instances 
from the training set. This process involves calculating a weighted av-
erage of the two chosen samples along with their corresponding labels. 
The weights used for this interpolation are drawn from a beta distribu-
tion characterised by a parameter, denoted as 𝛼𝑚. In our experiments, 
we fixed the value of 𝛼𝑚 at 0.2, which has been shown to effectively bal-
ance the trade-off between the original samples and the newly generated 
ones.

We follow the official splits2 for each benchmark dataset, which 
matches common practice in hierarchical multi-label classification. Fur-
ther, to mitigate randomness, we fix all pseudorandom seeds for data 
shuffling, weight initialisation and layer operations, and we report re-
sults on the official test sets. We adopt a held-out validation set for model 
selection without accessing the test labels. All code, seeds and configu-
ration files are released to support exact reproducibility.

For model optimisation, we employed the Adam optimiser, which 
is known for its efficiency and effectiveness in handling sparse gradi-
ents. Additionally, we incorporated an exponential decay learning rate 
scheduler to fine-tune the learning process. Experimentally, we found 
that setting the initial learning rate to a higher value (0.001) strikes a 
balance between rapid convergence and the risk of overshooting the 
minimum. As training progresses, fine-tuning the model parameters be-
comes crucial to hone in on the optimal solution. To further refine the 
training, we established a decay rate of 0.95, which is applied after ini-
tial 10 epochs throughout all our experiments. This systematic approach 
to learning rate adjustment aids in stabilising the training process and 
enhances the model’s performance over time.

As outlined earlier in Section 3.1, the feature extraction module in 
our HT-CapsNet employs a convolutional backbone network 𝜙(⋅ | 𝜃)
to extract high-level features from the input data. In all experiments 
conducted, we utilised the EfficientNetB7 model, as detailed in [45], 
excluding the fully-connected layer located at the top of the network. 
Additionally, we carried out pre-training using ImageNet weights 𝜃
to set the initial parameters for the backbone of the feature extractor. 
Throughout all the experiments we conducted, we set the size of the 
primary capsules 𝑑𝑙𝑝 to 8 for the initial level 𝑙 = 1, and for levels 𝑙 > 1, 
we specified 𝑑𝑙𝑝 = 𝑑𝑙−1𝑠  to ensure compatibility during the concatenation 
phase. The size of the secondary capsules 𝑑𝑙𝑠 was established at 64 for the 
first level 𝑙 = 1, and then progressively reduced for the subsequent levels 
in line with the decay formula 𝑑𝑙𝑠 = 64 × 2−(𝑙−1) for ∀𝑙 > 1 and 𝑑𝑙𝑠 ≥ 1. As a 
result, the number of primary capsules 𝑁 𝑙

𝑝 depended on the dimensions 

2 Standard splits ratio for Fashion-MNIST, CIFAR-10/100, CUB-200-2011, 
Stanford Cars, and the splits used in prior work for Marine-Tree datasets.

of the input image. For the purpose of training the HT-CapsNet model, 
we employed the taxonomy-aware routing algorithm as outlined in Sec-
tion 3.2. The routing iterations, referred to as 𝑟, were uniformly set at 
3 across all the hierarchical tiers. The temperature parameter 𝜏𝑙, as de-
scribed in Eq. (12), was initialised to a value of 0.5. The high and low 
threshold parameters, 𝛽ℎ and 𝛽𝑙, were consistently maintained at 0.99
and 0.1, respectively. The concentration parameter 𝜆𝑇  was designated a 
value of 0.5, and the central value 𝜇𝑐 was established as 0.5 in Eq. (13) 
throughout all experimental procedures. Furthermore, upper and lower 
margin values 𝑚+ and 𝑚− were set to 0.9 and 0.1, respectively, for the 
margin-based loss function in Eq. (19). The down-weighting coefficient 
𝜆 was maintained at 0.5 to balance the loss function.

We performed a preliminary grid search over key hyperparameters 
on the validation split of each dataset. Specifically, we tuned the learn-
ing rate, batch size, number of routing iterations, and capsule dimen-
sions. The margin loss parameters (𝑚+, 𝑚−and𝜆) were selected follow-
ing prior works [13,19,20] with slight adjustments to fit the hierarchical 
setting, and were validated empirically for each dataset. The selected hy-
perparameters are reported in Table 1. This systematic tuning ensures 
fair comparison and reproducibility of our results.

The foundational CapsNet architecture was trained utilising the iden-
tical hyperparameters delineated in [20], wherein the primary capsules 
possess dimensions of 8 and the secondary capsules exhibit dimensions 
of 16, employing dynamic routing for a total of 2 iterations across all 
datasets. In a similar manner, the models VGG16, VGG19, ResNet-50, 
EfficientNetB7, and ConvNeXt were trained with the identical hyper-
parameters outlined in their respective research papers as described in 
[43–45], and [54]. In the context of the B-CNN architecture, we have 
implemented the base-B model as described in [16], which does not 
incorporate pre-trained weights. All additional hyperparameters were 
maintained in accordance with the specifications provided by Zhu and 
Bain in [16]. Likewise, we adopted the same hyperparameters as artic-
ulated in [24] for the H-CNN model, as well as those specified in [55] 
for the Condition-CNN architecture. For the ML-CapsNet, BUH-CapsNet, 
H-CapsNet and HD-CapsNet models, we employed the identical hyper-
parameters as referenced in [13,21,22], and [19], respectively, while 
ensuring that the capsule dimensions remained consistent with those of 
the HT-CapsNet model to facilitate a fair comparative analysis. Addition-
ally, we conducted extensive training of the models across all datasets 
for a total of 200 epochs. This rigorous approach ensures a fair and con-
sistent comparison of performance metrics, allowing us to evaluate the 
effectiveness and robustness of each model under uniform conditions. By 
maintaining this standard across the various datasets, we aim to elimi-
nate any potential biases that could arise from differing training dura-
tions or conditions, thereby enhancing the validity of our comparative 
analysis.

Traditional evaluation metrics, including accuracy, precision, recall, 
and F1-score, prove inadequate for hierarchical classification models [1] 
as they overlook the hierarchical structure inherent in datasets. In com-
plex class configurations, where instances may be classified across multi-
ple levels, these metrics fail to accurately capture the model’s adeptness 
in navigating and rendering precise predictions. The misclassification of 
labels at higher hierarchical levels is markedly more consequential than 
at lower levels. However, conventional metrics equate all misclassifica-
tions, thus neglecting the critical nature of hierarchical interrelations. To 
rigorously evaluate the HT-CapsNet model, we employ both traditional 
and hierarchical metrics. Beyond standard per-level accuracy and mean 
average precision (mAP), we compute the hierarchical mean accuracy 
̂Acc@𝑘, which considers the top-k predictions at each level. Specifically, 
̂Acc@1 represents the harmonic mean of accuracies across all levels con-
sidering only the top prediction, while ̂Acc@5 considers the top-5 pre-
dictions, providing insight into the model’s ability to rank correct labels 
highly even when the top prediction is incorrect.

In addition to standard measures, we utilise specialised hierarchi-
cal metrics including hierarchical precision (hP), recall (hR), F1-score 
(hF1), consistency (Cons), and exact match score (EM) following the 
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Table 1 
Hyperparameter settings for HT-CapsNet across all datasets. We have performed a grid search approximately 5 times for each 
dataset to find the best hyperparameters. The best hyperparameters are selected based on the validation accuracy.
    Component  Parameter  Value  Description  
 
Architecture

 Backbone  EfficientNetB7  Pretrained on ImageNet, without top layer 
  Primary Capsule Dim 𝑑𝑝

𝑙  8 (Level 1), 𝑑𝑝
𝑙 = 𝑑𝑠

𝑙−1 (else)  Ensures dimensional compatibility  
  Secondary Capsule Dim 𝑑𝑠

𝑙 64 × 2−(𝑙−1) ∀𝑙 > 1 and 𝑑𝑙
𝑠 ≥ 1  

 

Routing

 Iterations 𝑟  3  Number of routing steps  
  Temp. 𝜏𝑙  0.5  Controls sharpness of routing dist.  
  Thresholds 𝛽ℎ, 𝛽𝑙  0.99, 0.1  High and low soft mask thresholds  
 𝜆𝑇  0.5  Controls taxonomy concentration  
 𝜇𝑐  0.5  Centre value for gating  
 
Loss Function

 Down-weight 𝜆  0.5  For absent classes  
  Margins 𝑚+ , 𝑚−  0.9, 0.1  Margin bounds for capsule activation  
  Initial Level Weight 𝜔init𝑙 Eq. (20)  Based on relative class complexity  
  Dynamic Weight 𝜔(𝑡)

𝑙 Eq. (21)  Adjusted based on error and accuracy  
 

Training

 Epochs  200  Fixed across all datasets  
  Optimizer  Adam  Adaptive gradient-based optimiser  
  Learning Rate  0.001  Initial LR  
  Decay  0.95  Applied after 10 epochs  
  Augmentation  MixUp (𝛼𝑚 = 0.2)  Linear interpolation of training pairs  

footsteps of [13] to provide a comprehensive evaluation of the model’s 
performance in hierarchical classification tasks. Hierarchical Precision 
quantifies the ratio of accurately predicted labels to all labels pre-
dicted, while Hierarchical Recall measures the proportion of correctly 
predicted true labels against all true labels. The Hierarchical F1-score
integrates these metrics into a singular evaluative measure, encapsulat-
ing the model’s efficacy in hierarchical classification contexts. To quan-
titatively evaluate the consistency across levels, the consistency score 
(Cons) serves as a metric indicating the extent to which test instances 
align with the hierarchical structure, independent of their accuracy. This 
score is represented as a percentage, reflecting the proportion of aligned 
test instances. The Exact Match (EM) score assesses the percentage of 
predictions that entirely correspond to the ground truth at each hierar-
chical level, offering insights into the accuracy with which the predic-
tions conform to the actual dataset.

4.3.  Results

Now we turn our attention to the outcomes produced by our pro-
posed HT-CapsNet model in relation to the current standard hierarchi-
cal multi-label classification techniques. We provide an in-depth exam-
ination of the performance metrics achieved across the six benchmark 
datasets, emphasising the model’s proficiency in effectively capturing 
hierarchical relationships and label correlations. We begin by assessing 
the performance of the HT-CapsNet model against the basic flat baseline 
models, namely CapsNet, VGG16, VGG19, ResNet-50, EfficientNetB7 
and ConvNeXt before moving on to a comparative assessment with the 
hierarchical models, which include B-CNN, H-CNN, Condition-CNN, ML-
CapsNet, BUH-CapsNet, H-CapsNet, and HD-CapsNet. Following this, we 
evaluate the performance of HD-CapsNet in comparison to its ablation 
versions, as outlined in Section 4.4.

The results of our experiments are presented in Tables 2–4, which 
provide a comprehensive overview of the performance metrics achieved 
by the HT-CapsNet model and the benchmark models across the six 
benchmark datasets. Our experimental results demonstrate consistently 
superior performance of HT-CapsNet across all evaluated datasets, with 
particularly notable improvements in complex fine-grained classifica-
tion tasks. The performance advantages become more pronounced as 
the hierarchical structure deepens and the classification task becomes 
more challenging. This pattern is also evident in Fig. 4, where we ob-
serve that HT-CapsNet consistently outperforms the baseline models in 
terms of classification accuracy.

HT-CapsNet exhibits robust performance across all hierarchical lev-
els, with the most significant improvements observed in deeper lev-

els where traditional methods typically struggle. This pattern sug-
gests that our taxonomy-aware routing mechanism effectively lever-
ages hierarchical relationships to maintain classification accuracy even 
at finer granularities. The performance gap between HT-CapsNet and 
baseline models widens as task complexity increases, indicating bet-
ter scalability to challenging scenarios. This trend is particularly ev-
ident in datasets such as Marine-Tree, CUB-200-2011, and Stanford 
Cars, as shown in Fig. 3, where HT-CapsNet significantly outperforms 
the baseline models. These results indicate that HT-CapsNet effec-
tively captures hierarchical relationships and label correlations, lead-
ing to improved classification performance across all levels of the
hierarchy.

In studies involving less complex datasets such as Fashion-MNIST, 
while HT-CapsNet demonstrates certain enhancements, the extent of the 
advantage remains relatively limited owing to the straightforward hier-
archical architecture, as evidenced in Table 2 and Fig. 3(a). Conversely, 
as the complexity of the dataset escalates, the advantages conferred by 
our methodology become increasingly evident. In the case of Marine-
tree, the performance benefits augment significantly at deeper hierar-
chical levels, indicating a superior capacity for managing intricate hier-
archical relationships.

The results on the CIFAR datasets presented in Table 3 reveal a sim-
ilar trend, with CIFAR-100’s more complex hierarchy highlighting HT-
CapsNet’s superior hierarchical learning capabilities. The most striking 
improvements appear in fine-grained classification challenges for the 
CUB-200-2011 and Stanford Cars datasets, as illustrated in Table 4, 
Fig. 4(c) and (d). Here, HT-CapsNet significantly outperforms exist-
ing methods, showcasing its ability to capture subtle hierarchical re-
lationships and fine-grained distinctions. This pattern suggests that our 
taxonomy-aware routing mechanism is particularly adept at differenti-
ating nuanced features while preserving hierarchical consistency.

The hierarchical metrics reveal several interesting patterns. First, 
HT-CapsNet maintains higher consistency scores across all datasets, in-
dicating better preservation of hierarchical relationships. The improve-
ments in hierarchical precision and recall become more pronounced as 
the taxonomy becomes more complex, suggesting that our model bet-
ter captures intricate class relationships. The exact match scores show 
particularly significant improvements in fine-grained datasets, indicat-
ing better complete path prediction capability. For traditional flat clas-
sification approaches (VGG16, VGG19, ResNet-50, EfficientNetB7, Con-
vNeXt, and CapsNet), we used the predictions at the finest level to derive 
predictions for parent levels, as these models do not inherently utilise 
the hierarchical structure of the taxonomy [1]. While this approach 
ensures prediction consistency by definition, it results in substantially 
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Table 2 
Performance evaluation on Fashion-MNIST [49] and Marine-tree [50] datasets, comparing HT-CapsNet against baseline methods. The results present accuracy at 
different hierarchical levels and include hierarchical metrics. The level-wise accuracy demonstrates a progressive improvement as the classification progresses from 
coarse to fine-grained levels. Meanwhile, the hierarchical metrics evaluate the model using hierarchical information throughout the classification process. The best 
and second-best results are highlighted in Bold and Italic, respectively. 
    Level Wise Accuracy (%)  Hierarchical Metrices (%)
 Dataset Models  Level 1  Level 2  Level 3 mAP ̂Acc @ 1 ̂Acc @ 5  hP  hR  hF1  Cons  EM  
  VGG16 [43]  99.76  94.96  89.78  94.02  94.66  98.31  94.83  96.83  95.82  –  89.78 
  VGG19 [43]  99.64  93.25  89.22  94.32  93.84  96.35  93.14  95.54  94.32  –  89.22 
  ResNet-50 [44]  99.57  95.23  90.31  90.76  94.89  97.49  95.04  95.04  95.04  –  90.31 
  EfficientNetB7 [45]  98.90  91.92  84.91  96.02  91.55  95.92  91.91  91.91  91.91  –  84.91 
  CapsNet [20]  99.62  95.89  91.90  91.79  95.70  97.80  91.90  91.90  91.90  –  91.90 
  ConvNeXtTiny [54]  99.02  91.32  83.67  94.12  91.34  99.75  91.23  91.86  91.49  96.96  82.31 
  ConvNeXtSmall [54]  99.25  91.86  84.88  94.74  92.00  99.77  91.91  92.51  92.16  97.20  83.48 
  ConvNeXtBase [54]  99.29  91.88  85.15  94.73  92.11  99.79  92.00  92.61  92.26  97.04  83.76 
  B-CNN [16]  99.63  95.44  92.33  98.23  95.71  99.89  95.77  95.48  96.07  96.73  90.44 
  H-CNN [24]  99.79  96.76  93.16  98.45  96.49  99.95  96.55  96.79  96.65  98.88  92.58 
  Condition-CNN [55]  99.78  96.65  93.42  98.53  96.55  99.33  96.65  96.84  96.73  99.16  92.85 
  ML-CapsNet [21]  99.70  95.89  92.10  97.85  95.80  99.74  95.85  96.19  95.99  98.35  91.31  
  BUH-CapsNet [22]  99.89  97.53  94.75  98.43  97.34  99.46  97.38  97.41  97.40  99.80  94.68 
  H-CapsNet [13]  99.73  97.06  93.95  98.69  96.86  99.86  96.86  97.36  97.07  97.60  92.69 
  HD-CapsNet [19]  99.92  97.78  94.83  98.95  97.47  99.44  97.51  97.54  97.52  99.84  94.70  
  HT-CapsNet  99.93  97.79  94.98  98.97  97.52  99.65  98.01  98.26  98.14  99.90  95.90 
  HT-CapsNeta  97.92  92.72  88.94  92.16  93.05  96.66  95.07  95.32  95.19  97.90  90.89 
 

Fashion-
MNIST

 HT-CapsNetb  96.45  90.53  86.38  90.95  90.93  91.83  90.32  90.55  90.43  96.45  88.77 
  VGG16 [43]  88.81  75.71  46.50  27.62  65.25  80.00  73.67  73.67  73.67  –  46.50 
  VGG19 [43]  88.92  76.90  48.12  28.53  66.62  80.09  73.82  73.82  73.82  –  48.12 
  ResNet-50 [44]  87.40  73.05  50.76  28.53  66.92  77.19  70.40  70.40  70.40  –  50.76 
  EfficientNetB7 [45]  86.70  71.55  48.01  26.61  64.74  75.38  68.75  68.75  68.75  –  48.01 
  CapsNet [20]  86.36  70.34  46.73  10.94  63.56  74.52  46.73  46.73  46.73  –  46.73 
  ConvNeXtTiny [54]  87.92  75.62  50.16  27.13  67.36  92.23  70.92  73.24  71.85  89.49  46.65 
  ConvNeXtSmall [54]  88.01  75.68  49.53  26.56  67.02  92.04  70.86  72.92  71.70  90.14  46.00 
  ConvNeXtBase [54]  88.42  76.83  51.99  29.93  68.87  92.77  71.95  74.41  72.95  88.04  48.43 
  B-CNN [16]  88.28  75.88  54.48  30.02  69.99  93.22  72.69  77.03  74.42  80.63  47.29  
  H-CNN [24]  88.25  75.14  49.99  27.60  67.20  90.73  70.66  75.21  72.47  78.13  44.72 
  Condition-CNN [55]  88.75  76.64  53.99  31.33  70.03  92.14  72.91  76.46  74.34  82.66  49.10 
  ML-CapsNet [21]  86.62  68.21  37.06  12.26  56.40  76.24  62.91  66.79  64.45  79.92  34.30 
  BUH-CapsNet [22]  88.48  76.49  52.33  26.86  68.99  92.39  72.35  73.17  74.07  91.78  52.53 
  H-CapsNet [13]  88.38  77.49  52.44  26.85  69.30  95.81  72.93  80.97  76.74  83.07  54.85 
  HD-CapsNet [19]  89.88  77.50  57.15  32.72  72.24  92.15  75.02  76.04  75.44  94.47  55.59  
  HT-CapsNet  90.76  81.19  61.12  38.18  75.58  93.67  77.49  78.26  77.80  95.88  60.19 
  HT-CapsNeta  85.12  74.18  53.37  32.51  68.24  88.98  73.62  74.35  73.91  90.88  54.19 
 

Marine-
tree

 HT-CapsNetb  83.77  71.20  50.54  29.15  65.54  87.11  72.07  72.78  72.36  88.88  52.19 
a Denotes the HT-CapsNet without the taxonomy guided routing (taxonomy-based masking) in the routing process.
b Denotes the HT-CapsNet without the hierarchcial agreement between the capsules in different levels of the taxonomy.

lower overall performance across all hierarchical metrics, highlighting 
the importance of explicitly modelling hierarchical relationships during 
the learning process.

The t-SNE visualisations in Fig. 5 provide compelling evidence of 
HT-CapsNet’s superior representation learning capabilities compared to 
baseline models. The visualisations elucidate several pivotal insights. 
First, HT-CapsNet exhibits clearer separation between transport and an-
imal categories at Level-1, with more compact and well-defined clusters. 
This suggests better high-level feature discrimination. Second, at Level-
2, HT-CapsNet maintains clear boundaries between sub-categories while 
preserving the overall hierarchical structure. Notably, related categories 
(e.g., sky, water, and road under transport) show appropriate proximity 
while maintaining distinct clusters. Third, at the finest level (Level-3), 
HT-CapsNet demonstrates superior preservation of hierarchical relation-
ships while maintaining fine-grained discrimination. The visualisation 
shows clear sub-clusters that respect parent-child relationships, with 
smoother transitions between related categories compared to baseline 
methods.

Furthermore, across all levels, HT-CapsNet produces more compact 
and well-separated clusters compared to baseline models, where clus-
ters often show significant overlap or diffuse boundaries. This visual ev-
idence aligns with the quantitative improvements in classification met-
rics. The progressive refinement from Level-1 to Level-3 in HT-CapsNet’s 
visualisations shows clear hierarchical structure preservation, with child 

categories properly nested within their parent category spaces. This 
visual coherence is less evident in baseline models, particularly in 
H-CNN and B-CNN, where hierarchical relationships become increas-
ingly ambiguous at deeper levels. Notably, all capsule-based models 
(HT-CapsNet, HD-CapsNet, and ML-CapsNet) demonstrate superior clus-
ter separation and hierarchical preservation compared to convolution-
based approaches (H-CNN and B-CNN), which aligns with their better 
quantitative performance across all datasets. These visualisation pat-
terns support the quantitative results and provide intuitive evidence 
of HT-CapsNet’s improved capability in learning hierarchically-aware 
representations while maintaining discriminative power at all levels of 
granularity.

4.4.  Ablation study

To validate the effectiveness of each key component in HT-CapsNet, 
we conducted extensive ablation studies by removing or modifying crit-
ical elements of our methods and design choices. The studies focus on 
three main aspects: the impact of taxonomy-guided routing, the effect 
of hierarchical agreement mechanisms, and the influence of hierarchical 
depth on model performance. All ablation experiments were performed 
across all datasets, with detailed results reported in Tables 2–4.

We first examined the effect of removing the taxonomy-guided rout-
ing mechanism (HT-CapsNet†), which eliminates the taxonomic mask 
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Table 3 
Performance evaluation on CIFAR-10 [51] and CIFAR-100 [51] datasets, comparing HT-CapsNet against baseline methods. The results present accuracy at different 
hierarchical levels and include hierarchical metrics. The level-wise accuracy demonstrates a progressive improvement as the classification progresses from coarse 
to fine-grained levels. Meanwhile, the hierarchical metrics evaluate the model using hierarchical information throughout the classification process. The best and 
second-best results are highlighted in Bold and italic, respectively. 
    Level Wise Accuracy (%)  Hierarchical Metrices (%)
 Dataset Models  Level 1  Level 2  Level 3 mAP ̂Acc @ 1 ̂Acc @ 5  hP  hR  hF1  Cons  EM  
  VGG16 [43]  96.22  86.89  75.36  83.38  85.30  95.42  89.49  90.49  89.99  –  75.36 
  VGG19 [43]  95.58  87.13  76.45  84.76  85.67  80.59  89.30  89.31  89.31  –  76.45 
  ResNet-50 [44]  92.00  72.88  65.01  59.22  75.05  89.20  76.63  76.63  76.63  –  65.01 
  EfficientNetB7 [45]  86.23  52.28  41.68  35.06  54.83  81.18  60.06  60.06  60.06  –  41.68 
  CapsNet [20]  93.19  76.53  70.42  64.87  78.95  90.60  70.42  70.42  70.42  –  70.42 
  ConvNeXtTiny [54]  95.86  73.63  64.96  80.43  76.00  97.69  72.95  74.84  73.74  89.42  56.19 
  ConvNeXtSmall [54]  97.06  76.94  69.33  85.15  79.43  98.31  75.90  77.50  76.56  90.93  61.12 
  ConvNeXtBase [54]  97.21  77.43  71.14  84.99  79.55  98.12  76.06  77.81  76.79  90.50  60.55 
  B-CNN [16]  96.08  87.13  84.54  94.70  88.98  96.40  89.26  91.48  90.18  89.72  78.99 
  H-CNN [24]  96.01  86.71  81.29  93.11  87.59  99.49  87.89  89.90  88.72  90.21  76.88 
  Condition-CNN [55]  95.86  83.78  79.74  91.57  85.94  99.62  86.56  88.36  87.30  91.30  75.30 
  ML-CapsNet [21]  97.95  90.03  86.78  94.89  91.35  99.16  91.38  92.24  91.74  95.47  85.24 
  BUH-CapsNet [22]  98.72  93.81  90.84  94.62  94.35  99.63  94.41  94.59  94.48  99.06  90.56 
  H-CapsNet [13]  97.61  92.58  91.12  97.12  93.69  99.28  93.92  94.60  94.74  91.24  86.65 
  HD-CapsNet [19]  98.79  94.28  91.22  97.32  94.66  99.08  94.74  94.89  94.80  99.18  90.95  
  HT-CapsNetc  99.10  95.20  91.80  97.15  95.27  99.40  95.64  95.73  95.68  99.45  91.50 
  HT-CapsNeta  96.17  89.27  84.75  86.05  89.82  95.42  91.81  91.90  91.86  96.45  85.50 
 

CIFAR-10

 HT-CapsNetb  94.80  87.24  82.87  85.82  88.03  93.44  89.90  89.99  89.94  94.44  83.39 
  VGG16 [43]  71.71  59.14  37.67  38.88  52.26  63.11  58.51  58.51  58.51  –  37.67 
  VGG19 [43]  71.52  60.15  38.41  51.67  52.97  61.69  59.33  58.33  58.83  –  38.41 
  ResNet-50 [44]  58.26  45.11  33.82  24.94  43.54  52.43  45.73  45.73  45.73  –  33.82 
  EfficientNetB7 [45]  51.35  38.13  27.65  29.91  36.64  46.03  39.04  39.04  39.04  –  27.65 
  CapsNet [20]  56.53  45.06  34.93  21.38  43.79  53.17  34.93  34.93  34.93  –  34.93 
  ConvNeXtTiny [54]  64.25  47.90  32.71  42.44  44.33  78.37  48.36  52.85  50.14  70.90  27.15 
  ConvNeXtSmall [54]  67.32  50.48  35.84  47.50  47.58  81.96  51.19  56.20  53.16  69.93  29.17 
  ConvNeXtBase [54]  70.59  55.05  38.52  51.34  51.11  83.28  54.63  58.78  56.27  75.45  33.63 
  B-CNN [16]  71.08  61.99  56.38  68.05  62.58  90.25  64.41  73.42  67.93  56.87  38.90 
  H-CNN [24]  74.00  67.27  51.40  66.89  62.72  88.82  64.23  71.67  67.14  60.27  40.49 
  Condition-CNN [55]  73.38  61.27  47.91  62.30  59.03  86.32  61.07  67.18  63.45  65.01  39.50 
  ML-CapsNet [21]  78.73  70.15  60.18  71.57  68.85  89.81  69.50  75.65  71.89  68.92  50.29 
  BUH-CapsNet [22]  86.03  77.83  64.87  79.92  75.21  92.40  76.04  77.87  76.75  89.81  62.53 
  H-CapsNet [13]  80.31  75.68  65.74  77.59  73.39  90.08  76.93  78.65  77.12  65.25  53.92 
  HD-CapsNet [19]  86.93  79.31  66.38  80.94  76.58  91.00  77.43  79.20  78.12  89.80  64.41  
  HT-CapsNetc  87.17  80.22  67.58  80.60  77.45  93.41  78.55  80.33  79.43  91.25  66.65 
  HT-CapsNeta  80.73  72.44  58.44  70.84  69.28  87.81  73.83  75.51  74.66  85.20  59.59 
 

CIFAR-100

 HT-CapsNetb  77.35  69.27  55.37  65.55  66.05  85.00  71.48  73.10  72.28  82.25  56.64 
a Denotes the HT-CapsNet without the taxonomy guided routing (taxonomy-based masking) in the routing process.
b Denotes the HT-CapsNet without the hierarchcial agreement between the capsules in different levels of the taxonomy.
c To assess robustness, we repeated training on CIFAR-10 and CIFAR-100 with three random seeds and observed consistent results (variation within ±0.3% and 

±0.5% across all hierarchical metrics, respectively).

𝑚𝑙
𝑖,𝑘 from the routing process while maintaining other components. This 

modification results in standard routing coefficients that don’t explicitly 
consider class hierarchy relationships. The performance degradation is 
notable across all datasets, with the impact becoming more pronounced 
in complex hierarchical scenarios. On fine-grained datasets like CUB-
200-2011 and Stanford Cars, the absence of taxonomy guidance leads 
to substantial drops in hierarchical metrics, particularly in consistency 
scores. This degradation pattern suggests that taxonomic information 
plays a crucial role in guiding the routing process toward hierarchically 
meaningful representations.

Similarly, we conducted an ablation study to evaluate the impact 
of the hierarchical agreement mechanism in HT-CapsNet. The modified 
model (HT-CapsNet‡) removes the hierarchical agreement component 
while all the other components remain intact. This modification removes 
the agreement computation between consecutive levels (ℎ𝑙𝑖,𝑘) that is de-
fined in Algorithm 1, which normally ensures that routing decisions at 
each level are influenced by the predictions from previous levels. The 
ablation of this mechanism leads to significant performance degradation 
across all datasets, with the most pronounced effects seen in hierarchical 
consistency scores and exact match rates. The impact is particularly ev-
ident in complex datasets like CUB-200-2011 and Stanford Cars, where 
the model’s ability to maintain coherent predictions across different lev-

els is notably diminished. This degradation pattern suggests that the hi-
erarchical agreement mechanism plays a crucial role in ensuring that 
the learned representations at each level are properly influenced by and 
consistent with the predictions from previous levels.

To understand how the number of hierarchical levels affects model 
performance, we conducted experiments varying the hierarchy depth 
from 2 to 5 levels on the Marine-tree dataset as a representative ex-
ample. The results in Table 5 demonstrate the impact of hierarchical 
depth on classification accuracy at different levels. The results reveal 
that increasing the number of hierarchical levels consistently improves 
performance across all existing levels, with optimal results achieved us-
ing all five levels. This pattern suggests that deeper hierarchical struc-
tures provide valuable contextual information that benefits the entire 
classification process. The improvements are more pronounced at inter-
mediate levels compared to the top level, indicating that additional hier-
archical context helps refine mid-level representations without compro-
mising high-level classification performance. Moreover, even as deeper 
levels are added, the model maintains robust performance on higher 
levels, demonstrating that increased architectural complexity does not 
compromise performance on coarser classifications.

These ablation studies validate our architectural choices and demon-
strate that both taxonomy-guided routing and hierarchical agreement 
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Table 4 
Performance evaluation on Caltech-UCSD Birds-200-2011 (CUB-200-2011) [52] and Stanford Cars [53] datasets, comparing HT-CapsNet against baseline methods. 
The results present accuracy at different hierarchical levels and include hierarchical metrics. The level-wise accuracy demonstrates a progressive improvement as 
the classification progresses from coarse to fine-grained levels. Meanwhile, the hierarchical metrics evaluate the model using hierarchical information throughout 
the classification process. The best and second-best results are highlighted in Bold and italic, respectively. 
    Level Wise Accuracy (%)  Hierarchical Metrices (%)
 Dataset Models  Level 1  Level 2  Level 3 mAP ̂Acc @ 1 ̂Acc @ 5  hP  hR  hF1  Cons  EM  
  VGG16 [43]  26.74  15.61  10.03  7.19  15.61  19.83  17.79  17.79  17.79  –  10.03 
  VGG19 [43]  23.07  14.52  8.52  9.24  13.06  20.03  17.03  17.03  17.03  –  8.52  
  ResNet-50 [44]  25.40  12.20  7.62  9.17  11.87  16.16  15.07  15.07  15.07  –  7.62  
  EfficientNetB7 [45]  15.85  5.58  2.89  6.12  5.10  9.30  8.11  8.11  8.11  –  2.89  
  CapsNet [20]  17.67  8.04  4.59  4.59  7.52  11.87  4.19  4.59  4.00  –  4.59  
  ConvNeXtTiny [54]  41.35  23.71  14.65  19.30  22.28  51.32  25.95  30.82  27.84  45.86  9.58  
  ConvNeXtSmall [54]  43.00  26.22  16.92  21.96  24.90  54.93  27.97  33.67  30.18  42.35  10.37 
  ConvNeXtBase [54]  53.27  35.53  25.09  35.12  30.57  64.27  32.47  37.30  34.72  48.82  15.54 
  B-CNN [16]  34.00  17.60  13.15  13.15  18.49  43.64  21.65  31.49  25.27  14.74  3.24  
  H-CNN [24]  32.43  16.02  6.27  6.27  11.87  32.81  17.11  24.94  19.98  12.92  2.21  
  Condition-CNN [55]  38.97  20.88  13.37  13.37  20.22  54.17  23.35  28.04  25.97  23.47  7.58  
  ML-CapsNet [21]  35.01  20.30  13.75  13.75  19.92  37.79  23.05  29.14  25.35  25.26  8.55  
  BUH-CapsNet [22]  37.76  20.95  13.36  13.36  20.13  42.44  23.26  29.21  25.52  26.21  7.90  
  H-CapsNet [13]  31.76  21.59  14.13  14.13  20.19  47.03  23.13  30.12  25.94  13.63  5.80  
  HD-CapsNet [19]  40.42  21.61  14.39  14.39  21.35  40.18  23.47  30.33  26.01  27.34  8.63  
  HT-CapsNet  58.06  42.49  30.67  56.03  40.89  67.75  43.13  48.00  45.03  59.13  24.09 
  HT-CapsNeta  48.45  32.42  20.44  31.13  29.88  62.33  39.68  44.16  41.43  49.13  16.08  
 

CUB-200-
2011

 HT-CapsNetb  43.05  27.74  15.13  24.96  23.93  58.95  37.53  41.76  39.18  44.13  11.08 
  VGG16 [43]  21.67  4.94  3.33  3.61  5.46  9.24  9.98  9.98  9.98  –  3.33  
  VGG19 [43]  23.53  5.84  3.84  3.03  6.33  5.02  10.74  10.74  10.74  –  3.84  
  ResNet-50 [44]  23.49  6.38  4.37  4.07  7.01  10.85  11.41  11.41  11.41  –  4.37  
  EfficientNetB7 [45]  23.83  4.79  2.83  3.80  4.97  8.75  10.48  10.48  10.48  –  2.83  
  CapsNet [20]  23.75  6.44  4.58  4.58  7.21  11.27  4.05  4.58  4.08  –  4.58  
  ConvNeXtTiny [54]  38.21  13.23  9.78  11.45  14.71  38.17  20.30  25.63  22.37  36.15  5.26  
  ConvNeXtSmall [54]  38.53  13.78  10.15  11.70  15.23  38.89  20.59  26.65  22.94  31.33  4.84  
  ConvNeXtBase [54]  42.20  15.07  10.90  13.21  16.50  40.88  22.40  28.10  24.61  37.81  5.81  
  B-CNN [16]  34.94  9.05  9.38  9.38  12.21  32.11  18.17  27.96  21.78  7.44  1.62  
  H-CNN [24]  33.49  10.55  6.83  6.83  11.07  28.91  16.78  25.55  20.02  9.14  1.56  
  Condition-CNN [55]  43.07  16.14  14.00  14.00  19.16  45.05  24.91  35.48  28.87  15.24  4.49  
  ML-CapsNet [21]  41.31  14.75  10.50  10.50  16.02  33.65  21.27  28.40  23.97  22.86  5.26  
  BUH-CapsNet [22]  43.70  14.97  9.52  9.52  15.41  34.21  21.61  27.27  23.78  28.12  6.12  
  H-CapsNet [13]  33.85  13.73  11.96  11.96  16.13  35.15  20.60  31.60  24.62  7.66  2.54  
  HD-CapsNet [19]  53.34  19.52  14.05  14.05  21.26  41.86  26.73  35.69  29.73  29.15  8.13  
  HT-CapsNet  67.30  41.24  32.52  41.26  42.95  72.04  46.75  49.92  48.02  75.15  28.08 
  HT-CapsNeta  57.34  31.42  22.75  31.65  32.18  65.99  42.82  45.72  43.99  65.14  20.07  
 

Stanford
Cars

 HT-CapsNetb  52.42  26.21  17.42  24.15  26.17  62.02  40.25  42.98  41.35  60.14  15.07 
a Denotes the HT-CapsNet without the taxonomy guided routing (taxonomy-based masking) in the routing process.
b Denotes the HT-CapsNet without the hierarchcial agreement between the capsules in different levels of the taxonomy.

Table 5 
Analysis of hierarchical depth impact on model performance using the Marine-
tree dataset. Results show how classification accuracy at each level (l=1 to 
l=5) changes as more hierarchical levels are incorporated into the model. The 
progressive improvement in accuracy across all levels demonstrates the benefits 
of deeper hierarchical structures in capturing multi-level semantic relationships. 
The absolute best results, achieved with all five levels, are marked in bold, 
highlighting the advantage of utilizing complete hierarchical information. 
   # Hierarchical
Levels

 Accuracy per level (%)
  l=1  l=2  l=3  l=4  l=5  
  2  89.89  78.59  –  –  –  
  3  90.76  81.19  61.12  –  –  
  4  90.97  81.60  61.70  56.75  –  
  5  91.21  81.90  62.02  57.12  55.05 

mechanisms are essential for effective hierarchical learning. The results 
also support our decision to utilise full hierarchical structures when 
available, as deeper hierarchies provide valuable contextual information 
that benefits the entire classification process. The model’s consistent per-
formance across datasets with shallow (e.g., Fashion-MNIST) and deep 
(e.g., Stanford Cars) hierarchies, as well as the Marine-tree hierarchy-
depth analysis, confirms that HT-CapsNet generalises effectively across 
taxonomies of varying complexity. Moreover, the studies highlight the 

complementary nature of our key components, showing that their com-
bination produces synergistic effects that enable more effective hierar-
chical representation learning.

4.5.  Computational performance analysis

To assess the computational overhead introduced by our taxonomy-
aware routing mechanism, we conducted extensive performance bench-
marking by comparing HT-CapsNet with standard dynamic routing [20]. 
Table 6 presents a comprehensive analysis across different datasets and 
routing iterations, measuring floating point operations (FLOP), train-
ing time metrics, and inference performance. The analysis reveals that 
the introduction of taxonomy-aware routing introduces a variable com-
putational overhead depending on the dataset complexity. For simpler 
datasets like Fashion-MNIST, the increase in FLOPs is minimal, at ap-
proximately 0.12%. However, for complex fine-grained datasets such 
as CUB-200-2011, the increase reaches 38.32%. This scaling pattern di-
rectly correlates with the complexity of taxonomic relationships present 
in these datasets, reflecting the additional computational work required 
to maintain hierarchical consistency during routing.

Training efficiency analysis shows that the average epoch time ex-
periences moderate increases compared to standard routing, ranging 
from 3% to 21% depending on the dataset size and complexity. The 
larger datasets, particularly those with complex hierarchical structures, 
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Fig. 3. Performance gain of HT-CapsNet over baseline models across six benchmark datasets. Subfigures depict results for (a) Accuracy @1, (b) Hierarchical Precision 
(hP), (c) Hierarchical Recall (hR), (d) Hierarchical F1-score (hF1), (e) Consistency (Cons), and (f) Exact Match (EM) scores. The gain is computed as the difference in 
performance between HT-CapsNet and the best-performing baseline for each dataset. Light and dark shades indicate performance gain and loss, respectively, relative 
to the baseline models.

Table 6 
Computational performance comparing proposed taxonomy-aware routing with standard dynamic routing [20] across different datasets and 
routing iterations. Metrics include Floating Point Operations (FLOPs), training time, inference latency, and throughput. Arrows (↑∕↓) indicate 
performance changes (increase∕decrease) relative to standard routing. 
  
  Dataset

Routing
Iterations  FLOPs

Avg Epoch
Time (s)

Avg Sample
Time (mS)

Avg Latency
(mS)

Throughput
(samples/s)  

 
Fashion-
MNIST

 2  241.96M ↑ 0.12%  9.53 ↑ 4.26%  4.83 ↑ 5.53%  2.79 ↑ 2.00%  358.20 ↓ 1.96%  
  3  242.1M ↑ 0.12%  9.52 ↑ 2.36%  4.82 ↑ 2.95%  2.83 ↓ 0.84%  353.65 ↑ 0.85%  
  4  242.24M ↑ 0.12%  9.58 ↑ 4.63%  4.87 ↑ 5.31%  2.81 ↑ 1.86%  355.42 ↓ 1.82%  
  5  242.39M ↑ 0.12%  9.66 ↑ 5.89%  4.89 ↑ 7.53%  2.78 ↑ 4.77%  359.74 ↓ 4.55%  
 
Marine-
tree

 2  922.81 M ↑ 6.97%  37.07 ↑ 5.88%  6.91 ↑ 17.59%  3.50 ↑ 12.66%  285.93 ↓ 11.23% 
  3  925.81M ↑ 6.98%  37.07 ↑ 10.53%  6.91 ↑ 29.73%  3.50 ↑ 21.31%  285.93 ↓ 17.57% 
  4  928.8M ↑ 6.99%  38.75 ↑ 6.87%  8.40 ↑ 15.22%  4.15 ↑ 6.37%  241.07 ↓ 5.99%  
  5  931.79M ↑ 7.00%  39.91 ↑ 6.94%  9.14 ↑ 13.90%  4.35 ↑ 7.84%  229.96 ↓ 7.27%  
 
CIFAR-10

 2  242.15 M ↑ 0.14%  12.34 ↑ 3.40%  4.81 ↑ 3.26%  2.46 ↑ 3.76%  380.12 ↓ 4.07%  
  3  242.3M ↑ 0.14%  12.62 ↑ 0.61%  4.79 ↑ 5.45%  2.66 ↑ 4.45%  375.59 ↓ 4.26%  
  4  242.44M ↑ 0.14%  12.47 ↑ 2.78%  4.83 ↑ 5.47%  2.78 ↑ 3.87%  359.15 ↓ 3.73%  
  5  242.59M ↑ 0.14%  12.49 ↑ 3.97%  4.88 ↑ 5.88%  3.12 ↑ 2.92%  320.15 ↓ 2.21%  
 
CIFAR-100

 2  257.53 M ↑ 3.10%  12.58 ↑ 4.14%  4.93 ↑ 5.81%  2.96 ↑ 5.46%  349.95 ↓ 4.11%  
  3  258.35M ↑ 3.11%  12.58 ↑ 5.02%  4.92 ↑ 8.11%  3.09 ↑ 2.78%  337.48 ↓ 4.99%  
  4  259.18M ↑ 3.11%  12.72 ↑ 5.08%  5.00 ↑ 8.12%  3.16 ↑ 1.94%  323.89 ↓ 1.19%  
  5  260M ↑ 3.11%  13.09 ↑ 2.45%  5.07 ↑ 7.52%  3.19 ↑ 2.29%  286.20 ↓ 7.03%  
 
CUB-200-
2011

 2  1.15 G ↑ 38.32%  31.38 ↑ 21.20%  9.90 ↑ 34.84%  5.07 ↑ 163.50%  197.30 ↓ 15.68% 
  3  1.16G ↑ 37.95%  34.13 ↑ 15.47%  11.30 ↑ 29.72%  5.43 ↑ 21.66%  184.30 ↓ 17.80% 
  4  1.17G ↑ 37.59%  36.06 ↑ 17.10%  12.64 ↑ 26.57%  5.90 ↑ 19.97%  169.60 ↓ 16.64% 
  5  1.18G ↑ 37.24%  38.45 ↑ 31.86%  14.02 ↑ 24.23%  6.48 ↑ 18.21%  154.29 ↓ 15.40% 
 
Stanford
Cars

 2  1.08 G ↑ 32.23%  55.25 ↑ 10.11%  8.79 ↑ 34.65%  4.39 ↑ 18.31%  227.56 ↓ 15.48% 
  3  1.09G ↑ 32.05%  59.11 ↑ 7.28%  9.70 ↑ 35.05%  4.56 ↑ 24.56%  219.29 ↓ 19.72% 
  4  1.09G ↑ 31.87%  57.77 ↑ 12.83%  10.56 ↑ 28.46%  4.92 ↑ 21.77%  203.28 ↓ 17.88% 
  5  1.1G ↑ 31.70%  61.79 ↑ 9.91%  11.42 ↑ 26.73%  5.25 ↑ 21.03%  190.31 ↓ 17.38% 
∙All computational measurements were performed on a single NVIDIA A100 GPU with 40GB memory.
∙Training metrics (average epoch time and sample time) were calculated using 50 batches per epoch with batch size of 32. Inference metrics 
(latency and throughput) were measured using 2, 000 randomly sampled test examples.
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Fig. 4. Accuracy trends as a function of training epochs for (a) CIFAR-100, (b) Marine-tree, (c) Caltech-UCSD Birds-200-2011, and (d) Stanford Cars datasets. 
Accuracy is computed as the mean of the classification accuracies across all hierarchical levels. The plots compare the performance of HT-CapsNet against several 
baseline models, illustrating convergence behaviour and relative performance improvements over the training epochs.

show higher computational overhead during training. However, this 
additional computational cost is justified by the significant improve-
ments in classification performance, especially in scenarios involving 
complex hierarchical relationships. The training time scaling remains 
predictable and manageable across different dataset sizes. Examining 
inference performance metrics reveals interesting patterns in model de-
ployment characteristics. While HT-CapsNet shows slightly increased la-
tency across all configurations, the impact on throughput remains within 
acceptable bounds. For example, with 5 routing iterations on CUB-200-
2011, the most complex dataset in our experiments, the throughput re-
duction is only 15.40% compared to standard routing. This relatively 
modest decrease in inference speed suggests that our method main-
tains practical utility in real-world applications despite its increased
sophistication.

The relationship between computational requirements and routing 
iterations demonstrates efficient algorithmic scaling. Our measurements 
indicate that the computational overhead scales approximately linearly 

with the number of routing iterations, suggesting good algorithmic effi-
ciency. More importantly, the relative performance impact remains sta-
ble across different iteration counts, indicating robust scaling behaviour 
that maintains predictable performance characteristics as the routing 
complexity increases. Datasets with complex hierarchical structures, 
particularly CUB-200-2011 and Stanford Cars, show more pronounced 
computational requirements, with FLOPs increasing by 31 − 38%. This 
additional computation directly contributes to the model’s superior hi-
erarchical learning capabilities, as evidenced by the performance im-
provements shown in Tables 2–4, as well as Fig. 5. The relationship be-
tween computational cost and performance improvement appears to be 
particularly favourable for these complex tasks, where the benefits of 
improved hierarchical learning outweigh the increased computational 
demands.

The computational analysis demonstrates that while HT-CapsNet in-
troduces additional computational overhead compared to standard rout-
ing approaches, this cost scales predictably with problem complexity 
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Fig. 5. t-SNE visualisation of learned feature representations by HT-CapsNet and baseline methods across hierarchical levels. Each point represents a sample, 
colored according to its ground truth label at the corresponding level. Level-1 shows the coarse binary separation between transport and animal categories. Level-2 
demonstrates mid-level categorisation into seven subcategories. Level-3 displays fine-grained separation into ten specific classes. HT-CapsNet achieves clearer class 
separation and more coherent cluster formation compared to baseline methods, particularly at finer levels, while maintaining hierarchical relationships between 
levels.

and remains reasonable relative to the achieved performance improve-
ments. These findings indicate that the trade-off between computational 
cost and classification performance is particularly favourable for com-
plex hierarchical tasks, where the benefits of improved hierarchical 
learning justify the modest increase in computational requirements.

5.  Discussion and limitations

While HT-CapsNet demonstrates significant improvements in hier-
archical multi-label classification, several important considerations and 
limitations warrant discussion. Our analysis reveals both the strengths 
of our approach and areas that merit further investigation. The supe-
rior performance of HT-CapsNet, particularly on fine-grained datasets, 
validates our core hypothesis that explicitly incorporating taxonomic 
information into the routing mechanism enhances hierarchical repre-
sentation learning. The consistent improvements across both coarse and 
fine-grained levels suggest that our approach successfully balances high-
level category discrimination with fine-grained feature detection. This 
is particularly evident in the t-SNE visualisations, where HT-CapsNet 
maintains clear cluster separation while preserving hierarchical rela-
tionships.

Traditional hierarchically structured classifiers, such as branched 
CNNs [16,24,55] or hierarchical CapsNets [13,19,21,22], often treat 
hierarchical information as fixed constraints within the architecture 
or apply it during post-processing. In contrast, HT-CapsNet integrates 

taxonomic knowledge directly into the routing mechanism through 
taxonomy-aware attention and consistency-enforcing dynamic coeffi-
cients. This close integration between label structure and feature rout-
ing enables HT-CapsNet to adapt its representation learning across 
levels rather than relying solely on feature extraction followed by 
level-specific classification. By learning capsule agreement patterns 
guided by the taxonomy matrix, our model captures part-whole rela-
tionships more effectively and enforces consistency during both train-
ing and inference. As shown in Tables 2–4, and in Fig. 3, this ad-
vantage is reflected in our improvements across hierarchical precision,
recall, and consistency metrics on datasets with varying levels of label
granularity.

The taxonomy-guided routing mechanism in HT-CapsNet enhances 
model interpretability by promoting semantically consistent informa-
tion flow across hierarchical levels. By embedding the known tax-
onomy into the routing process, the model ensures that predictions 
follow meaningful parent-child relationships, thereby aligning more 
closely with human-understandable category structures. As illustrated 
in Fig. 1, HT-CapsNet produces more coherent and focused Class Ac-
tivation Maps (CAMs) at each level of the hierarchy, exhibiting a pro-
gressive refinement of attention from coarse-grained to fine-grained fea-
tures. This behaviour contrasts with the baseline CNN and HD-CapsNet 
models, which show less structured transitions across levels. Such vi-
sual evidence suggests that taxonomy-guided routing not only enforces 
hierarchical consistency but also facilitates a more transparent and

Knowledge-Based Systems 329 (2025) 114444 

16 



K.T. Noor et al.

interpretable decision-making process by making intermediate repre-
sentations more aligned with semantic expectations.

Nonetheless, it is important to recognise several challenges asso-
ciated with our taxonomy-aware routing mechanism. To begin with, 
the computational complexity escalates as the hierarchy’s depth and 
breadth increase. Although this added complexity is warranted due to 
the performance enhancements, it might pose difficulties for hierarchies 
that are excessively deep or for applications requiring real-time process-
ing. Future research could investigate optimisation methods or pruning 
approaches to alleviate this computational load while preserving perfor-
mance. Our existing implementation necessitates a predetermined, static 
taxonomy framework. Although this works well for numerous practi-
cal applications with clearly established class hierarchies, it might re-
strict adaptability in situations where taxonomic connections are am-
biguous or changing. Expanding the model to accommodate dynamic 
or probabilistic taxonomies could enhance its range of use. Addition-
ally, HT-CapsNet demonstrates strong performance across a variety of 
datasets, its advantages are most pronounced in complex, fine-grained 
classification tasks. For simpler hierarchical structures, the additional 
complexity of our approach may not always justify the marginal im-
provements over simpler methods. This suggests the need for adaptive 
mechanisms that can adjust the routing complexity based on the task
requirements.

The current model also assumes clean, well-defined hierarchical rela-
tionships. In practice, some classes might have ambiguous relationships 
or belong to multiple parent categories. Future work could explore mod-
ifications to handle such overlapping hierarchies or direct acyclic graph 
based taxonomic relationships. Future work may explore extending the 
taxonomy-guided routing mechanism to probabilistic or multi-parent 
taxonomies, thereby increasing robustness to structural ambiguity. Ad-
ditionally, investigating ways to automatically learn or refine taxonomic 
structures from data could make the approach more adaptable to sce-
narios where expert-defined hierarchies may be suboptimal.

Moreover, while this study focuses on standard benchmark datasets, 
the proposed HT-CapsNet architecture is directly applicable to real-
world classification tasks such as identity document analysis. Tasks in-
volving passport, ID card, or driver’s licence classification naturally 
follow a hierarchical taxonomy, such as a structure comprising docu-
ment type, issuing authority, and document subtype. This alignment 
makes HT-CapsNet suitable for scenarios requiring taxonomic consis-
tency and structured semantic understanding. Its ability to dynamically 
adjust routing based on known relationships enables the model to han-
dle variations in document layout and visual content. Future research 
will explore the deployment of HT-CapsNet in such applications, with 
attention to its robustness under layout variation, occlusion, and domain 
shifts in imaging conditions.

Furthermore, a significant constraint lies in the requirement for care-
fully tuned hyperparameters, particularly in the routing mechanism. Al-
though our empirical studies provide guidance for parameter selection, 
developing more robust, self-adaptive parameter tuning strategies could 
improve the model’s usability across different domains. We follow fixed 
public train-test splits rather than k-fold cross-validation, which is the 
prevailing practice on these large benchmarks. Comprehensive cross-
validation and extensive multi-seed averaging across all datasets are 
promising directions for future work.

Despite these constraints, our findings indicate that HT-CapsNet 
marks a considerable advancement in hierarchical multi-label classifi-
cation. The model’s ability to maintain hierarchical consistency while 
achieving top-tier performance suggests promising directions for future 
research in hierarchical deep learning architectures. Looking ahead, sev-
eral promising research directions emerge. Investigating the integration 
of self-supervised learning techniques could reduce the dependence on 
large labelled datasets. These considerations highlight both the signifi-
cant potential and the remaining challenges in hierarchical deep learn-
ing, pointing toward exciting opportunities for future research and de-
velopment in this field.

6.  Conclusion

In this paper, we introduced HT-CapsNet, a novel hierarchical 
taxonomy-aware capsule network architecture that effectively addresses 
the challenges of hierarchical multi-label classification. Our approach 
uniquely integrates taxonomic relationships into the capsule routing 
mechanism through a taxonomy-guided routing algorithm, enabling 
more effective learning of hierarchical features while maintaining con-
sistency across classification levels. Comprehensive experiments across 
diverse datasets demonstrate that HT-CapsNet consistently outperforms 
existing approaches, with particularly significant improvements in com-
plex, fine-grained classification tasks. The empirical results validate that 
both taxonomy-guided routing and hierarchical agreement mechanisms 
contribute significantly to the model’s performance, while visualisation 
analysis reveals that HT-CapsNet learns more discriminative and hier-
archically consistent representations compared to existing approaches. 
Beyond the immediate technical contributions, this work opens several 
promising directions for future research in hierarchical deep learning, 
suggesting potential applications in domains where hierarchical rela-
tionships play a crucial role.
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