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Abstract. This paper focuses on Multi-level Hierarchical Classification
(MLHC) of images, presenting a novel architecture that exploits the
“[CLS]” (classification) token within transformers – often disregarded
in computer vision tasks. Our primary goal lies in utilizing the informa-
tion of every [CLS] token in a hierarchical manner. Toward this aim, we
introduce a Multi-level Token Transformer (MLT-Trans). This model,
trained with sharpness-aware minimization and a hierarchical loss func-
tion based on knowledge distillation is capable of being adapted to vari-
ous transformer-based networks, with our choice being the Swin Trans-
former as the backbone model. Empirical results across diverse hierarchi-
cal datasets confirm the efficacy of our approach. The findings highlight
the potential of combining transformers and [CLS] tokens, by demon-
strating improvements in hierarchical evaluation metrics and accuracy
up to 5.7% on the last level in comparison to the base network, thereby
supporting the adoption of the MLT-Trans framework in MLHC.

Keywords: Hierarchical classification · Image processing · Transformer
· Class tokens · Hierarchy taxonomy.

1 Introduction

Traditional image classification models often employ flat classification schemes,
treating each category independently and disregarding potential hierarchical re-
lationships that may exist between classes [1]. This lack of hierarchical consid-
eration hinders the ability of algorithms to capture and leverage the underlying
semantic structure of complex visual datasets [16]. This limitation is particu-
larly influential in domains such as fine-grained categorization, where classes
often exhibit nested relationships [12]. Recent works such as HERBS [6] and
Metaformer [7] display the importance of incorporating supplementary infor-
mation, such as background cues or object attributes, improving classification
accuracy. However, HERBS and Metaformer are designed for flat classification,
ignoring the potential benefits that could come from incorporating hierarchical
relationships as supplementary information.
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(a) Snapshot of a complex taxonomy.
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Fig. 1: (a) An image of an “Acropora tenuis” classified by five independent
classifiers as a “Biota”, “Corals”, and on the last level, incorrectly classified
as a“Cobble” for the Marine-tree dataset. (b) Proportion of correctly classified
images (depicted in a darker color) for each level of the taxonomy for Marine-tree
dataset and the proportion of images incorrectly classified (depicted in a light
color) but for which the other levels in the taxonomy were correctly identified.

MLHC has been attracting attention over the past few years mainly because
it can provide order and structure to complex real-life datasets. In contrast to
flat classification, Multi-level hierarchical classification (MLHC) aims to cor-
rectly classify objects organized in a tree-based taxonomy [15]. Moreover, it
significantly contributes to the development of recommendation systems, image
captioning, annotation, scene graph generation, and visual question answering
(VQA) leading to more accurate and interpretable data analysis [19]. To the best
of our knowledge, the majority of approaches for MLHC frequently neglect the
incorporation of taxonomy structures and employ backbone networks whose out-
puts lack mutual constraint, leading to potential inconsistency in predictions [27,
25, 21]. While efforts have been made within the MLHC field, there is still con-
siderable scope for future research in developing architectures that address these
limitations. To illustrate the aforementioned advantages of MLHC, Figure 1 pro-
vides a concrete example featuring the classification of an image by five distinct
independent classifiers. Figure 1b displays the proportions of accurate classifi-
cations at each hierarchical level, represented in a darker color. Furthermore,
these figures include the proportion of images that were misclassified at that
particular level but were correctly identified in previous levels represented in a
lighter color. If we hypothesize that coarser levels of the hierarchy exhibit higher
accuracy compared to finer-grained levels, it becomes evident that promoting
communication between these coarser levels can enhance the classification accu-
racy of the fine-grained levels. This highlights our belief that MLHC warrants
further exploration as an appealing solution for addressing such issues.

2 Related work

There have been several methods proposed for MLHC, and they can be catego-
rized according to how the hierarchical structure is explored [22]. In particular,
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we distinguish: (i) flat classification approaches, typically involve a complete
disregard for the class hierarchy, wherein predictions are made exclusively at
the leaf nodes, with the implicit assumption that all ancestor classes are also
attributed to the given instance. This provides an indirect solution to the hier-
archical classification problem that could become suboptimal when dealing with
a high number of classes, images with low intra-class, low inter-class separability
or a combination [12, 5]; (ii) local classification approaches, a multi-class classi-
fier is trained for every parent node within the class hierarchy. In the context of
CNNs, we can distinguish HD-CNN [25] as one of the first attempts to embed
CNNs using a taxonomy. As other predecessors, it lacks versatility and efficiency
as it requires training several classifiers; and (iii) global classification approaches
where in contrast, a single classifier is employed to manage the complete class
hierarchy structure. Within this category, we can identify what is commonly
referred to as “branch methods,” exemplified by models such as Branch-CNN
(B-CNN) [27] and Hierarchical-CNN (H-CNN) [21]. These approaches incorpo-
rate a backbone network that produces hierarchical-level outputs (“branches”)
at specific layers. While these methods improved performance, they are still sus-
ceptible to inconsistent predictions due to the absence of inter-level penalization.

As transformers continue to gain efficiency and importance in the field of Ma-
chine Learning, there have been some efforts to incorporate a taxonomy within
these models. For instance, the Coarse-to-Fine Transformer, as proposed in [5],
aims to enhance final classification accuracy. However, similar to other global
approaches, it does not account for the hierarchical structure within the data. In
contrast, the Nested Hierarchical Transformer (NesT) [26] and the ViT neural
tree decoder (ViT-NeT) [14] introduce architectural designs that embrace the
concept of taxonomy by generating decision trees. While these models demon-
strate promising results, their effectiveness as MLHC methods remains challeng-
ing to evaluate because they do not present their results in hierarchical metrics.

The success of transformers can be attributed to several factors, one of them
is their robust ability to model long-range dependencies. The Vision Transformer
(ViT) proposed by Alexey Dosovitskiy et al. [9] introduced a special token, de-
nominated [CLS] token or classification token, which was used to aggregate in-
formation from the entire sequence of the patch tokens from the image. This
token was later replaced by average or global pooling as it would serve the same
purpose. Within the domain of image segmentation, recent studies [24, 8] have
emphasized the significance of incorporating [CLS] tokens to exploit class-specific
information, ultimately yielding state-of-the-art results. This insight has served
as motivation for harnessing class-specific information in the context of MLHC.
However, our approach extends beyond the singular use of [CLS] tokens; we also
seek to model the interrelationships between multiple levels of [CLS] tokens.
In this work, we argue that the majority of existing MLHC transformer-based
models do not capture attention between different hierarchical levels and there-
fore, do not learn interactions between them. To tackle this issue, we propose
MLT-Trans, which incorporates [CLS] token interactions between several levels
of hierarchy. In summary, our main contributions are: (i) We propose MLT-
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Trans to exploit class-specific transformer attention for MLHC, (ii) We suggest
a simple but effective transformer framework denominated Multi-level Token
Transformer (MLT-Trans) which includes a multi-level token strategy to learn
class-specific interactions between levels, (iii) We trained our proposed frame-
work with sharpness-aware minimization and a hierarchical loss function based
on the knowledge distillation loss, and finally, (iv) we performed extensive ex-
perimental evaluation on multiple baselines across diverse hierarchical datasets
reporting our results in terms of hierarchical metrics.

3 Mathematical notation and MLT-Trans

Multi-level hierarchical classification: The MLHC problem is defined by [2]
as learning a mapping function f : X → Y, which assigns to each feature vector
x(i) a prediction vector ŷ(i) = (ŷ[ℓ1], ŷ[ℓ2], · · · , ŷ[ℓn]) s.t. ŷ[ℓi] is the class label
that f assigns for each level ℓi.
Taxonomy encoding: In contrast to flat classification, where classes are per-
ceived as unrelated entities, hierarchical classification entails the organization
of classes within a taxonomic structure. In this paper, our focus is only on tree
taxonomies, which are organized with a hierarchy structure of n levels ℓi, such
that ℓi ⊂ Y, ℓ1∪ ℓ2 · · ·∪ ℓn = Y, and ∀yj ∈ ℓi+1,∃yk ∈ ℓi s.t. yk ≺ yj , where ≺ is
the “subclass-of” relationship [2]. Lastly, we encode the relationship between two
successive levels ℓi an ℓi+1 in a taxonomy using an |ℓi| × |ℓi+1| matrix M [ℓi,ℓi+1],

where the binary value M
[ℓi,ℓi+1]
yk,yj ∈ {0(yk ⊀ yj), 1(yk ≺ yj)}, with yk ∈ ℓi and

yj ∈ ℓi+1.
MLT-Trans: Figure 2 shows an overview of our proposed MLT-Trans. Given
an image I, we first follow the conventional SwinTransformer-L [17] to obtain
the patch embedding from the last transformer block Z. According to [8], plug-
ging cross-attention mechanisms after the last transformer block avoids large
computational costs and additionally, there is no proof that performing these
operations in the initial transformer blocks leads to a better performance. To
calculate the attention between patch tokens Z and class tokens for every level
ℓn, we first define class tokens as a matrix Tℓi for each level of the taxonomy.
The size of this matrix is the number of classes of each ℓi and the embedding
dimension of the transformer. To capture interactions between tokens Tℓi , we
calculate the multihead cross-attention [8] between each pair of tokens. Consider
H as the number of heads where h ∈ {1, . . . ,H}. We have the attention between
Tℓi and Z for the hth head as:

ATh = δ

(
Qh(Tℓi+1)Kh(Tℓi)

T√
dKh

)
Vh(Tℓi) (1)

where δ corresponds to the Softmax function and
√
dKh

is the dimension of
the key Kh. This attention mechanism occurs for each pair of subsequent levels.
To calculate the attention between all levels, we decided to concatenate these
attention outputs and use them to calculate the attention between them and the
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patch tokens Z similar to Equation (1). To update our multi-class tokens Tℓi ,
we take the concatenated attention output AT and obtain the top-k tokens with
the highest activation where k = ℓi. Consequently, we average it on the batch
dimension to update our trainable token Tℓi . Finally, to update our patch tokens
Z, we concatenate the norm of the concatenated attention that we calculated
before and we represent this as Z̃.
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Fig. 2: MLT-Trans architecture.

Hierarchical loss function: In the realm of hierarchical image classification,
the hierarchical loss function has become a foundational element [1]. Conse-
quently, in this work we propose the computation of a loss, which is the sum-
mation of classification losses across all levels ℓi. Our strategy takes inspira-
tion from knowledge distillation loss proposed by Hinton et al. [11]. Essen-
tially, this loss function is a pedagogical method in Machine Learning wherein
a smaller model (denominated student model) learns from a larger, more com-
plex model (teacher model) by capturing the teacher’s learned knowledge, typ-
ically in the form of softened probability distributions over classes. This pro-
cess allows for model compression, enabling more efficient and compact models
to retain the insights and generalization abilities of their larger counterparts,
which can be especially beneficial for tasks demanding resource-efficient solu-
tions. The knowledge distillation loss (KDLoss) [11] is defined as KDLoss =
CE

(
y, δ(zS)

)
+λKL(δ(zT /τ)||δ(zS /τ)), where zS are the logits coming from the

student model and zT are the logits from the teacher model. Also, CE stands for
cross-entropy, and δ stands for the softmax function; the Kullback-Leibler (KL)
divergence loss is used to minimize the discrepancy between the soft outputs
probabilities of the student and teacher model. These soft probabilities are ob-
tained by dividing these logits by a temperature factor τ . By transferringKDLoss

to the context of MLHC, we can consider the teacher model as the coarser level
ℓi and the student as the model coming from ℓi+1. Specifically, we achieve this
by replacing student logits by the prediction ŷ(j)[ℓi] and its taxonomic parent
y̌(j)[ℓi−1] as the teacher. This will encourage penalization when there is a mis-
match between these predictions. Performing this loss for every pair of levels,
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Table 1: Summary of the hierarchical datasets employed in our experiments.
Dataset Stanford CUB Marine Stanford FGVC Food

Cars 200-2011 tree Dogs Aircraft 101

Training set 8,144 5,944 118,260 9,600 3,334 60,600
Validation set 4,020 3,000 16,126 2,400 3,333 15,150
Test set 4,021 2,071 26,798 8,580 3,333 25,250
#classes 196 200 60 120 100 101

Taxonomy
#classes ℓ1 13 39 2 8 30 3
#classes ℓ2 113 123 10 120 70 15
#classes ℓ3 196 200 38 - 100 101
#classes ℓ4 - - 46 - - -
#classes ℓ3 - - 60 - - -
#classes ℓ3 - - 60 - - -

we obtain HKDLoss as the summation of 1
n

∑n
i=1

∑m
j=1 CCE

(
y(j)[ℓi], δ(ŷ(j)[ℓi])

)
and

∑n
i=2

∑m
j=1 λKL(δ(y̌(j)[ℓi−1] /τ)||δ(ŷ(j)[ℓi] /τ)), where CCE denotes the cat-

egorical cross-entropy function. λ and τ are hyperparameters that need to be
tuned to calibrate the importance of HKDLoss and the effect of temperature on
the probabilities. Note that to obtain the taxonomic parent of prediction ŷ(j)[ℓi]

we use the taxonomy M [ℓi,ℓi+1] explained in this section.

4 Experimental evaluation

Our experiments draw upon a set of six hierarchical datasets and eight models
which are detailed below. Our results are expressed in terms of hierarchical met-
rics [15] including Hierarchical Recall (HRecall), Hierarchical Precision (HPreci-
sion), and Hierarchical F1 Score (HF1 Score). The other metrics are Consistency
and Exact Match (proportion of examples that are correct and consistent) were
also reported by Boone et al. [2].

Datasets: We selected publicly accessible datasets, mainly employed for the
purpose of coarse-to-fine classification, and subsequently transformed them into
hierarchical datasets. This transformation involved utilizing existing semantic
taxonomies wherever available, while also formulating our own taxonomic struc-
tures when none were provided. We’ve summarized this process in Table 1.
Specifically, we performed experiments on FGVC-Aircraft [18], hierarchical ver-
sions of CUB-200-2011, Stanford Cars, and Marine-tree [3] where you can find
their construction details used in [2].

– Stanford Dogs [13]: Following the guidelines established by the American
Kennel Club (AKC), our classification scheme was aligned to include an
additional hierarchical level that corresponds to the AKC’s seven distinct
dog groups: “hound group”, “herding group”, “working group”, “sporting
group”, “non-sporting group”, “toy group”, and “terrier group”. We added
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an additional super-class “wild dogs” for classes such as “dingo”, “dhole”,
and “African hunting dog”.

– Food-101 [4]: We transformed this dataset into a non-overlapping three-
tier hierarchical structure. The initial level comprises three categories: “side
dish,” “main dish,” and “dessert”. Subsequently, the second level is com-
prised of 15 classes: “beef dish”, “pork dish”, “rice dish”, “egg dish,” “poul-
try dish,” “pasta dish”, “seafood dish”, “sandwich”, “spread”, “appetizer”,
“salad”, “soup”, “cake”, “pastry,” and “cup confections”.

Implementation details: For our augmentation and training strategy we fol-
lowed [6]. The entire experimental setup was implemented using Tensorflow,
and was executed on an NVIDIA Tesla V100 GPU with a batch size of 8. Equal
weights were assigned to all output components for the loss function. Addition-
ally, we experiment with three different temperature and λ configuration similar
to [20] and we selected the best of the three settings Low(L)(τ = 2.5,λ = 500),
Medium(M)(τ = 5,λ = 1000), High(H)(τ = 10,λ = 2000). Additionally, our
MLT-Trans is trained using sharpness aware minimization (SAM) [10] with de-
fault settings. We trained eight state-of-the-art networks that display the highest
accuracy on every datasets on their non-hierarchical representation. These base-
lines are: Swin Transformer, EfficientNetV2, InceptionNext, Uniformer, CoAt-
Net, CAFormer, TinyViT and MaxViT. You can find more details about the
implementation of each baseline on the documentation from KerasCV [23].

Performance: Figure 6 shows the comparison between our proposed archi-
tecture against the baseline models. From the obtained results, we make the
following key observations: (i) Our proposed MLT-Trans improved their back-
bone network Swin-L in all datasets for almost all metrics. Especially accuracy
ℓi and Hierarchical F1-Score. (ii) The biggest increase in accuracy is observed
at the last level while ℓ0 is the level with the least increase in accuracy. This
indicates that it is easier to improve the finer levels than the coarser levels even
though we have a smaller number of classes. This problem could be related to
over-fitting and top-down approaches because there is no feedback from the bot-
tom levels to the top level. (iii) Stanford Dogs is the dataset that benefited the
most from our proposed transformer, it improved 5.7% on its last level ℓ2. (iv)
Stanford Cars presents an improvement of 3%, 2.7% and 1.7% respectively com-
pared to Swin-L. Also, there is a 2.5% in HRecall meaning that the model is
able to provide examples more relevant to the class. Although there is a small
increase in consistency, there is a 3% increase in Exact Match due to the increase
in accuracy for every level. Of all the baseline models, MLT-Trans is the model
with the best performance in all metrics. (v) Similarly, for CUB-210-2011 MLT-
Trans is the model with the best performance in all metrics but with a smaller
increase due to CUB-210-2011 being a dataset that is considered harder to train.
The final accuracy is 92% which is only 1% less than the current state-of-the-
art models HERBS [6] which also utilizes Swin-L as baseline model with the
difference that we are not using extra training information such as background
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Fig. 3: Ablation study on Stanford Dogs.

datasets. CAFormer presents slightly higher consistency than our method but
our method outperforms their accuracy for all ℓi. (vi) MLT-Trans for Food-101
presents the highest accuracy against all models for the last two levels with the
exception of ℓ0 where there is a small decrease and lastly (vii) Marine-tree, the
most complex dataset to train, presents a 74.58% on its last level (ℓ5) establish-
ing a state-of-the-art performance. The performance in all metrics is superior
by a large margin with respect to the baseline models. The closest model in
performance is its baseline model Swin-L. (vii) The number of parameters for
Swin-L is ≈ 195M parameters, adding SAM minimization adds another 3M pa-
rameters and the complete MLT-trans architecture contains 270M parameters.
Additionally, we want to point out that for datasets with a 3-level hierarchy, we
only calculated the attention between the first two levels, and for Marine-tree
we used 3 levels. Using all the levels would cause the attention calculation to
slow the training process without a dramatic increase in performance. In conclu-
sion, we observe that our proposed MLT-Trans manages to improve the results
of their baseline model for most datasets but other datasets show that Swin-L
might not be the best pick. For instance, for Stanford Dogs our InceptionNext
implementation manages to beat the state-of-the-art performance by more than
1%, which opens the possibility of using InceptionNext as the backbone network
for our proposed architecture. In terms of ablation study, Figure 3 shows the
performance of the backbone network Swin-L, the backbone network plus SAM,
and finally our proposed MLT-Trans. The combination of Swin-L plus SAM in-
creases both ℓ1 and ℓ2 and MLT-Trans increases them slightly more. We have
observed that in some datasets, SAM causes a small decrease in Consistency
compared to the backbone network. MLT-Trans is able to recover such loss and
in some cases, it improves it. Nevertheless, the increase in accuracy that SAM
provides is worth the small decrease in Consistency.

5 Conclusions and future work

In this work, we introduced a new transformer for Multi-level Hierarchical Classi-
fication we denoted Multi-level Token Transformer (MLT-Trans). Our proposed
transformer implements an attention mechanism between trainable classification
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tokens ([CLS] tokens) per level of a predefined taxonomy plus the addition of
a hierarchical loss based on knowledge distillation loss. Focusing on image clas-
sification, we presented a thorough experimental evaluation of the performance
of our method on six different datasets varying from two levels of hierarchy up
to five. Experiments on these datasets show that our proposed architecture im-
proves several hierarchical metrics, most importantly accuracy, demonstrating
that MLHC could be a strategy to beat state-of-the-art performances without
doubling or triplicating the number of parameters. Future work includes testing
our proposed methodology on different backbone networks as well as different
hierarchical losses. Additionally, we could improve our attention mechanism to
take into account all levels of hierarchical datasets with a large number of classes
without being computationally expensive.
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(f) Stanford Dogs

Fig. 6: Performance comparaison.
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