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A B S T R A C T

Hierarchical classification is a significant challenge in computer vision due to the logical order and in-
terconnectedness of multiple labels. This paper presents HD-CapsNet, a novel neural network architecture
based on deep capsule networks, specifically designed for hierarchical multi-label classification(HMC). By
incorporating a tree-like hierarchical structure, HD-CapsNet is designed to leverage the inherent ontological
order within the hierarchical label tree, thereby ensuring classification consistency across different levels.
Additionally, we introduce a specialized loss function that promotes accurate hierarchical relationships
while penalizing inconsistencies. This not only enhances classification performance but also strengthens the
network’s robustness. We rigorously evaluate HD-CapsNet’s efficacy by benchmarking it against existing
HMC methods across six diverse datasets: Fashion-MNIST, Marine-Tree, CIFAR-10, CIFAR-100, Caltech-UCSD
Birds-200-2011, and Stanford Cars. Our results conclusively demonstrate that HD-CapsNet excels in learning
hierarchical relationships and significantly outperforms the competition in various image classification tasks.
Our implementation is available at https://github.com/tasrif-khondaker/HD-CapsNet.
1. Introduction

Image classification is notably a challenging task in computer vision
and machine learning due to the high variability and complexity of
natural images. In most cases, image classifiers are designed to classify
images to address image categories based on the features of the objects
in the images. However, in many real-world applications, images can
contain multiple objects, and each object can belong to multiple classes.
For example, an image of a dog can be classified as a ‘‘dog’’, ‘‘pet’’, ‘‘an-
imal’’, etc. based on its features. To address these complexities, there is
increasing interest in hierarchical multi-label image classification. The
goal is to model the hierarchical relationships between visual concepts,
so that an image classifier can output multiple labels according to a
taxonomy tree. For hierarchical classification methods, a multi-label
classification approach is commonly used to model the taxonomy. The
main advantage over single-label classification is the ability to classify
images at multiple granularities and model relationships between labels
at different levels. This comes at the cost of more complex models and
inference techniques. But hierarchical multi-label classification (HMC)
unlocks capabilities like filtering image search results by high-level
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categories or retrieving images according to fine-grained attributes. Hi-
erarchical image classification has been adopted in many applications
such as object recognition [1], medical image analysis [2], fine-grained
image classification [3], and scene understanding [4]. Generally, in the
hierarchical classification approach, objects are classified following a
coarse-to-fine paradigm [5], i.e. images are first classified into coarse
categories (such as animals, transport, etc.), and then further classified
into finer categories within each coarse category (such as dog, cat, etc.
within animals). Which requires a multi-label classification approach
that can handle multiple labels following a predefined taxonomy for a
single instance. To demonstrate and evaluate the advantage of hierar-
chical classification, we refer to Fig. 1, which shows (a) an example
of a hierarchical label tree for the CIFAR-10 dataset, and (b) some
prediction labels for the images following the label tree. Note that, the
examples in Fig. 1 indicate that hierarchical relationships between the
classes in the label tree follow an ontological order. This information
can be used to guide classification models to learn the hierarchical
relationships between the classes in the label tree, which can improve
classification performance. Hierarchical image classification has several
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, including those for text and data mining, AI training, and similar technologies. 
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Fig. 1. (a) Example of an ontology-guided hierarchical label tree for the CIFAR-10 dataset. The dataset has 3 hierarchical levels with 2, 7, and 10 classes at the coarse, medium,
and fine levels, respectively. (b) Classification outcomes of the HMC approach based on the hierarchical relationships of different levels of sample images from the CIFAR-10
dataset. Note that hierarchical consistency requires predictions to follow the hierarchical branch, whereas exact match requires the predictions to align with the ground truth.
advantages over flat (non-hierarchical) classification such as it can
handle large and complex datasets with a large number of classes by
breaking them down into subcategories [6], improve the accuracy of
classification by adjusting the decision boundaries and reducing the
computational complexity by making use of the taxonomic structure
in the label tree [7], and can provide a better understanding of the
relationships between different image features.

In recent years, deep learning-based methods, especially convolu-
tional neural networks (CNNs), have shown remarkable performance
in solving hierarchical image classification problems. The convolution
algorithm in the CNN extracts lower-level features in the shallow layers
and higher-level features in the deeper layers [8]. Which allows the
CNN to learn hierarchical representations of visual features from raw
pixel data in different layers. However, CNNs have some limitations
in capturing the hierarchical structure of objects in images, which
can lead to misclassification and poor generalization performance. The
attention regions of CNN classifiers can be derived as an attention
heatmap in the middle layers of the network. However, Guo et al.
in [9] observed that, their consistency is not maintained under various
transformations. Despite this, CNNs struggle with certain limitations,
such as only relying on object features to classify [10] and lack the
ability to understand the relationship between objects [11].

Capsule networks (CapsNet), introduced by Sabour et al. in [10],
aim to resolve some of these shortcomings by representing entities as
vectors, allowing for more expressive and interpretable models [10].
Each layer in a CapsNet consists of a set of capsules, which are groups
of neurons that represent different features in the image. Capsules
in lower layers output a vector representing different properties of
features, and capsules in higher layers use this information to compute
hierarchical relationships between object parts [12] and compute a
prediction of the presence of the whole object. This allows CapsNet to
learn hierarchical representations of objects more efficiently, which can
improve the performance of hierarchical image classification by making
use of a hierarchical label tree [13]. Notwithstanding the encouraging
outcomes of CapsNet, the model can still be refined to improve their
ability to learn hierarchical representations of objects in images making
use of the relationship between different layers in the network. How-
ever, current capsule network implementations still have limitations in
2 
effectively learning hierarchical representations of object features for
classification problems. Simply stacking more capsule layers results in
routing challenges [14] and diminished spatial encoding. This even
leads capsule networks to lose their natural advantages to connect
the hierarchical relationships between the feature properties. Modified
routing algorithms and network architectures have been introduced to
overcome this limitation by better modelling the relationships [15] and
reducing the computational complexity [16]. The models in [13,17]
employ capsule networks to learn the hierarchical structure of the
dataset by connecting multiple capsule layers in a hierarchical manner.
Further, the model in [18] uses a capsule network to predict multiple
labels along with a generative adversarial network (GAN) to learn
the hierarchical structure. However, these approaches do not consider
the hierarchical consistency between the capsule layers and linearly
increase the computational complexity with the number of capsules in
the higher levels.

In this paper, we propose the HD-CapsNet architecture, a hierarchi-
cal deep capsule network that can model the hierarchical relationships
more effectively following a data hierarchy. Our approach involves
using multiple capsule layers in the architecture to represent the hi-
erarchical structure of the dataset. This allows the model to tackle all
the levels in the hierarchy at once, resembling a global hierarchical
classification approach in [6] which follows a coarse-to-fine paradigm.
Furthermore, capsule layers in HD-CapsNet are connected to each other
in a hierarchical manner, which allows the model to keep a better bal-
ance between the hierarchies. We also propose a modified loss function
that enforces hierarchical consistency between the outputs of the net-
work. The loss function penalises inconsistencies in the predicted class
probabilities across different levels of the hierarchy, and encourages
the network to learn representations that are both discriminative and
hierarchical. We evaluate the proposed HD-CapsNet architecture on
several widely available benchmark datasets, including Fashion-MNIST,
Marine-tree, CIFAR-10, CIFAR-100, CUB-200-2011, and Stanford Cars,
and compare it against other deep learning methods. Our experiments
show that the proposed network achieves a margin of improvement in
model performance on these datasets. In summary, the contributions of
this paper are as follows:
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• We propose HD-CapsNet, a hierarchical deep capsule network
that uses multiple capsule layers to learn the hierarchical rela-
tionship between different levels in the label tree and use this
information to improve the classification performance.

• We introduce a novel loss function that enforces hierarchical
consistency in the capsule network.

• We demonstrate the effectiveness of our approach on several
benchmark datasets and show that it outperforms the alternatives.

. Related work

In recent years, the field of deep learning has seen significant
rogress in the development of capsule networks, which are a promis-
ng alternative to traditional convolutional neural networks (CNN).
NNs are widely used and effective in various image classification
asks, they have performed quite well in Multi-label image classification
roblems [19]. However, CNNs encounter limitations in hierarchical
ulti-label classification (HMC) tasks, where understanding the rela-

ionships and hierarchical structure among labels is crucial. Capsule
etworks aim to address some limitations of CNNs in encoding higher-
evel compositionality of objects and scenes. By segmenting images
nto groups of capsules that represent visual elements at increasing
evels of abstraction through a parse tree, capsule networks can parse
mages into meaningful hierarchies in a more human-interpretable
ay. As alternatives to CNNs, capsule networks aim to overcome

imitations related to hierarchical reasoning by modelling part-whole
nd spatial relationships more explicitly. Over the past several years,
ubstantial progress has been made in developing and demonstrating
he capabilities of capsule networks across a range of computer vision
asks. While still an emerging approach, capsule networks have shown
romising results across tasks like image classification [10], object
ecognition [20], and image segmentation [21]. As architectural inno-
ations and training techniques continue to improve capsule networks,
hey may gain adoption as more robust and interpretable alternatives
o CNNs for computer vision tasks requiring a structured hierarchical
nderstanding of visual scenes.

The concept of capsules was first introduced by Hinton et al. in [22],
nd it was further developed by Sabour et al. in [10] with the intro-
uction of the Capsule Network architecture. CapsNet uses capsules to
odel relationships between the features of an image and to output
ose parameters, which can be used to represent the position, orien-
ation, and scale of objects in an image. Dynamic routing between
apsules proposed a method for routing information between capsule

ayers using agreement, which allows the network to learn the most
elevant features for a given input. This is in contrast to traditional
NNs, which output class probabilities and do not explicitly model
he relationships between features. Since the introduction of CapsNet,

number of research papers have been published that extend and
mprove upon the original architecture. Some of the most notable
apers include Matrix Capsules with EM Routing [12] which allows the
etwork to learn the relative geometry between different features in an
mage, introduction of MS-CapsNet in [23] that proposes a multi-scale
apsule network to fully encode hierarchical features of images, and
eepCaps proposed in [15] proposes a deep architecture for capsule
etworks using 3D convolution-based dynamic routing algorithm and
pooling strategy to enhance the existing ones. Moreover, the study

n [24] highlights the potential of capsule networks in multi-label
mage classification tasks. They demonstrated that by replacing the
ast layer of a pre-trained CNN with a capsule layer, the performance
f the network could be substantially improved. This finding suggests
hat capsule networks, with their unique approach to processing and
nderstanding image data, can significantly augment the performance
f existing CNN architectures, leveraging their robust feature detection
apabilities.

However, current implementations show that adding more capsule

ayers in capsule networks presents some challenges needing resolution.

3 
Increasing the number of capsule layers results in greater complex-
ity and computational expense for the routing algorithms connecting
lower-level capsules to higher-level ones. The dynamic routing pro-
cess [10] must now route signals across additional capsule layers,
expanding the dimensionality of the overall routing issue. Furthermore,
propagating signals over many capsule layers can diminish informa-
tion as it passes through the model, rendering the network more
susceptible to overfitting on limited training data. To mitigate these
matters, modifications to routing algorithms, network architecture,
novel regularization methods, and larger datasets may be imperative
to effectively train deep capsule networks. To address these challenges,
the work in [25] proposed a new capsule network architecture that
uses a modified routing algorithm by introducing a routing weight
initialization technique. Further, the work presented in [14] provides
experimental evidence that implementing residual connections in deep
capsule networks can help reduce the loss of spatial information. An-
other recent development is the COVID-CAPS architecture proposed
in [26], which incorporates an additional capsule layer to increase
network depth. COVID-CAPS was shown to outperform alternative
approaches on the task of classifying COVID-19 cases. These results
demonstrate that capsule networks represent a promising technique
for capturing the hierarchical structure of a dataset and modelling the
complex relationships between the various features within an image.
The increased representation capacity provided by the capsule and
routing mechanisms enables these networks to learn part-whole rela-
tionships and perform detailed feature extraction. By modelling entities
as capsules and actively routing information between them, capsule
networks are able to preserve spatial relationships and encode higher-
level semantic meaning more effectively than standard convolutional
neural networks. Overall, these recent advancements indicate that fur-
ther exploration of deep capsule networks, leveraging techniques such
as residual connections, is a worthwhile direction that may lead to
performance improvements on tasks requiring a detailed understanding
of spatial, part-whole, and hierarchical relationships within image data.

In the realm of standard multi-label image classification, labels
are typically treated as distinct and unrelated entities. Each image
can be labelled with multiple descriptors, but these usually do not
imply any hierarchical or interdependent relationships. To address
this, various methodologies have been developed. The work in [27],
explored the combination of multiple classification models to classify
multi-label aerial images, while the method in [28] introduced a multi-
branch strategy for classifying images into numerous labels. However,
these methods often overlook the hierarchical structure inherent in the
data. Contrastingly, hierarchical image classification takes a layered
approach, dividing the task into several levels of complexity. In this
approach, the lower levels of the hierarchy represent low-level fea-
tures [8], while the higher levels represent more abstract features. For
example, in a hierarchical image classification system for animals, the
first level of the hierarchy might classify images into broad categories
such as ‘‘mammals’’, ‘‘birds’’, ‘‘reptiles’’, and‘‘fish’’ based on the low-
level features, while subsequent levels of the hierarchy might classify
images into more specific categories such as ‘‘dogs’’, ‘‘cats’’, ‘‘parrots’’,
‘‘turtles’’, ‘‘snakes’’, and ‘‘sharks’’ using more level specific features.
Empirical results have shown the efficacy of this approach in handling
variations in object appearance and improving the interpretability [6]
of the network. Some notable works in this area include CNN based
hierarchical image classification in [29], which uses a branching strat-
egy to classify images into multiple labels, and Tree-CNN in [30] that
organizes the incrementally available data into feature-driven super-
classes and improves upon existing hierarchical CNN models. Later,
Kolisnik et al. proposed a hierarchical neural network for image classifi-
cation in [31] that first learns low-level features common to all levels in
the class hierarchy through a common CNN base model and then uses
a hierarchical classification approach to classify images into multiple
labels employing conditional weight matrix. In comparison with B-

CNN, which uses a branch structure to classify images into multiple
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labels in [8], the Condition-CNN in [31] uses a more effective hierarchi-
cal classification approach to improve the classification performance.
Further, the authors in [32] proposed a mask-based output layer for
hierarchical image classification that allows the model to learn the
relationships between different levels of classes and to make predictions
at multiple levels simultaneously.

In recent times, capsule networks have shown great promise in
HMC tasks. This has led to an increase in research exploring different
architectures and techniques to improve the performance of capsule
networks in hierarchical classification tasks. In particular, ML-CapsNet
in [13] uses multiple capsule layers with a common primary capsule
layer to model the hierarchical structure of the dataset, and BUH-
CapsNet in [33] employs a bottom up approach to learn the hierarchical
structure of the dataset by connecting multiple capsule layers in a
hierarchical manner. Further, the H-CapsNet in [17] employs dedicated
capsule networks for each level of the hierarchy to further improve
feature vectors with level specific features. Further, the HGT&BC model
in [18] is introduced for hierarchical image classification, which uses
a hierarchical GAN-tree to extract features and bi-directional capsules
for prediction. The iterative modular capsule development approach
adopted by these architectures highlights the suitability of capsule
networks for learning hierarchical links within image data. Specifically,
the gradual growth and integration of tailored capsules enables the
extraction of hierarchical patterns from images. These recent advances
demonstrate capsule networks’ significant potential to drive progress
in hierarchical image classification through capsule design and struc-
tured hierarchical modelling. Although these approaches have shown
promising results in capturing the hierarchical structure of the dataset,
they do not consider the hierarchical consistency between the levels.
Further, the models in [13,17] linearly increase the number of capsules
in each level mimicking the label tree, which can lead to a large number
of capsules in the higher levels. This can increase the computational
complexity of the model and can lead to overfitting. Overall, capsule
networks have shown great promise in improving the performance of
deep neural networks for image classification and other tasks. While
significant strides have been taken, there are still gaps that need to
be filled to fully understand the capabilities and limitations of capsule
networks, recent advances in the field suggest that these approaches
may become increasingly pivotal to the future development of deep
learning.

3. HD-CapsNet

Our proposed model, called the hierarchical deep capsule network
(HD-CapsNet), can learn the hierarchical structure of an image based
on a hierarchical label tree. The model takes full advantage of the
capsule network to learn the hierarchical representation of the dataset
by employing the coarse-to-fine paradigm present in the hierarchical
label tree. For training and evaluating the proposed classifier considers
the entire class hierarchy at once. Hence, it falls under the global
hierarchical classifier category [6], and further allows the model to
employ hierarchical consistency in the learning process. The overall
architecture of the proposed method is shown in Fig. 2(a). Note that
the proposed architecture shown in Fig. 2(a) is composed of a feature
extraction block, a common primary capsules (𝑃 ) and 𝑁 number of
secondary capsules (𝑆𝑖) where 𝑖 is the hierarchical index and 𝑁 is the
total number hierarchical levels.

The feature extraction block present in our proposed model in
Fig. 2(a) is composed of four sub-blocks, where each sub-block contains
two convolutional layers followed by a batch normalization layer and
lastly a maxpooling layer. The first sub-block is used to extract the
features from the input image, and the remaining three sub-blocks are
used to extract the features from the output of the previous sub-block.
The purpose of the feature extraction block is to extract the features
from the input image and to reduce the dimensionality of the extracted
features. The convolutional layers in the feature extraction block are
 k
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used to extract the features from the raw input image, and the max-
pooling layers are used to reduce the dimensionality of the extracted
features. The batch normalization layers are used to normalize the
extracted features in order to improve the stability [34] of the model.
The output of the last sub-block, 𝐇 is then reshaped to form the primary
capsule layer as shown in Fig. 2(b).

In the primary capsule layer (𝑃 ), as described in [10], a crucial
process occurs where the layer applies a non-linear transformation
to the initially generated local feature maps. These feature maps are
essentially representations of the extracted features from the input
image. The non-linear transformation is a key step that converts these
feature maps into a collection of vectors. As shown in Fig. 2(b), this
transformation is achieved by first reshaping, and then flattening and
squashing the output 𝐇 of the feature extraction block. The squashing
function is defined as:

𝑣𝑜 =
‖𝑣𝑖𝑛‖2

1 + ‖𝑣𝑖𝑛‖2
𝑣𝑖𝑛

‖𝑣𝑖𝑛‖
(1)

where 𝑣𝑖𝑛 is the total input vector and 𝑣𝑜 is the output vector. In the
ontext of capsule networks, each vector represents a capsule, and the
quash function is designed to normalize the length of these vectors
hile preserving their direction. This process ensures that the length
f each vector is between 0 and 1, which is crucial for the proper
unctioning of capsule networks. This transformation is vital because
t allows the primary capsule layer to encapsulate not just the presence
f features in the image, but also their instantiation parameters like
ose, orientation, and spatial hierarchy [10]. The vectors formed as
result of this transformation are multi-dimensional, each represent-

ng a specific feature or pattern detected in the input image. In our
mplementation, the dimensionality of these vectors is determined by
he complexity of the dataset and the intricacy of the label tree in
he hierarchical classification task. The number of vectors in primary
apsule layer, denoted by 𝑟, and their dimensionality, denoted by 𝑛𝑃 ,
re thus tailored to suit the specific requirements of the dataset and
he classification problem at hand. The transformed set of vectors,
hich encapsulate rich feature information, are then forwarded to the

econdary capsule layers for further processing and refinement.
Secondary capsule layers in Fig. 2(a) are responsible for represent-

ng: (1) the hierarchical structure of the dataset, and (2) the probability
f the presence of specific features or patterns in the input image. To
ffectively capture the hierarchical structure of the dataset, each sec-
ndary capsule layer (𝑆𝑖) in the architecture represents a hierarchical
evel, and each capsule (𝑘𝑖) in the same layer denotes a class in the
ierarchical label tree. Here 𝑘 is the class index in the hierarchical
abel tree at the 𝑖th hierarchical level. Thus, the number of secondary
apsule layers in the architecture will be as many as the number of
ierarchical levels, and the number of capsules in each layer will be
s numerous as the number of classes in the corresponding level. As
entioned in Fig. 2(a), secondary capsule layer (𝑆𝑖=1) representing the

oarse level take the output of the primary capsule layer (𝑃 ), whereas
econdary capsule layers (𝑆𝑖>1) representing the finer levels takes the
utput of both the previous secondary capsule layer (𝑆𝑖−1) and the
rimary capsule layer (𝑃 ). Therefore, the input of the secondary capsule
ayer follows the following conditional equation:

𝑖 =

{

𝑃 , if 𝑖 = 1
𝑆𝑖(𝑍𝑖−1∥𝑃 ), Otherwise

(2)

ere, 𝑍𝑖 is the input for the secondary capsule layer for 𝑖th level.
he output of the primary capsule layer is used to learn the presence
f specific features or patterns in the input image, and the output of
he previous secondary capsule layer is used to learn the hierarchical
elationships between the features according to the data taxonomy
sing an iterative dynamic routing by agreement algorithm. This allows
he model to learn the hierarchical structure of the dataset and to

eep consistency between the levels. Each capsule in the secondary
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Fig. 2. (a) The HD-CapsNet extracts features from the input image using a feature extraction block, and then transforms the features into primary capsules 𝑃 . Each secondary
capsule layer 𝑆𝑖 in the architecture represents a hierarchical level, with each capsule within the same layer denoting a class in the hierarchical label tree. Each 𝑆𝑖 takes 𝑍𝑖 as
input, as defined by Eq. (2). Further, to enforce hierarchical consistency, Eq. (6) is used to penalize inconsistencies in the predicted class probabilities across different levels. (b)
The primary capsule layer is formed by first reshaping the extracted features, and then flattening and squashing them using the non-linear squashing function defined in Eq. (1).
capsule layer outputs a vector of length 𝑛𝑆 and represents the prob-
ability of a class 𝑘 in the hierarchical label tree at the 𝑖th hierarchical
level. As mentioned in Eq. (2), the input of the secondary capsule
layer for the first hierarchical level only contains the output of the
primary capsule layer, as a result, the routing is done only between
these two layers following the iterative dynamic routing by agreement
algorithm [10]. However, for the remaining hierarchical levels, the
input of the secondary capsule layer is a concatenation of the output
vectors of the previous secondary capsule layer and the primary capsule
layer, thus the input vectors of the secondary capsule layer contain
both the feature properties and the hierarchical structure of the dataset.
Therefore, the routing by agreement algorithm considers the previous
level’s output and the corresponding features to output much more
accurate vectors for the current level. In this way, our HD-CapsNet is
capable of learning the hierarchical structure of the dataset and utilizes
the hierarchical structure to keep consistency between the levels.

In this network architecture, the output from the secondary capsules
is processed through a designated prediction layer, denoted as 𝑌𝑖,
at each level of the hierarchical structure. This layer is responsible
for predicting the class label of the image in accordance with the
hierarchy defined in the label tree. Specifically, the prediction layer
outputs a vector of probabilities, 𝑌𝑖 = [�̂�𝑖,1, �̂�𝑖,2,… , �̂�𝑖,𝑘], where �̂�𝑖,𝑘 is
the probability for each class 𝑘 in the 𝑖th hierarchy. This computation
is based on normalizing the lengths of the capsule vectors as follows:

�̂�𝑖,𝑘 =
‖𝑣𝑖,𝑘‖

∑𝑘𝑖
(3)
𝑗=1 ‖𝑣𝑖,𝑗‖

5 
Here, ‖𝑣𝑖,𝑘‖ is the length of the output vector of the 𝑘th capsule in the 𝑆𝑖
secondary capsule layer. Thus, �̂�𝑖,𝑘 evaluates the probabilities of each
class by considering the vector lengths of the corresponding capsules
in the secondary capsule layer. Therefore, the proposed HD-CapsNet
model outputs a vector of probabilities for each class at each level of
the hierarchy.

3.1. Loss function

As stated in CapsNet [10], capsule networks are trained using a
margin loss function in order to foster the output vector corresponding
to the actual label to have a higher magnitude than the other vectors.
Hence, we made use of the margin loss function (𝐿𝑀 ) for each sec-
ondary capsule layer (𝑆𝑖) with a hierarchical level weight (𝛶𝑖) to keep
a balance between the levels by prioritizing from coarse-to-fine levels.
Further, we introduced a consistency loss function (𝐿𝐶 ) to enforce
the consistency between the levels. As a result, the total loss function
(𝐿𝑇 𝑜𝑡𝑎𝑙) is a weighted sum of the margin loss function (𝐿𝑀 ) and the
consistency loss function (𝐿𝐶 ) as follows:

𝐿Total = 𝛶1𝐿𝑀1
+

𝑁
∑

𝑖=2
𝛶𝑖[(1 − 𝛬)𝐿𝑀𝑖

+ 𝛬𝐿𝐶𝑖
] (4)

Here 𝛬 is the weight parameter for the consistency loss function. 𝛬
defines the importance of the level consistency along with the margin
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loss function which determines the level wise classification loss. The
margin loss function (𝐿𝑀 ) is defined as follows:

𝐿𝑀𝑖
=

𝑖
∑

𝑘=1
𝑇𝑘 max(0, 𝑚+ − ‖𝑣𝑘‖)2+

𝜆(1 − 𝑇𝑘) max(0, ‖𝑣𝑘‖ − 𝑚−)2
(5)

Here, 𝑇𝑘 is the target class label, 𝑣𝑘 is the output vector of the 𝑘th
capsule in the 𝑖th secondary capsule layer, 𝜆 is the down-weighting
parameter for absent classes, 𝑚+ and 𝑚− are the margin parameters.
The consistency loss function (𝐿𝐶 ) in Eq. (4) is calculated based on the
parent–child relationship between the classes in the hierarchical label
tree. The consistency loss function (𝐿𝐶 ) is defined as follows:

𝐿𝐶𝑖
=

⎧

⎪

⎨

⎪

⎩

0, if 𝑖 ≤ 1
𝐾𝑖
∑

𝑗=1

(

1 − 𝑃 (𝑘𝑖,𝑗 ∣ 𝑘𝑖−1)
)

⋅ (1 − 𝑐(𝑘𝑖,𝑗 )), if 𝑖 > 1
(6)

Where, 𝐾𝑖 is the total number of classes at the current level 𝑖, 𝑘𝑖,𝑗
represents the 𝑗th label at level 𝑖, 𝑐(𝑘𝑖,𝑗 ) is the consistency score of
the class label 𝑘𝑖,𝑗 , which is equal to 1 if it is consistent following the
label tree and 0 otherwise. 𝑘𝑖−1 represents the parent class label at the
previous level 𝑖 − 1, 𝑃 (𝑘𝑖,𝑗 ∣ 𝑘𝑖−1) is the probability of the class label
𝑘𝑖,𝑗 belonging to the class label 𝑘𝑖−1 at the previous level 𝑖 − 1. The
probability 𝑃 (𝑘𝑖,𝑗 ∣ 𝑘𝑖−1) is calculated using the function as follows:

𝑃 (𝑘𝑖,𝑗 ∣ 𝑘𝑖−1) =
exp(𝑣𝑖,𝑗 )

∑𝐾𝑖
𝑚=1 exp(𝑣𝑖,𝑚)

(7)

Where 𝑣𝑖,𝑗 is the logit output for class 𝑘𝑖,𝑗 at level 𝑖 given its parent
class 𝑘𝑖−1 at level 𝑖− 1. The summation term represents the sum of the
probabilities of all the selective classes at the current level that does not
follow the label tree and is not consistent. As a result, the consistency
loss function in Eq. (6) enforces the consistency between the levels by
penalizing the probabilities of the classes that do not follow the label
tree and are not consistent.

4. Experiments

We have undertaken numerous experiments to analyse the per-
formance of our proposed HD-CapsNet model. To evaluate our pro-
posed HD-CapsNet and other classifier mentioned in the literature, we
have used six different image datasets: Fashion-MNIST [35], Marine-
Tree [36], CIFAR-10 [37], CIFAR-100 [37], Caltech-UCSD Birds-200-
2011 (CUB-200-2011) [38] and Stanford Cars [39]. Further, we have
compared the performance of our proposed HD-CapsNet with the Cap-
sNet in [10], the CNN based branch hierarchical classifier (B-CNN)
in [8], hierarchical convolutional neural network (H-CNN) in [29],
Condition-CNN method in [31], ML-CapsNet in [13], BUH-CapsNet
in [33] and H-CapsNet approach in [17]. Note that, the baseline
CapsNet in [10] is not a hierarchical classifier and targets only the fine
level classes overlooking the hierarchical relationships. But it shares the
same capsule architecture and the routing algorithm with our proposed
model. The B-CNN in [8], H-CNN in [29], Condition-CNN in [31], ML-
CapsNet in [13], BUH-CapsNet in [33] and H-CapsNet in [17] on the
other hand is a global hierarchical classifier that targets all the classes
in the hierarchy. Hence, we have used these classifiers to compare the
performance of our proposed HD-CapsNet.

4.1. Datasets

As indicated earlier, we have used six different image datasets
with different numbers of classes and hierarchical relationships in our
experiments. The details of the datasets are as follows:

The Fashion-MNIST dataset is a dataset consist of 70,000 grayscale
images of 10 different fashion items. The dataset is divided into 60,000
training images and 10,000 testing images. Each image is of size
28 × 28 pixels. The dataset is a balanced dataset with 6,000 images
 o
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per class. The original dataset does not have any hierarchical structure.
Hence, we have created a hierarchical structure for the dataset by
grouping the classes into two additional levels as shown in [29]. The
coarse level consists of two classes and the medium level consists of six
classes. In the hierarchical structure, the classes in the coarse level are
the parent classes of the classes in the medium level and the classes in
the medium level are the parent classes of the classes in the fine level
for the corresponding classes grouped under. Thus, the classes in the
hierarchical structure form a parent–child relationship.

The Marine-Tree dataset is a dataset consist of 160,000 colour
images of marine organisms divided into tropical, temperate and com-
bined subsets. The dataset provides a hierarchical structure with five
levels. For simplicity, we have used the first 3 levels of the hierarchical
structure in our experiments. The coarse level consists of 2 classes, the

edium level consists of 10 classes and the fine level consists of 38
lasses. Further, we set the image size to 64 × 64 pixels.

In a related fashion, the CIFAR-10 and CIFAR-100 datasets are two
ifferent datasets consist of 60,000 colour images of 10 and 100 differ-
nt child classes grouped under 20 different parent classes respectively.
he datasets are divided into 50,000 training images and 10,000 testing

mages. Each image is of size 32 × 32 pixels. To achieve a 3 level
ierarchical structure we have assigned 2 additional levels for CIFAR-10
nd 1 additional level for CIFAR-100 dataset by following the footsteps
f [8]. Therefore, in CIFAR-10 dataset, the additional coarse level
onsists of 2 classes and the medium level consists of 7 classes, and
n CIFAR-100 dataset, the additional coarse level consists of 8 classes.

The CUB-200-2011 dataset contains colour images of 200 different
ird species and the Stanford Cars dataset contains colour images of
96 different car models. We have followed the hierarchical structure
rovided in [32] for both the datasets to assign a 3 level hierarchical
tructure, where the training, validation and testing sets contain 5944,
897 and 2897 images for CUB-200-2011 dataset and 8144, 4020 and
021 images for Stanford Cars dataset respectively. The coarse, medium
nd fine levels consist of 39, 123 and 200 classes for CUB-200-2011
ataset and 13, 113 and 196 classes respectively for the Stanford Cars
ataset. In our experiments we have specified the image size as 64 × 64
ixels for both the datasets.

.2. Experimental setup

Through our experiments, we have used the same data preprocess-
ng and augmentation techniques for all the datasets. Here we used
ix-Up data augmentation technique [40] to augment the training

ata. Mix-Up data augmentation technique is a simple yet effective data
ugmentation technique that generates new training samples by lin-
arly interpolating between two randomly selected training instances.
he interpolation is done by taking the weighted average of the two
raining samples and the corresponding labels. The weight is sampled
rom a beta distribution with a parameter 𝛼. The value of 𝛼 is set to
.2 for all the experiments. Here we make use of Adam optimizer with
n exponential decay learning rate scheduler. The initial learning rate
s set to 0.001 and the decay rate is set to 0.95 which is executed after
0 training epochs for all the experiments. Experimentally, we found
hat setting the initial learning rate to a higher value (0.001) strikes a
alance between rapid convergence and the risk of overshooting the
inimum. As training progresses, fine-tuning the model parameters

ecomes crucial to hone in on the optimal solution. The decay rate
f 0.95 gradually reduces the learning rate, which helps prevent the
odel from oscillating or diverging away from the optimal solution in

he later stages of training. Further, we have trained the models for 100
pochs within all the datasets for a fair comparison.

As mentioned earlier in Section 3, the feature extraction block is
omposed of 4 sub-blocks containing 2 convolutional layers followed
y a batch normalization layer and 1 max-pooling layer. For all the
cenarios, the convolutional layers in the sub-blocks use a kernel size

f 3 × 3 with zero padding and 𝑅𝑒𝐿𝑢 activation function. The number
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of filters in the convolutional layers are set to 64, 128, 256 and 512
respectively for the 4 sub-blocks. The batch normalization layers in
the sub-blocks are set with TensorFlow’s default parameters, and the
maxpooling layers use a kernel size of 2 × 2 with a stride of 2.
Throughout all the experiments, we have predefined the value of 𝑛𝑃
to be 8 for the primary capsule layer, as a result, the 𝑟 value for the
primary capsule layer varied according to the input image size as the
number of filters feature extraction block is fixed.

Each dimension in the secondary capsules represents a feature or a
pattern in the input image [10]. Therefore, the number of dimensions in
the secondary capsules is determined by the complexity of the dataset
and the intricacy of the label tree in the hierarchical classification
task. In our experiment, the fashion-MNIST, CIFAR-10 and CIFAR-100
datasets are consist of simple images with a small number of classes in
the hierarchical levels, whereas the Marine-Tree, CUB-200-2011 and
Stanford Cars datasets are consist of more complex images with a large
number of classes in the hierarchical levels. Hence, we have set the
value of 𝑛𝑆 for the secondary capsule layers to be 32, 16 and 8 for the
coarse, medium and fine levels for the fashion-MNIST, CIFAR-10 and
CIFAR-100 datasets respectively. For the Marine-Tree, CUB-200-2011
and Stanford Cars datasets, we have set the value of 𝑛𝑆 to be 64, 32 and
16 for the coarse, medium and fine levels respectively. Here we trained
the HD-CapsNet model employing the dynamic routing algorithm [10]
with 2 routing iterations for all the datasets. For training the HD-
CapsNet model, we have employed a dynamic loss weight distribution
strategy as mentioned in [17] for the loss weights (𝛶𝑖) in Eq. (4).
This loss weight distribution strategy is initially assigned to prioritize
the hierarchical levels following the coarse-to-fine paradigm, and later
adjust the weights based on the training accuracy. Additionally, the
consistency weight (𝛬) in Eq. (4) is set to 0.2 for all the experiments.
The upper margin 𝑚+ and the lower margin 𝑚− in Eq. (5) are set to
ensure that the output vector corresponding to the actual label has a
magnitude greater than those corresponding to incorrect labels. In our
experiments, we have set the value of 𝑚+ to 0.9 and the value of 𝑚−
o 0.1 for all implementations. These values are chosen to encourage
he length of the vector for a capsule to be longer than 0.9 if the
apsule is associated with the correct label, and shorter than 0.1 if it is
ssociated with an incorrect label. We determined these values through
hyperparameter search on the corresponding datasets.

The baseline CapsNet model is trained with the same hyperparame-
er as mentioned in [10] where the primary capsules are 8-dimensional
nd secondary capsules are 16-dimensional and uses dynamic routing
ith 2 iterations for all the datasets. For the B-CNN model we have
sed the base-B model as mentioned in [8] which does not include
re-trained weights. All other hyperparameters were kept the same as
hu and Bain mentioned in [8]. Similarly, we have used the same
yperparameters as mentioned in [29] for H-CNN and in [31] for
he Condition-CNN model. For the ML-CapsNet, BUH-CapsNet, and
-CapsNet models, we used the same hyperparameters as mentioned

n [13,33], and [17], respectively, and kept the capsule dimensions the
ame as the HD-CapsNet model for a fair comparison.

.3. Ablation study

We have also undertaken an ablation study to analyse the per-
ormance of the proposed HD-CapsNet model by comparing the per-
ormance of the model with different settings. The ablation study is
onducted by training the model without the skip connections between
he secondary capsule layers, and by training the model without the
roposed consistency loss function. The ablation study is conducted on
ll the datasets mentioned in Section 4.1. We do this to analyse the
ffect of the skip connections between the secondary capsule layers
nd the proposed consistency loss function on the model performance.
his is because the skip connections between the secondary capsule

ayers are used to learn the hierarchical structure of the dataset, and the

roposed consistency loss function is used to enforce the consistency t
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etween the levels. Therefore, we expect the model to perform better
ith the skip connections between the secondary capsule layers and the
roposed consistency loss function.

In order to analyse the effect of the skip connections between the
econdary capsule layers on the model performance, we have trained
he model without the skip connections between the secondary capsule
ayers. We have removed the skip connections between the secondary
apsule layers in Fig. 2(a) while keeping all other hyperparameters the
ame. Hence, the input of the secondary capsule layers for the first
ierarchical level solely encompasses the output of the primary capsule
ayer, while the input of the secondary capsule layers for the subsequent
ierarchical levels solely assimilates the output of the preceding sec-
ndary capsule layer exclusively. Similarly, for analysing the effect of
he proposed consistency loss function on the model performance, we
ave trained the model without the proposed consistency loss function.
e have set the consistency weight (𝛬) in Eq. (4) to 0.0 while keeping

ll other hyperparameters the same. As a result, the total loss function
𝐿𝑇 𝑜𝑡𝑎𝑙) in Eq. (4) is a weighted sum of the margin loss function (𝐿𝑀 )

only.

4.4. Evaluation metrics

Traditional evaluation metrics such as accuracy, precision, recall
and F1-score are not sufficient to evaluate the hierarchical classification
models [6], as these metrics overlook the hierarchical structure of the
dataset. In datasets with complex class structures, where an instance
may belong to multiple hierarchical levels, traditional metrics do not
provide a comprehensive view of the model’s ability to navigate and
predict within this complex structure. In hierarchical models, mis-
classifying a label at a higher level in the hierarchy is usually more
severe than a misclassification at a lower level. Traditional metrics
treat all misclassifications equally, without accounting for the varying
degrees of severity based on the hierarchical structure. As a result,
traditional metrics do not account for this partial correctness, which
is crucial in hierarchical settings. To comprehensively evaluate the
performance of the proposed HD-CapsNet model and other alterna-
tives in our experiments, we have employed both hierarchical and
traditional metrics. Traditional classification metrics, such as level-
wise accuracy and mean Average Precision (mAP), are used to assess
general model performance. On the other hand, hierarchical metrics,
which include hierarchical precision, hierarchical recall, hierarchical
F1-score, Consistency, and the exact match score, take into account
the hierarchical structure of the dataset. These metrics provide a more
nuanced evaluation by considering how well the model performs within
this hierarchical context.

Hierarchical Precision (hP) expands upon the traditional preci-
sion metric, tailored for assessing hierarchical classification systems.
It quantifies the ratio of accurately predicted class labels (including
ancestors) to the overall predicted labels. Hierarchical Recall (hR), an
extension of the standard recall metric in hierarchical classification,
gauges the ratio of correctly predicted true class labels (including
ancestors) against the complete set of true labels. Hierarchical F1-
score (hF1) amalgamates hierarchical precision and recall into a unified
metric, akin to the conventional F1-score’s combination of precision
and recall. It represents the harmonic mean of hierarchical precision
and recall. They are defined as follows:

ℎ𝑃 =
∑

𝑖 |(𝑌𝑖) ∩ (𝑌𝑖)|
∑

𝑖 |(𝑌𝑖)|
(8)

ℎ𝑅 =
∑

𝑖 |(𝑌𝑖) ∩ (𝑌𝑖)|
∑

𝑖 |(𝑌𝑖)|
(9)

ℎ𝐹 = 2 × ℎ𝑃 × ℎ𝑅
ℎ𝑃 + ℎ𝑅

(10)

ere, 𝑌𝑖 and 𝑌𝑖 in Eqs. (8) and (9) is a set consisting of the predicted and
rue labels for the 𝑖th example and all its ancestors classes respectively.
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Table 1
Performance of all the classification models on the Fashion-MNIST [35], CIFAR-10 [37] and CIFAR-100 [37] datasets. The best results are highlighted in bold. Here, † denotes
he HD-CapsNet models without the proposed consistency loss 𝐿𝐶 as specified in Eq. (4), and ‡ denotes those without the skip connections between the secondary capsule layers,
espectively.
Dataset Models Trainable

Params (M)
Level Wise Accuracy (%) mAP Hierarchical Metrices (%)

Coarse Medium Fine hP hR hF1 Cons EM

Fashion-MNIST

CapsNet 8.22 99.62 95.89 91.90 91.79 91.90 91.90 91.90 – 91.90
B-CNN 9.41 99.63 95.44 92.33 98.23 95.77 96.48 96.07 96.73 90.44
H-CNN 44.07 99.79 96.76 93.16 98.45 96.55 96.79 96.65 98.88 92.58
Condition-CNN 46.66 99.78 96.65 93.42 98.53 96.65 96.84 96.73 99.16 92.85
ML-CapsNet 11.01 99.70 95.89 92.10 97.85 95.85 96.19 95.99 98.35 91.31
BUH-CapsNet 4.79 99.89 97.53 94.75 98.43 97.38 97.41 97.40 99.80 94.68
H-CapsNet 14.18 99.73 97.06 93.95 98.69 96.86 97.36 97.07 97.60 92.69
HD-CapsNet 4.82 99.92 97.79 94.83 98.95 97.51 97.54 97.52 99.84 94.70
HD-CapsNet † 4.82 99.89 97.78 94.92 97.95 97.53 97.59 97.55 99.70 94.70
HD-CapsNet ‡ 4.73 99.91 97.63 94.66 98.33 97.40 97.42 97.41 99.80 94.60

CIFAR-10

CapsNet 17.39 93.19 76.53 70.42 64.87 70.42 70.42 70.42 – 70.42
B-CNN 12.38 96.08 87.13 84.54 94.70 89.26 91.48 90.18 89.72 78.99
H-CNN 52.69 96.01 86.71 81.29 93.11 87.89 89.90 88.72 90.21 76.88
Condition-CNN 54.92 95.86 83.78 79.74 91.57 86.56 88.36 87.30 91.30 75.30
ML-CapsNet 22.71 97.95 90.03 86.78 94.89 91.38 92.24 91.74 95.47 85.24
BUH-CapsNet 5.04 98.72 93.81 90.84 94.62 94.41 94.59 94.48 99.06 90.56
H-CapsNet 18.25 97.61 92.58 91.12 97.12 93.92 94.60 94.74 91.24 86.65
HD-CapsNet 5.23 98.79 94.28 91.22 97.32 94.74 94.89 94.80 99.18 90.95
HD-CapsNet † 5.23 98.71 94.01 90.97 97.22 94.53 94.73 94.62 98.99 90.58
HD-CapsNet ‡ 4.84 98.76 93.36 90.26 97.22 94.09 94.30 94.18 98.94 89.85

CIFAR-100

CapsNet 44.66 56.53 45.06 34.93 21.38 34.93 34.93 34.93 – 34.93
B-CNN 12.48 71.08 61.99 56.38 68.05 64.41 73.42 67.93 56.87 38.90
H-CNN 53.10 74.00 67.27 51.40 66.89 64.23 71.67 67.14 60.27 40.49
Condition-CNN 55.30 73.38 61.27 47.91 62.30 61.07 67.18 63.45 65.01 39.50
ML-CapsNet 80.75 78.73 70.15 60.18 71.57 69.50 75.65 71.89 68.92 50.29
BUH-CapsNet 8.52 86.03 77.83 64.87 79.92 76.04 77.87 76.75 89.81 62.53
H-CapsNet 23.73 80.31 75.68 65.74 77.59 76.93 78.65 77.12 65.25 53.92
HD-CapsNet 7.85 86.93 79.31 66.38 80.94 77.43 79.20 78.12 89.80 64.41
HD-CapsNet † 7.85 86.81 78.73 66.23 80.45 77.84 79.56 78.52 89.78 63.80
HD-CapsNet ‡ 5.55 86.57 78.33 57.08 63.30 73.86 75.00 74.31 92.51 56.10
The Consistency (Cons) score is a metric that tells us how many
est examples match the hierarchy structure, regardless of whether they
re actually correct or not. It is expressed as a percentage, showing
he proportion of aligned test examples. Whereas, Exact Match (EM)
core determines the percentage of predictions that completely match
he ground truth across all levels of the hierarchy. This score provides
n indication of how accurately the predictions align with the actual
ata. These are formulated as follows:

𝑜𝑛𝑠 = 1
𝑁

𝑁
∑

𝑗=1

𝐿−1
∏

𝑖=1
1
(

𝑇𝑃 (𝑦𝑖+1,𝑗 ) = 𝑦𝑖,𝑗
)

(11)

𝐸𝑀 = 1
𝑁

𝑁
∑

𝑗=1

𝐿
∏

𝑖=1
1(𝑦𝑖,𝑗 = �̂�𝑖,𝑗 ) (12)

where, 𝐿 is the total number of hierarchical levels, 𝑁 is the total
number of examples and 1(⋅) is an indicator function that returns 1
if the condition inside is true, and 0 otherwise. In Eq. (11) hierarchical
label tree is denoted by 𝑇 where 𝑇𝑃 (𝑦) returns the parent node for any
child node 𝑦. In Eq. (11) and (12), 𝐲𝑖,𝑗 and �̂�𝑖,𝑗 represent the true and
predicted labels at hierarchy level 𝑖 for label 𝑗.

5. Results and discussion

Now we focus on the results yielded by our proposed HD-CapsNet
model and other alternatives while employing on aforementioned six
different image datasets. We commence by comparing the performance
of the HD-CapsNet model with the baseline models i.e. CapsNet in [10],
B-CNN approach in [8], H-CNN model in [29], Condition-CNN in [31],
ML-CapsNet in [13], BUH-CapsNet in [33] and H-CapsNet in [17].
Subsequently, we compare the performance of HD-CapsNet against the
ablation versions of it, as discussed in Section 4.3. In Tables 1 and 2, we
present the overall performance of all the models under consideration
across all datasets. Note that in the tables, our proposed HD-CapsNet
8 
yielded better classification accuracy compared to the alternatives. It
is also important to mention that, the proposed HD-CapsNet model
outperformed the alternative classification models in terms of other
metrics as shown in the tables. Compared to the baseline CapsNet, it
exceeds the model performance by a considerable margin. This is due
to the fact that the HD-CapsNet model utilizes the hierarchical structure
of the data to learn the hierarchical features which enhance the model
performance. Further, compared to the B-CNN approach in [8], the
H-CNN method in [29], and Condition-CNN in [31], the HD-CapsNet
model yielded a better performance as the model is able to learn the
hierarchical features in a more efficient manner. This efficiency is due
to the inherent advantages of capsule networks, such as the ability to
learn the spatial relationships between features and the capability to
reduce noise in the data, over traditional CNN-based models. These
advantages enable the HD-CapsNet model to learn the hierarchical
features in a more optimized way. Traditional CNNs, lacking in these
specific capabilities, do not optimize the learning of hierarchical fea-
tures as effectively as capsule networks, which is a key factor in the
improved performance of our HD-CapsNet model.

In comparison with the ML-CapsNet approach detailed in [13], the
HD-CapsNet model also demonstrated superior performance. This is at-
tributed to the differing methodologies employed to learn hierarchical
features. The ML-CapsNet approach utilizes multiple secondary capsule
layers with identical structures to capture the hierarchical features. It
then implements dynamic routing between a shared primary capsule
layer and each of these secondary capsule layers. This approach is
less efficient because ML-CapsNet has to learn hierarchical features
separately for each secondary capsule layer, essentially repeating the
learning process for every layer rather than building upon previous lay-
ers’ knowledge. Further, the BUH-CapsNet model in [33] also employs
a hierarchical classification approach, but it uses a bottom-up learn-
ing strategy. This approach is less efficient because the BUH-CapsNet
model has to learn the hierarchical features from the fine-level up to
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Table 2
Performance of all the classification models on the Marine-Tree [36], Caltech-UCSD Birds-200-2011 (CUB-200-2011) [38] and Stanford Cars [39] datasets. The best results are
highlighted in bold. Here, † denotes the HD-CapsNet models without the proposed consistency loss 𝐿𝐶 as specified in Eq. (4), and ‡ denotes those without the skip connections
between the secondary capsule layers, respectively.

Dataset Models Trainable
Params (M)

Level Wise Accuracy (%) mAP Hierarchical Metrices (%)

Coarse Medium Fine hP hR hF1 Cons EM

Marine-tree

CapsNet 39.37 86.36 70.34 46.73 10.94 46.73 46.73 46.73 – 46.73
B-CNN 31.29 88.28 75.88 54.48 30.02 72.69 77.03 74.42 80.63 47.29
H-CNN 52.81 88.25 75.14 49.99 27.60 70.66 75.21 72.47 78.13 44.72
Condition-CNN 88.07 88.75 76.64 53.99 31.33 72.91 76.46 74.34 82.66 49.10
ML-CapsNet 39.22 86.62 68.21 37.06 12.26 62.91 66.79 64.45 79.92 34.30
BUH-CapsNet 9.78 88.48 76.49 52.33 26.86 72.35 73.17 74.07 91.78 52.53
H-CapsNet 54.45 88.38 77.49 52.44 26.85 72.93 80.97 76.74 83.07 54.85
HD-CapsNet 13.58 89.88 78.60 57.15 32.72 75.02 76.04 75.44 94.47 55.59
HD-CapsNet † 13.58 89.50 77.57 53.75 27.98 73.29 74.76 73.88 92.37 51.85
HD-CapsNet ‡ 5.97 86.98 77.82 55.04 26.24 73.35 75.76 74.36 86.95 49.34

CUB-200-2011

CapsNet 105.72 17.67 8.04 4.59 1.50 4.19 4.59 4.00 – 4.59
B-CNN 31.52 34.00 17.60 13.15 12.87 21.65 31.49 25.27 14.74 3.24
H-CNN 97.63 32.43 16.02 6.27 8.49 17.11 24.94 19.98 12.92 2.21
Condition-CNN 88.89 38.97 20.88 13.37 13.34 23.35 28.04 25.97 23.47 7.58
ML-CapsNet 55.74 35.01 20.30 13.75 15.26 23.05 29.14 25.35 25.26 8.55
BUH-CapsNet 38.43 37.76 20.95 13.36 14.00 23.26 29.21 25.52 26.21 7.90
H-CapsNet 127.26 31.76 21.59 14.13 15.64 23.13 30.12 25.94 13.63 5.80
HD-CapsNet 106.01 40.42 21.61 14.39 15.69 23.47 30.33 26.01 27.34 8.63
HD-CapsNet † 106.01 36.59 17.78 10.87 10.68 20.29 26.56 22.62 24.09 6.28
HD-CapsNet ‡ 47.56 35.66 16.98 2.14 2.96 14.97 20.86 17.13 21.44 1.55

Stanford Cars

CapsNet 104.08 23.75 6.44 4.58 1.72 4.05 4.58 4.08 – 4.58
B-CNN 31.50 34.94 9.05 9.38 8.72 18.17 27.96 21.78 7.44 1.62
H-CNN 97.60 33.49 10.55 6.83 7.59 16.78 25.55 20.02 9.14 1.56
Condition-CNN 88.85 43.07 16.14 14.00 15.69 24.91 35.48 28.87 15.24 4.49
ML-CapsNet 54.10 41.31 14.75 10.50 12.27 21.27 28.40 23.97 22.86 5.26
BUH-CapsNet 36.43 43.70 14.97 9.52 10.95 21.61 27.27 23.78 28.12 6.12
H-CapsNet 110.15 33.85 13.73 11.96 11.55 20.60 31.60 24.62 7.66 2.54
HD-CapsNet 81.17 53.34 19.52 14.05 16.21 26.73 35.69 29.73 29.15 8.13
HD-CapsNet † 81.17 47.50 16.39 11.74 12.65 23.56 31.40 26.50 25.76 6.19
HD-CapsNet ‡ 25.85 46.01 12.29 1.57 2.23 17.10 24.04 19.79 13.60 0.87
the coarse-level classes, which limits the model’s ability to learn the
hierarchical features effectively. Additionally, H-CapsNet in [17] is a
hierarchical classification model that utilizes the hierarchical structure
of the dataset to learn the hierarchical features. The trade-off here is
that, since the H-CapsNet model uses multiple independent capsule
layers to learn feature representations at each level of the hierarchy,
the trainable parameters in the H-CapsNet model increase significantly.
This may lead to overfitting. Moreover, none of the models enforce
learning the hierarchical consistency between the levels, which can
lead to suboptimal learning of hierarchical features. In contrast, the
HD-CapsNet model architecture enables more efficient learning of hi-
erarchical features by utilizing the dataset’s inherent structure. The
deeper capsule layers in the HD-CapsNet model allow for more op-
timized learning of hierarchical features, as the routing algorithm
captures better agreement between the corresponding capsule layers.
Consequently, the HD-CapsNet model outperformed the ML-CapsNet,
BUH-CapsNet, and H-CapsNet models in terms of classification accuracy
and other metrics, as demonstrated in the tables.

The findings are further corroborated by the data presented in
Fig. 3. The figure shows the accuracy as a function of training epoch
for the proposed HD-CapsNet model and other models as mentioned
in the literature on the Fashion-MNIST, CIFAR-10, CIFAR-100, Marine-
Tree, CUB-200-2011, and Stanford Cars datasets. Notably, in the plots,
we illustrate the accuracy of the last level in the hierarchy on the test
dataset. This is because the last level in the hierarchy represents the fine
level classes, and the fine level classes are difficult to classify compared
to the coarse and medium level classes. It is evident that in all scenarios,
all the hierarchical classification methods yielded better classification
accuracy than the flat classification CapsNet approach in [10]. This
outcome is anticipated, as the hierarchical classification methods capi-
talize on the advantages of the data hierarchy. Furthermore, among the
hierarchical methods, the proposed HD-CapsNet method not only per-
formed better but also converged at a faster rate. This is expected, as the
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HD-CapsNet architecture leverages the data hierarchy by maintaining
hierarchical consistency among the levels.

It is also worth noting that, overall the HD-CapsNet model per-
formed better with the proposed loss function, which includes addi-
tional consistency loss, than without it. For training the model without
the proposed loss function with additional consistency loss, we have
set the consistency weight (𝛬) in Eq. (4) to 0.0, while keeping all other
hyperparameters the same. Fig. 4 shows the level wise classification
accuracy of the HD-CapsNet model with and without the proposed loss
function. Note that, in all the cases the HD-CapsNet model with the
proposed loss function not only performed better but also converged
faster. As mentioned in the Tables 1 and 2, the HD-CapsNet model
with the proposed loss function outperformed the version without it in
terms of hierarchical consistency across all datasets. This is because the
consistency loss in the proposed loss function is designed to improve
the generalization of the model by penalizing the model for making
inconsistent predictions. Such a definition of the consistency loss not
only improves the hierarchical consistency of the model but also im-
proves the level wise classification accuracy. This is evident from the
results shown in Tables 1 and 2, where the HD-CapsNet model with
the proposed loss function yielded better accuracy than the HD-CapsNet
model without the proposed loss function on all the datasets. Further, in
Tables 1 and 2 we show the hierarchical matrices such as hierarchical
precision, hierarchical recall, hierarchical F1-score and exact match
score for all the datasets. Note that, for the complex datasets such as
Marine-Tree, CUB-200-2011 and Stanford Cars, the HD-CapsNet model
with the proposed loss function yielded better hierarchical precision,
hierarchical recall, hierarchical F1-score and exact match score com-
pared to the HD-CapsNet model without the proposed loss function.
Similarly, the proposed HD-CapsNet model performed better with the
skip connections than without the connections, as shown in Tables 1
and 2, and in Fig. 4. However, for the CIFAR-100 dataset, the HD-
CapsNet model without the skip connections performed better in terms



K.T. Noor et al. Neurocomputing 604 (2024) 128376 
Fig. 3. Accuracy of the finest level as a function of training epochs for the proposed HD-CapsNet and alternative models: CapsNet in [10], B-CNN in [8], Condition-CNN in [31],
ML-CapsNet in [13], BUH-CapsNet in [33], and H-CapsNet in [17], across datasets (a) Fashion-MNIST, (b) CIFAR-10, (c) CIFAR-100, (d) Marine-Tree, (e) CUB-200-2011, and (f)
Stanford Cars.
of consistency score than the model with the skip connections. This
occurs because the hierarchical structure of the CIFAR-100 dataset is
balanced, and the classes are evenly distributed at the last level. Conse-
quently, the ablated version of the HD-CapsNet model tends to overfit,
leading to a drop in accuracy. This tendency is evident in Fig. 4(c),
where the HD-CapsNet model without skip connections quickly overfits,
resulting in decreased accuracy. As a result, the HD-CapsNet model
without the skip connections yields a significantly lower EM score. It is
also worth mentioning that, the HD-CapsNet model with the proposed
loss function performed better in this complex datasets with fewer
trained examples. Compared to the other models, this difference in
model performance is even more apparent.

The proposed HD-CapsNet model has shown promising results in ad-
dressing the challenges of hierarchical image classification. Compared
to the baseline CapsNet model, the HD-CapsNet model yielded better
classification accuracy while using fewer trainable parameters on most
datasets, as mentioned in Tables 1 and 2. This is not surprising as the
HD-CapsNet model utilizes the feature extraction block to reduce the
dimensionality of the extracted features while keeping the spatial rela-
tionships between the features intact. On the other hand, the baseline
CapsNet model relies on the convolutional layers to extract the features
in order to form the primary capsules, which increases the number
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of trainable parameters. Further, the inputs to the secondary capsules
corresponding to the finer levels appear to improve the level wise
accuracy and hierarchical consistency while not affecting the routing
process. This is because the routing process is based on the agreement
between the secondary capsules and the concatenation of the primary
capsules, as well as the outputs of the previous secondary capsules.
Therefore, the routing process not only allows the model to learn the
hierarchical features in a more optimized way, but also allows the
model to learn the spatial relationships between the complex features
accountable for hierarchical consistency.

One interesting observation from our experiments is that, for the
fashion-MNIST and CIFAR-100 dataset the HD-CapsNet model with the
proposed loss function yielded better hierarchical consistency and EM
score but not better hierarchical precision, hierarchical recall, hierar-
chical F1-score and exact match score compared to the HD-CapsNet
model without the proposed loss function. Although this difference
in model performance is not significant, it is worth mentioning that,
the HD-CapsNet model with the proposed loss function is designed to
enforce the hierarchical consistency and is performing as expected. The
exact match score is a metric that measures the correctly classified
hierarchical labels following the label tree, whereas hierarchical con-
sistency measures the percentage of prediction follows the label tree.
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Fig. 4. Accuracy as a function of training epoch for the proposed HD-CapsNet model and its ablations on (a) Fashion-MNIST, (b) CIFAR-10, (c) CIFAR-100, (d) Marine-Tree, (e)
CUB-200-2011 and (f) Stanford Cars datasets. Here, † denotes the HD-CapsNet models without the proposed consistency loss 𝐿𝐶 as specified in Eq. (4), and ‡ denotes those without
the skip connections between the secondary capsule layers, respectively.
Hierarchical precision, recall and F1-score are metrics that are more
sensitive to class imbalance and hierarchical structure. In hierarchical
label trees, some categories are related to others, misclassifying an
instance can affect multiple levels of the hierarchy. Therefore, hier-
archically consistent misclassified instances can affect the hierarchical
precision, recall and F1-score.

6. Conclusion

In this paper, we have proposed a novel hierarchical deep capsule
network (HD-CapsNet) model for hierarchical multi-label classification
methods. Our proposed architecture introduces a new approach to
the traditional capsule network by including a multi-level hierarchical
structure following the data hierarchy to improve the accuracy of
image classification. Additionally, we have introduced a loss function
that enforces consistency between the hierarchical levels, improving
the model’s ability to learn and generalize. The results of our ex-
periments on different datasets support the claim that the proposed
HD-CapsNet outperforms the alternative deep learning models in terms
of classification accuracy and hierarchical metrics. Our proposed model
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achieves significant improvement in accuracy while ensuring low com-
putational complexity. Overall, the proposed HD-CapsNet appears to
be a favourable strategy for hierarchical image classification tasks. We
believe that our work has opened up new possibilities for exploring
hierarchical deep learning architectures with improved performance
and generalization capabilities. Future research can extend our findings
by exploring ways to incorporate more complex hierarchical structures,
different loss functions and routing by agreement algorithm to further
improve the performance of hierarchical deep learning models.
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