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Abstract
In many critical machine learning applications, such as autonomous driving and medical
image diagnosis, the detection of out-of-distribution (OOD) samples is as crucial as accurately
classifying in-distribution (ID) inputs. Recently, outlier exposure (OE)-based methods have
shown promising results in detecting OOD inputs via model fine-tuning with auxiliary outlier
data. However, most of the previous OE-based approaches emphasize more on synthesizing
extra outlier samples or introducing regularization to diversify OOD sample space, which
is rather unquantifiable in practice. In this work, we propose a novel and straightforward
method called Margin-bounded Confidence Scores (MaCS) to address the nontrivial OOD
detection problem by enlarging the disparity between ID and OOD scores, which in turn
makes the decision boundary more compact facilitating effective segregation with a simple
threshold. Specifically, we augment the learning objective of an OE regularized classifier
with a supplementary constraint, which penalizes high confidence scores for OOD inputs
compared to that of ID and significantly enhances the OOD detection performance while
maintaining the ID classification accuracy. Extensive experiments on various benchmark
datasets for image classification tasks demonstrate the effectiveness of the proposed method
by significantly outperforming state-of-the-art methods on various benchmarking metrics.
The code is publicly available at https://github.com/lakpa-tamang9/margin_ood/tree/kais

Keywords Out of distribution · Outlier exposure · Confidence score · Weighted penalty

1 Introduction

Machine learning systems are increasingly used in real-world application where it is very
likely that they will experience data from different environments which can be distributed in
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Fig. 1 Confidence scores of models trained using CIFAR-100 on test data from CIFAR-100 (ID samples) and
iSUN [2] (OOD samples)

a heterogeneous fashion. This issue may arise because real-world data are dynamic in nature,
where distribution shifts frequently occur owing to the emergence of new classes, leading to
significant differences in the posterior probabilities of input and labels [1]. Therefore, these
systems, especially in safety critical applications such as autonomous driving and medical
image diagnosis, should be well aware and equally prioritize: (i) to accurately classify in-
distribution (ID) inputs and (ii) avoid classifying out-of-distribution (OOD) samples that the
model has not seen before.

OOD detection is a classic yet essential ML problem that aims to resolve the fundamental
issue of models being overconfident in classifying samples from different semantic distribu-
tions [3]. Hence, numerous approaches have been proposed to solve this task [4–9], which
typically rely on a post hoc detection strategy, employing thresholds or other criteria to iden-
tify OOD samples. Another technique that has attracted considerable attention is the outlier
exposure (OE)method [10] that advocates the use of outliers to regularize the model and gen-
erate low confidence scores on unseen distributions. To compare the confidence scores, i.e.,
the maximum values of the softmax probabilities of ID and OOD samples for some of these
techniques, we refer to Fig. 1. Here, we train three image classification models—maximum
softmax probability (MSP) [11], OE [10], and our proposed method MaCS—on the CIFAR-
100 dataset. We use test images from CIFAR-100 as ID samples and images from the iSUN
dataset [2] as OOD samples. In the literature, these two datasets serve as popular benchmark
datasets utilized for the OOD detection task; the former is primarily employed as ID, while
the latter is used to represent OOD data. We employ boxplots for visualization and score
comparison, from which we observe the following: First, the MSP method, a straightforward
classification model that optimizes cross-entropy, exhibits overconfidence when applied to
OOD samples as their scores overlap significantly with those of ID samples. Second, while
OE generally helps to decrease the scores of OOD samples, the overlap between the scores of
OOD and ID samples is still noteworthy. The reason for this is that outliers can occasionally
produce confidence scores comparable to, or even higher than those of ID samples. As a
result, OOD samples that lie in the decision boundary can be often falsely categorized as ID
data, which pose a challenge in their clear separation.
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Moreover, most OOD detection methods rely on sampling and synthesizing existing out-
liers [12, 13], introducing regularization through augmentations [14, 15], and feature space
maneuvering [16]. While these approaches attain reasonable detection performance, they
may often suffer from a phenomenon, which we refer to as “score explosion,” where the
confidence score for OOD samples exceeds that of ID samples as shown in Fig. 1. To address
this issue, this paper introduces a novel approach called Margin-bounded Confidence Scores
(MaCS). Leveraging the insight gained from score explosions, MaCS penalizes the model
during training, encouraging it to learn discriminative features between ID data and repre-
sentative outliers. By nullifying score explosions and assigning weights based on the margin
difference between ID and OOD confidence scores, MaCS aims to reduce model uncertainty
in distinguishing between the two. In Fig. 1, the last two boxplots illustrate the distribu-
tion of scores for OOD and ID samples under MaCS, where clearly OOD samples receive
significantly lower confidence scores compared to ID samples.

The contributions of this paper can be summarized as:

• Simple and Practical Solution: We investigate an OOD detection problem under a
practical research setting, utilizing the existing confidence scores of any OE regularized
model: a completely different approach compared to conventional outlier synthesis tech-
niques whose objective is establishing heterogeneity of OOD sample space that cannot
be quantitatively measured in practice.

• Learning in Synergy: We propose a novel and straightforward method called Margin-
bounded Confidence Scores (MaCS) that work together with OE under a unified
algorithm: a supplementary constraint is put forward to the training objective of the
OE method to enhance the OOD detection robustness of a classification model.

• Effectiveness:We conduct comprehensive experiments utilizing established benchmark
ID and OOD image classification datasets. Our findings reveal significant enhancements
over several state-of-the-art (S.O.T.A) methods across various detection metrics. Fur-
thermore, we validate our method by performing several ablation studies and prove it to
be highly effective in achieving reliable detection performance under different networks
and datasets.

2 Related works

There is a substantial body of research related to OOD detection techniques. The literature
mainly consists of two different methods: density-based [17, 18] and classification-
based approaches. The performance of density-based methods often lags behind that of
classification-based methods, because the training and optimization processes are more com-
plex. The classification-basedmethod is further categorized into training time:which requires
model training or fine-tuning, and test time: which does not require any retraining, thereby
saving the computing resources and naturally suitable for privacy protection tasks where
retraining of model is burdensome. Test time methods, however, exhibit sub-optimal per-
formance while scaling-up to large dataset because of their inability to capture the intricate
distribution of OOD samples. In the following, we review the some of themajor works related
to both training and test time OOD detection methods.
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2.1 Post hoc OOD detection

Post hocOODdetection techniques have the advantage of being easy to usewithoutmodifying
the training procedure and objective of the model. In this regard, various scoring functions
have been proposed to better utilize the high level semantic information of penultimate layers.
AMaxLogit technique [19] uses themaximumvalue of logits instead of softmax probabilities
to enhance the detection performance. In the following works, [20] used standardized value
of maximum logit scores to align different distributions, and [21] decoupled the maximum
logits value for flexibility to balance MaxCosine and MaxNorm. Similarly, ODIN [22] and
generalized ODIN [23] proposed the decomposition of confidence scores and modified input
pre-processing methods to enhance detection performance. Additionally, ReAct [24] used
activation rectification during the test time for stronger separation of ID and OOD data and
DICE [25] used weight ranking to select themost salient weights to derive the OOD detection
output.

2.2 OOD detection by using auxiliary datasets

Generating outliers or auxiliary OOD examples is essential to improve the robustness and
generalization capabilities of a model [12]. The goal is to expose the model to a wider range
of data scenarios beyond what is available in the training set. In literature, OOD detection
has been realized by producing synthetic outliers using methods such as data augmentation
[14, 26, 27] and adversarial example generation [28–31]. One such method, Energy OOD
[32], uses Energy scores instead of softmax scores because they are more aligned with the
probability density of the inputs and are less prone to overconfidence. Another related study,
GEM [33], models the feature space as a class conditional multivariate Gaussian distribution.
MixOE [15] and MiM [34] used MixUp regularizers to mix ID data with auxiliary outliers,
with the former being in complex fine-grained scenarios. Motivated by the recent achieve-
ments of auxiliary outliers-based approaches, our objective is to harness it’s potential for
OOD detection. Unlike other methods that depend partially or entirely on data augmentation-
based regularization [15, 34] and intricate outlier synthesis/sampling techniques [12, 16], we
present a less sophisticated method that relies on the confidence scores of a model while
using eminent outlier datasets.

2.3 Other popular approaches

Some approaches [35, 36] attempt to realize OOD Detection by improving intra-class com-
pactness and inter-class separability of the feature embeddings. Studies such as [37] and [38]
use uncertainty methods with conformal predictions to deal with inherent randomness of the
OOD metrics. Other studies use meta-learning techniques [39–41], and lately, LLM-based
methods are becoming popular for multi-modal OOD detection [42–44]. A closely related
topic to our research is the field of contrastive learning techniques [45–47]. The fundamen-
tal principle of separating unmatched pairs in contrastive learning bears similarities to our
approach of distinguishing between ID and OOD data. However, the primary objective in
contrastive learning is to maximize the agreement between differently augmented views of
the same image while repelling others within the batch. In essence, such techniques typically
measure feature distance between inliers and outliers. In contrast, MaCS operates exclusively
in the output layer; as the term "post hoc" suggests, it addresses confidence scores without
interfering with the feature space.
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3 Background

3.1 Notation and problem definition

We consider a training dataset independently and identically distributed (i.i.d) data drawn
from ID, Din = {(x(1), y(1)), (x(2), y(2)), · · · , (x(k), y(k))} with k instances, where each
x(i) ∈ X ⊆ R

n is an n-dimensional input feature vector of the instance i , and y(i) ∈
Y = {y1, y2, · · · , yc} represents its class. Similarly, during test phase, we evaluate the OOD
detection capability using examples drawn from the OOD sample space Dout = {x(1), x(2),

· · · , x(k)}. Also, following the convention in [10], we introduce auxiliary outlier data asDOE
out

such that DOE
out ∩ Dout ∩ Din = φ.

The goal is then to learn a mapping function f : X → R
c trained usingDin ∪DOE

out , which
assigns to each feature vector x(i) ∈ Din its correct class y(i), while avoiding classifying
instances x(i) ∈ DOE

out .

3.1.1 Outlier exposure

Outlier exposure (OE), an auxiliary outlier-based OOD detection method [10], is the baseline
that we refer to in our study. It is a regularization technique that involves learning from
additional datasets containing outliers orOODsampleswith low confidence predictions along
with standard training data. The goal is to expose the network to diverseOODexamples during
training, so that the model learns a more conservative concept of the ID data to distinguish
them from their OOD counterparts. To achieve this, OE uses an auxiliary dataset of outliers
DOE
out that is entirely separate from the OOD test dataDout. Hence, OE is trained by optimizing

the following objective:

LOE = E(x,y)∼Din [L( f (x), y)] + λ1Ex∼DOE
out

[L( f (x),U)] (1)

where L is the cross-entropy loss, U ∈ R
k represents a uniform distribution over c classes,

and λ1 is the hyperparameter for balancing both objectives.

3.2 Scoring function

We adopt MSP as a method for detecting OOD samples, which operates using a threshold.
MSP retains the maximum posterior probability (or confidence scores) over softmax proba-
bilities of a network [11]. Thus, if s(x) = {s1, s2, ..., sc} denotes the confidence scores across
c classes, the MSP is represented by max(s(x)). In essence, by comparing this value with a
predetermined threshold τ ∈ {0, 1}, we can classify a given test input as either ID or OOD.

g(x) =
{
ID, if max(s(x)) ≥ τ.

OOD, otherwise.
(2)

4 Proposedmethod: Margin-bounded Confidence Scores (MaCS)

In this section, we introduce the MaCS framework. Initially, we augment Equation (1) with
an additional loss component aimed at promoting a distinct separation between ID and OOD
samples. Figure2 illustrates our approach, wherein we compute max(s(x)) for inputs from
bothDin andDOE

out , followedby subtracting the former from the latter.We refer to this operation
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Fig. 2 Schematic overview of MaCS where the maximum confidence scores of inputs fromDin andDOE
out are

extracted from the output layer of neural network followed by element-wise difference computation between
I Dmax and OODmax

asmaximum confidence difference (MCD), which is elaborated on in Sect. 4.1. Subsequently,
we address score explosions, where the confidence score of the outlier exceeds that of the ID
input. Finally, we constrain these score differences within a specified margin value. Further
details regarding margin-based weighting are provided in Sect. 4.2.

4.1 Maximum confidence difference (MCD) and penalty

We consider an input to the model, with equiproportionate samples from Din and DOE
out such

that a batchB = {xi }2Ni=1 has N samples fromDin and N samples fromDOE
out with the batch size

of 2N . We obtain confidence scores for B denoted as SB = {s(xi )}2Ni=1. Next, we compute
the maximum confidence score for each instance xi ∈ B as max(s(xi )). We denote these
maximum scores as IDmax and OODmax for inputs fromDin andDOE

out , respectively. Note that
both IDmax and OODmax are N -dimensional vectors. Intuitively, the max(s(xi )) represents
the notion of confidence of the model to categorize xi into one of c classes. Subsequently, for
each element of IDmax we compute the difference between every element of OODmax. For
instance, if there (see Fig. 2 for graphical illustration). We do this to ensure that every OOD
input whose max(s(xi )) is larger than that of the ID is captured. Following that, we employ
ReLU to penalize these occurrences by setting the negatives to zero, while retaining only the
positives. Finally, the maximum confidence difference (MCD) of batch B is estimated as:

MCD(B) = 1

N

N∑
i=1

N∑
j=1

max(0, IDmax
i − OODmax

j )2 (3)

4.2 BoundedMargin

Furthermore, we bound the overall MCD term to be within a specified range to distinctly
dispel the ID and OOD data thus subtracting it from the margin value. The idea is that for a
correctly classified ID sample, themodel should not only be confident about it being correctly
classified but also confident that it is not an OOD. Thus, we aim to give considerable attention
to the OOD samples by assigning a weightWMaCS. We follow a similar idea of the weighting
approach [48, 49], which attempts to solve class imbalance problem in classification tasks.
Similar to how weights are administered to make the model more sensitive toward under-
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sampled classes, we attempt to assign weights to rectify the exploded scores. In particular,
we typically assign weights based on the occurrence of score explosions, instead of class
memberships [50, 51]. This phenomenon is crucial for OOD detection, where failing to
detect an OOD sample is considered as severe as misclassifying an ID sample. With this,
we define a more tailored weighting strategy that explicitly addresses the nature of the error,
which is OOD scores exceeding ID scores rather than focusing on the under-represented
classes. Mathematically, we administer WMaCS as follows:

WMaCS = max(0,m − MCD(B)) (4)

where m is the margin that enforces the minimum difference between the ID and OOD
output. The best value of m is determined empirically and as explained in Sect. 7.1. To put
this into perspective, if MCD goes to zero, we replace it withWMaCS, which relates to weight
assignment for score explosions. As a supplement to the training objective ofOE,we combine
the term in (4) with (1) resulting in our final training objective for the whole dataset with B
batches as follows:

Lfinal =
B∑

i=1

(L(i)
OE + λ2W(i)

MaCS) (5)

where λ2 is a hyperparameter for balancing the effect of weighted margin on LOE. We
summarize the whole procedure of fine-tuning MaCS as a pseudo-code in Algorithm 1.

Algorithm 1 Fine-tuning Margin-bounded Confidence Scores

Input: Din , DOE
out , pre-trained model f , hyperparameters θ , epochs T , and margin m;

Output: fine-tuned model f ∗ with θ∗, and m∗;
1: for m = 0.0 to 0.9 with step-size of 0.1 do
2: for epoch = 1 to T do
3: for batch = 1 to B do
4: Select a batch B = 2N , with N outliers, and N ID inputs from DOE

out , and Din , respectively;
5: Concatenate sampled data from Din , and DOE

out to create new input data, x;
6: Calculate f (x; θ), to get confidence scores;
7: Compute maximum confidence score for each input with MSP;
8: Compute MCD using (3);
9: ComputeWMACS using (4)
10: Compute overall loss using (5)
11: end for
12: end for
13: end for

5 Experiments and results

This section outlines our experimental setup for conductingmethodological evaluation,which
includes details regarding the benchmark datasets, baselines, and metrics utilized in our
analysis.
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5.1 Datasets

We categorize our data into three types: ID, outlier, and OOD datasets. The ID and outlier
datasets are explicitly designated for training or fine-tuning purposes, while theOODdatasets
are reserved for testing scenarios only.

5.1.1 ID datasets

Our experiments are performed on four different image datasets: (1)CIFAR-10 [52]: A small
image classification dataset with 10 classes; (2) CIFAR-100 [52]: A medium-scale image
classification dataset with 100 classes; (3) SVHN [53]: A small-scale image dataset with 10
classes, consisting of digits from 0 to 9; and (4) Imagenet-32 [54]: A downsampled version
of the original Imagenet-1k [55], which is considered a large-scale dataset due to its 1,000
classes. Note that our training, validation, and test data follow the standard splits provided.

5.1.2 Outlier datasets

As an outlier dataset, earlier works have adopted 80 Million Tiny Images [56]; however, it
has recently been advised by [57] that due to the presence of biases, offensive and prejudicial
images it’s further usage has been discontinued. Considering the ethical research practice,
we therefore, use 300K Random Images, which is a de-biased subset of the same prepared by
[10]. Another rationale for selecting this dataset is that image samples belonging to CIFAR
classes, Places, and LSUN were explicitly removed using divisive metadata. This process
facilitated the explicit segregation of outlier data from the test OODdata, thereby significantly
reducing any distribution matching between the two and mitigating the possibility of outlier
dataset leaking distribution information to the OOD data.

5.1.3 OOD Datasets

We follow the baseline works [10, 32] to adapt the common OOD dataset benchmarks. Only
the test subset of each of these datasets are used. These include following:
Textures [58]: Texture dataset consists of a total of 5740 image samples dispersed and
categorized into 47 different classes. These images were collected from Google and Flickr,
and the image size ranges from 300 × 300 to 640 × 640. We use the downscaled subset
(32 × 32) of this dataset.
LSUN-C [59]:Large-scale SceneUNderstanding contains 32×32 color image samples from
10 categories representing different scenes such as dining room, bedroom, outdoor scenes,
and so on.
SVHN [53]: The Street View House Number comprises of 10 classes each with 32 × 32
color images representing digits from 0 to 9, which were collected from real Google street
view images.
iSUN [2]: iSUN is a large-scale eye tracking dataset containing a total of 20608 image
samples across 397 different categories. This dataset is the fully annotated subset prepared
from the original scene understanding (SUN) database.
Places365 [60]: The places365 dataset consists of a total of 1.8 million image samples from
365 different scene categories. Most of the images in this dataset are photograph scenes of
different places.
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5.2 Baseline and S.O.T.A approaches

We compare our method with seven different competitive baseline OOD detection
approaches. The first two do not use any auxiliary outliers: Logitnorm [61] which enforces
a constant vector norm on the logits in training and FMFP [62] that uses flat minima for fail-
ure prediction. And the remaining five use auxiliary outliers to regularize the model during
training: UM [63] which uses masking technique to unleash the discriminative OOD detec-
tion capabilities of the model, OE [10], Energy [32] that employs Energy scores aligned
with the probability density of inputs for OOD detection;MixOE [15] which utilizes mixup
technique to mixDin andDOE

out to further enhance model regularization; and DivOE [13] that
diversifiesDOE

out by explicitly synthesizing more informative outliers for extrapolation during
training. We re-implemented these methods under our experimental settings by utilizing the
publicly available source codes. We follow the same datasets and training configurations for
all methods as described in Sects. 5.1 and 5.3, respectively.

5.3 Training configuration

In general, OE and its variants are trained in a fine-tuned scenarios. This approach is more
practical because it is more common to equip deployedmodels with the ability to detect OOD
inputs rather than training a dual task (ID classification and OOD detection) from scratch.
Following a similar setup, we use pre-trained baselines for models that are available. For
models that do not have a pre-trained baseline, we initially train the model from scratch
using a MSP [11] objective and then utilize it for fine-tuning.
Models andHyperparameters:We train ourmethod on four different neural network (back-
bone) architectures that are considered pre-eminent in image classification tasks;WideResnet
[64], Allconv [65], Resnet [66], and Densenet [67]. For the sake of equivalence comparison
with OE [10], we use their default hyperparameters. Specifically, for WideResnet architec-
ture we use a total of 40 layers with a widen factor of 2, and dropout rate of 0.3. Likewise,
we use Allconv with 9 layers, each comprising a combination of (Conv2D-BatchNorm2D-
GELU). Furthermore, we use Resnet and Densenet models with 18 and 121 layer variants,
respectively. All the networks are fine-tuned on a pre-trained model up to 10 epochs using a
stochastic gradient descent (SGD) optimizer with weight decay of 5e− 4, an initial learning
rate of 0.001 with cosine decay. Unlike [10] that employed varying sample sizes forDin and
DOE
out , our approach utilizes equivalent sample sizes of N = 128, with a cumulative batch size

of B = 2N = 256 to enable post hoc calculations. The choices of λ1 and λ2 are both set at
0.5. Lastly, we select the value of m ∈ {0.1, 0.2, . . . , 0.9}. All experiments were conducted
on multiple RTX A4000 GPU servers.

5.4 Evaluationmetrics

We evaluated the detection performance using several metrics: (i) AUROC: It measures the
discriminative capability of an OOD classifier in discerning ID and OOD data. Its value
ranges from 0 to 1, the latter indicating perfect distinction. (ii) AUPR: This metric evaluates
the trade-off between precision and recall, usually under class imbalance scenarios. Higher
value of AUPR indicates better detection performance. (iii)FPR95: This metric is significant
for assessing the robustness of OOD detection under high recall conditions. Ideally, a lower
value of FPR95 is desirable which indicates fewer ID samples are incorrectly classified as
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OOD.We also evaluate the classification performance of the ID inputs using accuracy metric
represented as ID-ACC.

6 Results comparison

In this section, we compare our results with the baseline and S.O.T.A methods as discussed
in Sect. 5.2. Across all metrics, we report an averaged performance and a standard error value
that was determined through the execution of 10 independent test trials.

6.1 Detection results

First, we present the detection results. Here, we test on the fine-tuned methods on same
backbone of Wideresnet architecture with specifications as stated in Sect. 5.3. In Table 1, we
present the OOD detection metrics of MaCS along with other competitive baselines where
datasets such as CIFAR-10, CIFAR-100, SVHN, and Imagenet-32 are used as ID datasets.
Here, we report our result in two variants (same across all experiments, hereafter): MaCS and
MaCS∗, the former one fine-tuned at fixedm = 0.5, while the latter fine-tuned with respective
optimal value of m for each test setting as reported in Table 4.

From the results observed in Table 1a, we can confidently say that MaCS∗ consistently
outperformed the baseline methods across both CIFAR-10, and CIFAR-100 benchmarks,
not only in terms of detection metrics but also proving effective in generously classifying ID
samples.MaCSwas also able to obtain good detection performance coming second toMaCS∗
with CIFAR-100 ID data. The key reason for the improved performance can be attributed to
the weighted penalization feature of MaCS. Because the model is trained to focus entirely on
the score explosions, it becomes apparent that the model learns to restrict OOD scores to be
smaller than that of ID scores. The comprehensive results on CIFAR ID benchmarks for each
test OOD dataset evaluated under different methods with different backbone architectures are
listed in Table 2a. Here, we only present the detection results of outlier regularized methods
to enable fair comparison.

Similarly, in Table 1b, we compare our results by changing the ID inputs from CIFAR
datasets to SVHN and Imagenet-32 while keeping the experimental configurations intact.
Analyzing the results, it is evident that MaCS∗ performance remains superior regardless of
change in Din . For SVHN, MaCS∗ reports FPR95 value to be as low as zero, while for
large-scale Imagenet-32 we beat OE, and Energy [32], the second best method by 4.58 %,
and 0.64%, respectively. We can also see that MaCS provide competitive ID accuracy across
all Din . Upon training to distinguish ID and OOD samples based on their confidence scores,
our method simultaneously learns to make the inter-class decision boundary of ID samples
more compact, leading to fewer classification errors. The rationale behind this is that, with
the cost function being penalized for every score explosion, the model takes wise decision in
mapping inputs to corresponding distributions while keeping the loss value down throughout.
Considering only the confidence score-based supplementary constraint to conventional OE’s
objective, the gain in OOD detection performance is substantial.

Another thing to note is that how the performance of LogitNorm [61] and FMFP [63]
deteriorates when tested against large-scale dataset such as Imagenet-32. Interestingly, both
methods are trained without the aid of any auxiliary outliers. This degradation can be partic-
ularly due to the fact that the distribution information of the OOD dataset in those models
is unknown; thus, the model cannot properly discern OOD data from its ID counterpart. In
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contrast, outlier regularized models can introduce the distribution information of outliers
and represent any OOD data as uniformly distributed across the available classes, render-
ing them scalable for use in any large-scale OOD detection scenario and heterogeneous test
environment. Another impressive observation is that MaCS and MaCS∗ were able to outper-
form relatively sophisticated methods such as MixOE [15] and DivOE [13] demonstrating
it’s effectiveness, in addition to being relatively conceptually simpler. The comprehensive
results on SVHN and Imagenet-32 ID benchmarks for each test OOD dataset evaluated under
different methods with different backbone architecture are listed in Table 2b. Here, we report
the detection results of outlier regularized methods only for fair comparison.

6.2 Complex OOD scenarios

Realistically, in the test space, the OOD samples might not be as distinct and potentially have
significant overlap with the ID samples. This phenomenon can be characterized as a near-
OOD problem, wherein ID and OOD samples frequently intersect based on their semantic
information. Furthermore, given thevast expanseof theOODsample space, test instancesmay
originate fromdiverse environments, necessitating thevalidationof themethod’s performance
in dynamic and changing conditions. To emulate these circumstances, we perform series of
experiments here. First, we evaluate a CIFAR-10 trainedmodel on CIFAR-100OODdata and
vice versa. Although these datasets comprise mutually exclusive classes, their data collection
strategies result in semantic proximity. For instance, the automobile/truck class in CIFAR-10
can be considered semantically similar to the pickup truck class in the CIFAR-100 dataset.
Second, to simulate complexOOD scenarios, we assess the detectionmodel against corrupted
versions of CIFAR-10 and CIFAR-100 datasets, including instances with JPEG compression,
zoom blur, and speckle noise.

Throughout this experiment, we kept the test configurations exactly the same for both
datasets. The value of margin was set to 0.5. Following this, in Table 3, we report the AUROC
values in four different network architecture settings. In comparison with natural images, a
significant decrease in AUROC is observed for the corrupted images, attributable to substan-
tial distribution shift. Likewise, when compared with testing using other OOD counterparts
such as SVHN, iSUN, LSUN, etc., the evaluation of CIFAR family datasets against each other
in a near-OOD setting demonstrates a modest decline in detection performance (relative to
the results in Table 1).

6.3 Learningmetrics

In this experiment, we compare the performance of MaCS and baseline OE with regard to
the learning metrics. For this experiment, the value of m was set to 0.5. Figure3 shows a
comparison of the test loss and test errors of MaCS and benchmark OE for the CIFAR-10
and CIFAR-100 datasets. From the figure, we can deduce following: (i) the loss and error
trends show converging nature in both methods, (ii) the gap between losses and errors of OE
[10] and MaCS at each epoch is significantly large. Given that the cost function is penalized
for each score explosion, the model adepts in mapping inputs to corresponding distributions
while maintaining a low loss value throughout the fine-tuning process.
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Fig. 3 Comparison of fine-tuning test metrics of MaCS and OE baseline w.r.t epochs. (a) Test loss for CIFAR-
10, (b) test loss for CIFAR-100, (c) test error for CIFAR-10, and (d) test error for CIFAR-100

6.4 Distribution of confidence scores of ID and OOD data

MaCS’s objective is to penalize score explosions, with the aim of increasing the disparity
between ID and OOD scores. This is intended to make the separation between the two
more apparent when thresholding with (2). To illustrate this property of MaCS, we trained
two different backbone architectures, WRN and Allconv, using CIFAR-100 as ID data, and
SVHN, and iSUN as OOD data. Here, we analyzed the distribution of the OOD scores, from
two different perspectives. First, we performed kernel density estimation (KDE) and plotted
the score density of those datasets across the continuum of 0 to 1 as shown in Fig. 4. As can be
seen from the figure, the confidence scores for ID data are higher and close to 1, while those
for OOD data are close to 0. Interestingly, we can also see that the overlap between these
scores for MaCS is lower than that of OE, indicating that MaCS is better at distinguishing
between ID and OOD samples.

Second, we performed another statistical measurement to check out howmuch of the total
samples lie in the first percentile, the median, and the third percentile. This was specifically
performed to validate our claim that the confidence scores of OOD datasets should generally
exhibit lower confidence scores. The evidence as seen in Fig. 5 seems to support our claim,
where we comparedMaCSwith OE across OOD and ID scores. Across all percentiles,MaCS
was relatively better than OE in restricting OOD scores to be close to zero. Interestingly, for
the ID scores distribution, we can see that OE and MaCS are quite close to each other where
one beats the other depending on the nature of OOD dataset. Nevertheless, the magnitude
of gap in MaCS remains stunningly large, which is very important for good OOD detection.
This brings us to the deduction that since MaCS penalizes score explosions and limits them
to a defined margin, (i) OOD scores tend to be lower than their ID counterpart and (ii) a
sufficient gap (equivalent to m) between ID and OOD scores is ensured.

6.5 How does temperature scaling affect the detection?

Some of the previous works, ODIN [22], and Energy [32] have empirically proved that
temperature scaling is effective in improving OOD detection. Inspired by these, in this study,
we performed experiments by scaling the output with a temperature value T to observe
the performance of the MaCS. Specifically, for the same fine-tuned model obtained in the
above experiments, we downscaled the confidence scores of the output layer by a value of T .
We use different values of T ∈ {1, 10, 100, 1000}, while keeping all other parameters and
experimental configurations the same. From Fig.6, it is seen that the detection performance
of MaCS primes at T = 10. Overall, we observed a steady performance across both datasets,
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Fig. 4 KDE plot of confidence scores for two OOD test data: iSUN and SVHN against CIFAR-100 ID data
trained on a WRN architecture. Left column plots are for MaCS, and right column plots are for OE

Fig. 5 Plot of OOD scores (top row) and ID scores (bottom row) fine-tuned on CIFAR-100 dataset. In the
order: from left to right; iSUN-WRN, iSUN-allconv, SVHN-WRN, SVHN-allconv

whereas a slight performance drop prevailed when using T > 10. As we scale-down the
magnitude of confidence scores, there is a very high chance of MCD being perplexed owing
to the small difference between the maximum scores of ID and OOD inputs.

7 Ablation study

In this section, we describe multiple experiments performed to evaluate the contributions
made by the individual components of the proposed method.

7.1 Effect of margin on the detection performance

In this ablation study, we evaluated the detection performance of the proposed method under
different values of m. We used a margin value m ∈ {0.0, 0.1, . . . , 0.9} and fine-tuned two
models WRN and Allconv using all four ID datasets as mentioned in Section. 5.1.1. Figure7
depicts the AUROC,AUPR, and FPR95 scores averaged over five different test OOD datasets
against the range of values of m. From the figure, we can observe that the characteristics of
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Fig. 6 Line graph representing different OOD metrics plotted against various values of T . Top row plot is for
CIFAR-10, and bottom row is for CIFAR-100

Table 4 Optimum value of m
reported while using different ID
data and models

ID Data WRN Allconv Resnet-18 Densenet-121

CIFAR-10 0.5 0.9 0.8 0.7

CIFAR-100 0.8 0.9 0.8 0.8

SVHN 0.8 0.8 0.8 0.9

Imagenet-32 0.5 0.6 0.5 0.6

the curve remains different for different ID datasets; nonetheless, for a particular ID dataset
both models (WRN, and Allconv) exhibit similar trend throughout the values of m. Overall,
the model is seen to perform best at or after m = 0.5. In terms of the impact of m, most of
the time larger values are expected to increase the dispersion of OOD and ID scores toward
their respective likelihood limits of 0 and 1.We record the optimum detection results for each
dataset, across both models and report it in Table 4. These results emphasize the importance
of carefully selecting the value of m to achieve optimal performance for MaCS.

7.2 Performance w.r.t change in batch size

In this experiment, we analyze the performance of MaCS across a range of batch sizes
B ∈ {16, 32, 64, 128, 256}. We utilize CIFAR-10 and CIFAR-100 as ID datasets and report
the average FPR95 across all OOD datasets. The value of m was set to its optimal value
for respective network architectures as shown in Table 4. From Fig. 8, the overall trend for
models trained across all network architectures indicates that smaller B values tend to yield
better FPR95 values, suggesting enhanced OOD detection capability.

7.3 Training without OE regularization

This section investigates the learning criterion presented in Eq. (5) and assesses the per-
formance of MaCS without OE regularization. To gain insight into the effect of the
supplementary constraint on detection performance, we train MaCS independently. Addi-
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Fig. 7 Line graph representing the OOD detection performance of MaCS across different margin values.
Each row represents different ID datasets in the order from top to bottom: CIFAR-10, CIFAR-100, SVHN,
Imagenet-32. The results represent an average value over multiple OOD datasets

Fig. 8 MaCS Performance for different batch sizes across different network architectures
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Fig. 9 Bar graph representing different OOD metrics for MaCS trained with and without OE regularization

tionally, we conduct a comprehensive analysis by training a standalone MSP method [11]
and DivOE [13] for comparison purposes. The training configurations and m value remain
consistent with previous experiments. A bar graph in Fig. 9 illustrates the detection results
for CIFAR-10 and CIFAR-100 as ID datasets, revealing minimal differences in all detection
metrics (AUROC, AUPR, and FPR95) between models trained with and without OE regular-
ization. It is noteworthy that MaCS without OE still substantially outperformed standalone
MSP and exceeded DivOE across both ID datasets. These findings suggest that while OE reg-
ularization contributes to improved OOD detection, MaCS alone demonstrates the capability
to achieve promising results.

7.4 Training with different neural networks

After achieving favorable outcomes ofMaCS andMaCS∗ withWRN andAllconv, we sought
to determine if this performance could be replicated on other models. To this end, we trained
each of the reference methods, as well as MaCS, under similar training configurations, but
using different backbone architectures, namely Resnet-18 and Densenet-121, both of which
are widely used image classification models. We utilized all four ID datasets and all five
outlier datasets. We report the test results in Tables 5a, b, and it is evident that our methods
consistently achieved the best or second best performance across the majority of the test
datasets. These findings confirm that our method’s performance is not limited to a particular
type of neural network, as it demonstrates the capacity to achieve optimal results regardless
of the network employed.

7.5 Detection performance with and without margin bound

In this ablation study, we eliminated the bounded margin and relied solely on MCD to check
the influence of m to the overall performance. We trained a WRN backbone on all four ID
datasets, and tested on all OOD datasets. The result is depicted in Fig. 10 as a bar chart,
where we can observe a significant decline in the performance across all ID datasets when
MaCS is not subjected to a margin bound. Although MCD assigns a penalty of zero to score
explosions, it is evident that these values remain ambiguous and do not contribute to learning
when not substituted with a specific weight, which is the value of m in this instance. In
essence, when one considers (4), and when margin is not used, WMaCS will either assume
a value of 0 or simply the MCD value, which may be null or the difference between ID and
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Fig. 10 Bar graph representing different OOD metrics for individual ID datasets with and without margin
bound. A WRN model was trained on these ID datasets

Table 6 OODDetection comparison of MaCS on CIFAR benchmarks using different types of outlier datasets.

Din CIFAR-10 CIFAR-100
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

300K Random Images 98.94 98.88 4.55 91.97 90.85 31.11

TinyImagenet 97.92 97.91 9.54 90.91 89.91 33.69

Imagenet-32 96.89 96.19 12.59 90.36 87.22 29.45

The best results are represented in bold characters

OOD scores. However, this difference does not correspond to the desired difference that is
obtainable with margin.

7.6 Detection performance by changing outlier

In the literature, OOD detection has been realized with different choices of outlier datasets.
For instance, OE, GEM, and Energy used 80 million tiny images, OpenMix used 300K
random images, DOE used TinyImagenet, and POEM [68] utilized a downsampled version
of ImageNet [54] as the primary outlier dataset. In this study, we checked the detection
performance changes of MaCSwhile using different outliers. We used three popular outliers:
300K random images, the downsampled version of TinyImagenet, and Imagenet-32. We did
not use any outlier synthesis techniques but a random sampling on each of the aforementioned
outlier datasets. The value of m and the T was fixed at 0.5 and 10, respectively. We can
observe from Table. 6 that for CIFAR-10, the detection results with 300K random images
as DOE

out obtain better detection results. As mentioned in [10], 300K random images consist
of the highly curated dataset that excludes CIFAR classes, making it particularly disjoint
from Din . In addition, it has been proved that regardless of the dataset being different, if
they are semantically similar then OOD detection can be more challenging because of the
near- OOD-ness factor [69]. Therefore, the diminished performance in TinyImagenet and
Imagenet-32 can be explained by their large semantic space (TinyImagenet: 200 classes, and
Imagenet-32: 1K classes). The probability of contamination of DOE

out with ID samples was
higher, making DOE

out less disjointed from Din .
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8 Discussion

8.1 Why is the penalization so effective?

To answer this question, let’s re-visit the fundamentals of any OOD detector. For the classi-
fication model to function optimally, only ID data should exhibit higher confidence scores.
Yet, OOD data can occasionally deceive the model and exhibit higher scores than the ID
inputs, as a consequence of not adhering to the learned correlation between object and its
class label. Our research specifically addresses this issue, building upon the concept of utiliz-
ing confidence scores for the resolution. In an array of confidence scores obtained from both
ID data and outliers (which serve as OOD data), a 2D matrix of size N×N is formed, and the
element-wise difference between them is computed (details provided in Fig. 2). For instance,
if the N is 128, then it means at the output layer, ID and OOD scores both have sizes of 128 (a
1-D array). Using these arrays, a 128×128 matrix is created, followed by the calculation of
element-wise difference between them. The resulting array consists of values that are either
negative or positive. Intuitively, these values are positive only when ID scores exceed OOD
scores, and negative only when OOD scores exceed ID scores. As MaCS’s objective is to
target the OOD scores that are larger (or in other words, OOD data that are misinterpreted as
ID), we proceed by applying a simple heuristics. The logic involves penalizing all negative
values by setting them to 0. This penalization mean only the positive values remain, which in
turn takes part in model regularization. The learning criterion is specifically designed based
on this basis, such that the model updates its weights by considering the penalization of large
OOD scores, and eventually gets optimized by lowering the confidence scores for OOD data
as much as possible (see Fig. 4).

8.2 Link betweenMaCS and Real-world application

The detection of OOD samples presents a significant challenge in critical domains such
as medical imaging and autonomous driving, where classifier decisions are of paramount
importance. In such contexts, even minor alterations to features through data augmentation
techniques, such as translations and rotations, could substantially disrupt essential data char-
acteristics. Furthermore, modifying or supplementing features might introduce redundancy
or potentially contaminate the existing feature set with redundant information. Our proposed
method demonstrates the potential for seamless integration into existingmodels, as it does not
alter the features but rather enhances the learning criterion with confidence scores. Given this
characteristic, we posit that MaCS holds considerable promise in these crucial applications.

8.3 Utilizing auxiliary outlier: a practical approach?

Numerous studies [20, 21, 61, 62] demonstrate effective OOD detection without utilizing
additional outliers during training. However, these methods often exhibit limitations when
confronted with diverse OOD datasets such as one with large number of classes. This chal-
lenge arises because the distribution information of OOD data is unknown, making it difficult
for models to accurately identify such data. In contrast, models employing outlier regu-
larization can incorporate distribution information and represent OOD data as uniformly
distributed across available classes. This approach enhances scalability for various OOD
detection scenarios and heterogeneous test environments. Consequently, given the trade-
off between outlier availability and OOD detection performance, studies such as [12] and
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[68] have initiated processes to mine representative outliers, aiming to determine what kind
of outliers are most beneficial. Furthermore, empirical evidence [10] suggests that outlier-
regulated OOD detection models not only identify anomalous samples but also enhance
defenses against adversarial attacks. From an application perspective, we posit the necessity
of using outliers for robust OOD detection in real-world scenarios. Concurrently, we also
acknowledge that the topic of optimal selection and utilization of outliers should remain an
open area of research.

9 Conclusion and limitation

In this paper, we introduced a novel and straightforward methodology aimed at improving
OOD detection by establishing a compact decision boundary between ID and OOD data.
To this end, we recognized a disguised OOD detection problem that existed in OE setting,
i.e., score explosions, and proposed a solution, MaCS which first penalizes score explosions
and then substitutes it with a margin value to realize the difference between ID and OOD
data to be as large as possible. Our approach significantly enhanced the OOD detection and
provided competitive performance when compared with several S.O.T.A benchmarks across
four ID datasets and five OOD datasets in the image classification domain. Importantly, our
proposed method was also able to achieve significant gain in ID accuracy. To summarize
the detection performance, our method exhibited a remarkable gain in AUROC, AUPR, and
FPR95, reaching a maximum improvement of 2.73%, 3.26%, and 9.06%, respectively. These
results affirm its effectiveness and thus demonstrate the synergy of OE with our method
in advancing the field of OOD detection. Limitation: Although we assert that the outlier
regularizedmodel demonstrates superiorOODdetection performance,wehave not conducted
a comprehensive analysis regarding the specific types of outliers that are truly beneficial.
Considering these outliers to be known-a-priori may prove challenging in tasks where the
nature of outliers is uncertain or in situations where the characteristics of outliers frequently
change.
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