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a b s t r a c t 

Density Peak Clustering (DPC) is a popular state-of-the-art clustering algorithm, which requires pairwise 

(dis)similarity of data objects to detect arbitrary shaped clusters. While it is shown to perform well for 

many applications, DPC remains: (i) not robust for datasets with clusters having different densities, and 

(ii) sensitive to the change in the units/scales used to represent data. These drawbacks are mainly due to 

the use of the data-independent similarity measure based on the Euclidean distance. In this paper, we ad- 

dress these issues by proposing an effective data-dependent similarity measure based on Probability Mass , 

which we call MP-Similarity , and by incorporating it in DPC to create MP-DPC, a data-dependent variant 

of DPC. We evaluate and compare MP-DPC against diverse baselines using several clustering metrics and 

datasets. Our experiments demonstrate that: (a) MP-DPC produces better clustering results than DPC us- 

ing the Euclidean distance and existing data-dependent similarity measures; (b) MP-Similarity coupled 

with Shared-Nearest-Neighbor-based density metric in DPC further enhances the quality of clustering 

results; and (c) unlike DPC with existing data-independent and data-dependent similarity measures, MP- 

DPC is robust to the change in the units/scales used to represent data. Our findings suggest that MP- 

Similarity provides a more viable solution for DPC in datasets with unknown distribution or units/scales 

of features, which is often the case in many real-world applications. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Clustering is a fundamental task in data mining used to find 

roups (or clusters) of similar objects in a dataset based on a no- 

ion of similarity. Clustering has applications in areas such as pat- 

ern recognition [1] , bioinformatics [2] , image segmentation [3] , in- 

ormation retrieval [4] , etc. Over the last decades, a large number 

f clustering techniques following different mechanisms have been 

eveloped to support different applications. In particular, state- 

f-the-art Density Peak Clustering (DPC) technique [5] has gained 

rowing attention over the last few years due to its simplicity with 

ewer initial parameters and ability to detect clusters of arbitrary 

hapes. 

DPC can find arbitrary shaped clusters using the distance-based 

otion of (dis)similarity of data objects, i.e., objects with small dis- 

ances are more similar than objects with larger distances. The ba- 

ic idea of DPC is that the cluster centres are characterised as ob- 
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ects with higher local density than their neighbourhood and are 

eparated by relatively large distances from other objects of higher 

ensity. Based on this idea, DPC first defines two measures for each 

bject: (1) its local density ρ and (2) its distance δ to the nearest 

igher density neighbor , and then, it selects the objects with high 

and large δ as the cluster centers. Finally, it assigns the rest of 

he objects to the clusters containing their nearest higher density 

eighbors. Because of its simplicity, DPC has been used for many 

pplications such as neuroscience [6] , remote sensing [7] , biology 

8] , video-segmentation [9] , traffic-network [10] , computer vision 

11] , text mining [12] , etc. 

However, despite its popularity and simplicity, we note that 

PC has two major weaknesses. First, DPC may fail to correctly 

dentify clusters with highly variable densities. Second, the cluster- 

ng results of DPC are very sensitive to units/scales used to mea- 

ure/represent data features. Indeed, in real-world examples, data 

an be measured and expressed in different forms. For example, 

ample variability can be measured in standard deviation ( σ ) or 

ariance ( σ 2 ) and people’s ability to borrow can be expressed in 

erms of debt-to-income ratio or income-to-debt ratio (inverse of 

ach other). These issues are mainly due to the use of distance as 

he notion of similarity between data objects as we later discuss in 

ection 3.3 . 
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In this paper, we argue that the above-mentioned limitations of 

PC can be addressed using a data-dependent similarity measure 

hat is robust to units/scales of data representation. In particular, 

e propose a similarity measure based on probability mass called 

P-Similarity that uses the m 0 -dissimilarity [13] , and then, we in- 

orporate it into DPC to get a variant that we call MP-DPC. This 

atter uses the same core procedures of the original DPC algorithm 

hile replacing the distance-based (dis)similarity measure with 

P-Similarity. We also use MP-Similarity with the Shared-Nearest- 

eighbor-based Density Peak Clustering algorithm (SNNDPC) [14] , 

 variant of DPC. We call this new variant of SNNDPC as MP- 

NNDPC. We show through our extensive experiments on a wide 

ange of real datasets that MP-DPC and MP-SNNDPC can detect 

lusters with varying densities and that their clustering results are 

obust to changing data units/scales. We also demonstrate that 

hey significantly outperform the basic DPC and SNNDPC algo- 

ithms which are based on the Euclidean distance. 

. Background 

Over the past few decades, several clustering techniques have 

een developed to address different problems in diverse applica- 

ions. Below, we briefly review the main clustering methods based 

n the approaches they adopt to grouping similar objects. For a 

omprehensive survey on the topic, we refer the reader to [15] . 

Partition-based methods construct several partitions of the 

ata, where each partition is a cluster. These methods require pre- 

pecifying the number of clusters such as k in k -means [16] , a pop-

lar representative algorithm of partition-based clustering. The k - 

eans algorithm randomly initialises k objects as centers (or clus- 

er means), and assigns the rest of the objects to the nearest cen- 

er. It then performs the following two steps: (i) updating center of 

ach cluster based on the current assignment and (ii) assigning ob- 

ects to clusters containing the nearest centers. k -means alternate 

etween these steps until it finds the best centers i.e., no further 

hange occurs. A major limitation of this family of algorithms is 

hat they are not suitable to detect arbitrary shaped clusters. More- 

ver, the clustering results are sensitive to the initial selection of 

he cluster centers. 

Hierarchical-based methods produce a tree-based hierarchical 

epresentation of clusters with the root representing the entire set 

f objects as one cluster and pairs of clusters or singletons are lo- 

ated at the lower levels of the tree. Tree partitions are constructed 

ased on a proximity/similarity matrix and a partition of this tree 

enerates the clustering results. Single linkage hierarchical cluster- 

ng [17] is a representative example of this family. It determines 

he distance between two closest objects in different clusters and 

erge the two clusters if they contain objects separated by short- 

st distance. Single linkage follows a bottom-up approach such that 

t starts with singletons and continues merging two clusters until 

ll the objects belong to one cluster. 

Density-based clustering methods assume that the clusters are 

ocated in dense regions in the space separated by regions of lower 

ensity and are suitable for detecting irregularly-shaped clusters. 

BSCAN [18] , a popular representative of density-based clustering, 

nds objects with density greater than a threshold, which are con- 

ected to form clusters. However, selecting an appropriate thresh- 

ld is difficult. Density Peak Clustering (DPC) [5] is another popular 

lgorithm of this family that we will detail in the next section. 

In addition to those discussed above, there exist other clus- 

ering methods in the literature. For example, Distribution- 

ased clustering methods assume that data objects in a clus- 

er have more likelihood of belonging to the same distribution 

e.g., Gaussian distribution). These algorithms work well when 

he distribution of the data is known beforehand. Expectation- 

aximization [19] is a popular example of this family. Grid-based 
2 
ethods , such as STING [20] , partition the original data space into 

everal grids which are linked to form clusters based on statistical 

nformation such as the mean and the variance of the data objects. 

. Density peak clustering (DPC) 

In this section, we first present in details the DPC algorithm, 

hen, we describe a few of its existing variants and extensions, and 

nally, we analyse its main drawbacks. 

.1. DPC Algorithm 

DPC [5] is a clustering algorithm based on the observation that 

luster centres are characterized by: (i) locally higher density , i.e., a 

luster centre has a higher-density neighbourhood than its neigh- 

ouring objects, and (ii) relatively large separation , i.e., cluster cen- 

res are at relatively large distances from other objects with higher 

ocal densities. Based on the above idea, DPC defines two quan- 

ities for each object that are used to identify the cluster cen- 

ers from the rest of the objects. Formally, given a dataset D = 

 x (1) , x (2) , . . . , x (m ) } with m objects (i.e., instances), where each 

ata object x (i ) ∈ R 

n is an n -dimensional input feature vector, DPC 

roceeds in the following steps: 

1. Compute the local density ρx of each object x as follows: 

ρx = 

∑ 

y ∈D 
χ(dist( x,y ) − d c ) (1) 

where dist( x,y ) represents the distance between object x and 

y , χ(z) = 1 if z < 0 and 0 otherwise, and d c is the cutoff dis-

tance. In other words, the local density ρx of x is the number 

of objects that lie within distance d c from x . 

2. For each object x , compute the distance δx which is the mini- 

mum distance between x and any other object y ∈ D with den- 

sity higher than ρx . Specifically, the distance δx is computed as 

follows: 

δx = min 

y � = x ∧ ρy >ρx 

{ dist( x,y ) } (2) 

Here, the object y is the nearest neighbor of high density for x . 

However, for the object x with the highest density, the distance 

δx is computed as follows: δx = max 
y 

{ dist( x,y ) } . 
3. Using the computed values ρ and δ values, DPC aims to distin- 

guish the cluster centres (peaks) from the rest of the objects. 

In particular, an object with high local density has its nearest 

neighbour of higher density relatively far and therefore has a 

large δ. Based on this idea, cluster centres are set to objects 

with high ρ and anomalously large δ. For selecting the cluster 

centres, a quantity γ is computed for each object as follows: 

γx = ρx × δx (3) 

Objects with large γ values are set to be cluster centres. 

4. Finally, once the cluster centres have been identified, the rest 

of the objects are then assigned to the clusters containing their 

nearest neighbour of higher density. This step is performed 

directly as assignment uses the nearest neighbour of higher 

density information obtained during the computation of δ in 

Eq. (2) . 

.2. Variants of DPC 

Despite being a state-of-the-art clustering algorithm, DPC has 

imitations in dealing with clusters with complex shapes/structures 

uch as varying densities [14] . To improve the performance 

f DPC algorithms in various applications, different variants of 
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PC have been proposed in the literature. Most of these em- 

loy measures that rely on the K-Nearest Neighbour (KNN) in- 

ormation of objects to capture the neighbourhood information. 

hared-Nearest-Neighbour-based density peak clustering (SNNDPC) 

14] uses Shared Nearest Neighbours (SNN) as a means to compute 

he similarities between objects and it selects the cluster centers 

ased on the nearest neighbours and shared neighbours informa- 

ion. Furthermore, a two-step allocation strategy is introduced to 

educe possible errors in cluster assignment. Another work based 

n fuzzy weighted K-nearest neighbour (FKNN-DPC) proposed by 

ie et al. [21] , focused on the problem of using different mea- 

ures for local density computation in DPC. They proposed a uni- 

orm density metric based on KNN. Du et al. [22] proposed DPC- 

NN, which initially introduced the idea of KNN to DPC and pro- 

ided another option to compute local density. For handling high- 

imensional datasets, principal component analysis (PCA) was used 

uring preprocessing for dimensionality reduction. Recently, Hou 

t al. [23] proposed a density peak clustering algorithm which 

dentifies the cluster centres using a relative density relationship 

pproach and computes the local density using KNN. Wang et al 

24] proposed McDPC for identifying clusters having multiple den- 

ity peaks and low density clusters. McDPC improves the perfor- 

ance of DPC, however, relies on many additional parameters. In 

25] , authors have proposed a fuzzy kernel based on KNN for com- 

uting the local density and introduced a different method to se- 

ect the cluster centers. Another recent work [26] uses mutual 

earest neighbor information (based on KNN) to propose a new 

lustering algorithm based on DPC to detect arbitrary shaped clus- 

ers. The major issue with the above works is that they change the 

riginal semantics of DPC. 

There exist other variants of DPC that focus on improving its 

peed on large datasets by reducing the distance computations 

27,28] , however, they are out of the scope of the study of this pa-

er. 

.3. Limitations of DPC 

The first limitation of DPC is the fact that it cannot identify 

lusters with highly varied densities. Indeed, because DPC selects 

luster centers based on high ρ and large δ (or large γ ), a cluster 

n a region in which none of the objects have sufficiently large γ
ay not be properly identified. Therefore, each object of this clus- 

er will belong to the cluster of its nearest neighbor of higher den- 

ity. Consequently, either some of the objects of this cluster or the 

ntire cluster may become associated with another cluster. This is- 

ue is illustrated in Fig. 1 (a) and (b), where in both examples, two

luster centers are incorrectly assigned to the same true cluster, 

eading to misclassification of many objects. 

The second issue of DPC is that its clustering results are sen- 

itive to the change in the units/scales used to measure/represent 

he features. Indeed, DPC requires the computation of the pairwise 

istance of objects for finding clusters. Hence, given that the dis- 

ance between two objects can vary when the units/scales used 

o measure/represent the feature(s) changes, the clustering results 

an be significantly different from the results that can be obtained 

sing the data in the original scale. Since the data of real-world 

pplications are obtained from different sources, the units/scales 

f the features used may be different. For example, feature values 

an be represented in either log or in v erse scale (e.g., likelihood 

an be given as log likelihood, fuel efficiency of vehicles in KM/L 

r L/100KM). In such cases, it is natural to expect that DPC cluster- 

ng results will not be affected by the change in units/scales. 

While linearly scaled features are easily handled when the data 

s normalised to a unit scale, the non-linearly scaled features may 

till be problematic and difficult to resolve. For example, if a , b, c

nd d are real values in ascending order with equal interval, and a ′ , 
3 
 

′ , c ′ and d ′ are their corresponding values in the logarithmic scale, 

hen we have b − a = d − c but b ′ − a ′ � = d ′ − c ′ . Consequently, the

imilarity between two objects captured in different scales can be 

ifferent, which can significantly affect the clustering results of 

PC. The effect of data transformation on the results of DPC is il- 

ustrated in Fig. 1 (c) and (d). We can observe that the clustering 

esults obtained by DPC on these datasets are significantly differ- 

nt from those obtained on the datasets with the original scales. 

One reason for the above-mentioned issues with DPC is be- 

ause it uses the Euclidean distance for computing the similarity 

etween two objects. A recent study by Aryal et al. [13] has men- 

ioned two issues of using distance as a measure of (dis)similarity 

etween objects in data mining: (i) the similarity of two objects 

s data distribution independent (i.e., it is not affected by the dis- 

ribution of other data objects), and (ii) the similarity of two ob- 

ects is sensitive to the data representation (i.e., units/scales used 

o measure data features). 

Previous work has tried to improve the performance of DPC 

y incorporating diverse similarity measures [14,21] , but most of 

hese methods remain sensitive to units/scales of data. For exam- 

le, SNNDPC [14] attempts to alleviate the issue of varying density 

n DPC to some extent by replacing the Euclidean distance-based 

imilarity measure with a new measure based on Shared Nearest 

eighbours (SNNs). However, it remains sensitive to the change in 

nits/scales used to express data because SNNs are searched using 

he Euclidean distance. In addition, SNNDPC modifies some proce- 

ures in the original DPC algorithm, which causes the loss of the 

rue semantic of DPC. This necessitates the development/usage of 

ata-dependent similarity measures for DPC that capture the in- 

rinsic structure of the data, thus reflecting the true similarity be- 

ween objects and helping to achieve better clustering results. 

. MP-DPC 

In this section, we propose a data-dependent similarity mea- 

ure, which we call MP-Similarity. Then, using MP-Similarity we 

resent MP-DPC, which is a data-dependent variant of DPC. 

.1. The idea of data-dependent similarity 

We have previously argued that the use of distance-based 

uclidean similarity measures is not appropriate for estimating 

imilarities between objects. The similarity estimated by a data- 

ndependent measure (such as the Euclidean distance) between 

wo objects x and y in a dense region is the same as that of two 

quidistant objects in a sparse region. However, psychologists ar- 

ue that the human-judged similarity between two objects is data- 

ependent [29,30] . In other words, two objects in a sparse region 

hould be more similar than two objects with equal distance in a 

ense region. For example, consider two groups of dogs such that 

he first group has only one breed of dogs (e.g., German Shepherd), 

hile the second group has a mix of breeds. A human would judge 

wo dogs in the first group to be less similar (as all dogs are of

he same breed) than the two German Shepherd dogs in the sec- 

nd group. Thus, the similarity measure must take into account the 

istribution of data. 

The similarity between two objects in a multidimensional space 

s estimated by aggregating their similarities in each dimension. If 

wo objects x and y have the same value in a dimension i (i.e.,

 i = y i ), a data-independent similarity measure assigns the similar- 

ty of 1 regardless of the distribution of data in the dimension i .

owever, as mentioned earlier, it should depend on the data dis- 

ribution (i.e., the likelihood of x i ). For example, consider the data 

istribution shown in Table 1 , where the objects are represented in 

he columns and the values of the features/dimensions in the rows. 

n particular, let us consider the two instances Inst1 and Inst2, that 
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Fig. 1. Clustering results of the traditional DPC algorithm [First Row] Jain and Synthetic datasets with diverse densities shown in Subfigures (a) and (b) and [Second Row] 

Jain and Synthetic datasets with features transformed to inverse scale shown in Subfigures (c) and (d). Note that x −1 and y −1 are plotted on the logarithmic scale. Each �

represents a cluster center. 

Table 1 

Example of a sample data distribution to show the importance of data-dependent similarity 

measure [13] . 

Dim. Inst1 Inst2 Inst3 Inst4 Inst5 Inst6 Inst7 Inst8 Inst9 Inst10 

. . . . . . . . . . . 

i 2 2 1 1 1 1 1 1 1 1 

j 2 2 2 2 2 2 2 2 1 1 

. . . . . . . . . . . 
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ake the same values in both the i th and jth dimension, however 

heir matching value in the i th dimension is rare (only these two 

nstances have the value of 2) and that in the jth dimension is 

requent (these two and six other instances have the value of 2). 

hen estimating the (dis)similarity between Inst1 and Inst2 us- 

ng the Euclidean distance (data-independent measure), the match- 

ng values in dimensions i and j contribute equally to the over- 

ll similarity score. However, psychologists argue that they do not 

rovide the same amount of information about the similarity of 

nst1 and Inst2 and they should contribute differently. The match- 

ng value in dimension i is rare (low probability) and it provides 

ore information than the matching value in dimension j which 

s frequent (high probability). This is especially true in the case of 

igh-dimensional datasets in which the objects mostly lie in low- 

imensional manifolds. Therefore, from the above discussion, sim- 

larity measures that take into account the data distribution both 

hen x i � = y i and x i = y i are useful to represent the intrinsic struc-

ure of the data. 

.2. Mass-based probabilistic (MP) similarity measure 

In this section, we first discuss the data-dependent dissimilar- 

ty measure known as m 0 -dissimilarity, and then, we introduce our 

ass-based Probabilistic Similarity (MP-Similarity) measure. 
4 
.2.1. m 0 -Dissimilarity 

Aryal et al. [13] proposed m 0 -dissimilarity as a fully data- 

ependent dissimilarity measure and used it in the context of 

NN classification. It estimates the dissimilarity of two objects x 

nd y by using the probability mass of the region covering x i 
nd y i in each dimension i instead of the spatial distance | x i − y i | .
hese dissimilarities are then aggregated to give the m 0 dissim- 

larity. The idea is that x and y are more dissimilar with re- 

pect to the dimension i if many objects in the dataset have 

he values of feature i between x i and y i . Let m be the num-

er of objects in the dataset D, n be the number of dimensions, 

 i ( x,y ) = [ min (x i , y i ) , max (x i , y i )] be the region covering objects

 and y in dimension i and | R i ( x, y ) | = |{ z ∈ P : min (x i , y i ) ≤ z i ≤
ax (x i , y i ) }| , then m 0 -dissimilarity of objects x and y is defined

s: 

 0 ( x,y ) = 

( 

1 

n 

n ∑ 

i =1 

log 
| R i ( x, y ) | 

m 

) 

(4) 

In the above equation, 
| R i ( x, y ) | 

m 

represents the probability mass 

f the region in which x i and y i lie. Aryal et al. [13] provided a

robabilistic interpretation of m 0 -dissimilarity based on the Naive 

ayesian assumption that attributes (dimensions) are independent 

f each other. 
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Fig. 2. Contour plots of dissimilarity of objects in the 2-dimensional space with reference to object (0.5, 0.5), based on MP similarity (first row) and Euclidean distance 

(second row), in different distributions. The darker the color, the higher the dissimilarity. 
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In the above equation, | R i ( x, y ) | incorporates the region infor- 

ation in which x i and y i lie for each dimension i , which makes

 0 a data-dependent measure. In the example shown in Table 1 , 

he same values in dimensions i and j contribute differently in 

he overall dissimilarity of Inst1 and Inst2 . Moreover, m 0 is not af- 

ected when the values x i s along feature i are scaled (linearly or 

onlinearly) to x ′ 
i 
s (a different scale) as the number of instances 

n | R i ( x, y ) | and | R i ( x ′ , y ′ ) | remains the same because scaling ei-

her preserves or reverses the ordering of data values. Thus, m 0 

aptures the data-distribution as well as remain invariant to any 

hange in the scale of data. 

Computing | R i ( x, y ) | requires a range search which makes it 

omputationally expensive. To efficiently compute | R i ( x, y ) | , Aryal 

t al. [13] proposed to divide the range of continuous valued do- 

ain in the i th dimension into b equal-frequency intervals or bins. 

or each bin, the proposed algorithm stores the frequency or the 

umber of objects in that bin. Equal-frequency binning makes it 

nvariant to linear or non-linear scaling of data. Because many data 

bjects can have the same value in feature i (i.e., there can be 

uplicate values), it may be impossible to have perfectly equal- 

requency bins, i.e., bins may not always have the same frequency. 

ith bin frequencies, | R i ( x, y ) | can be approximated quickly by ag-

regating the frequencies of the bins in which x i and y i lie and the

ins in between. Data mass between each pair of bins in dimen- 

ion i can be precomputed and stored in a b × b matrix so that 

 R i ( x, y ) | can be calculated directly by a matrix lookup. 

.2.2. MP-Similarity 

We observe that m 0 is not a valid metric as: (i) the dissim- 

larity m 0 ( x,y ) of objects when x = y is non-zero, and (ii) the

issimilarities m ( x,x ) and m ( y,y ) may not be similar. There- 
0 0 

5 
ore, m 0 cannot be used as a similarity measure in applications 

here metric properties are required/assumed. Motivated by this, 

e propose a new similarity measure called Mass-based Proba- 

ilistic Similarity (MP-Similarity or MP), which is obtained by nor- 

alising m 0 using “m 0 ( x,x ) + m 0 ( y,y )” where m 0 ( x,x ) represents

he self-dissimilarity. It is defined as: 

P ( x , y ) = 

2 ∗ m 0 ( x,y ) 

m 0 ( x,x ) + m 0 ( y,y ) 
(5) 

Thus, MP retains the merits of m 0 , and like m 0 -dissimilarity, MP 

atisfies the symmetric and triangle inequality assumptions – given 

 i , y i , and z i in dimension i , | R (x i , y i ) | = | R (y i , x i ) | and | R (x i , z i ) | ≤
 R (x i , y i ) | + | R (y i , z i ) | , which can be generalised in a multidimen-

ional space. Also, from Eq. (5) , we have that ∀ x , MP ( x,x ) = 1 ,

hich shows that MP satisfies the identity assumption. The range 

f similarity assigned by MP lies in the range of [0,1] with 

P ( x , x ) = MP ( y , y ) = 1 . 

Next, we analyze the behaviour of MP-Similarity under different 

ata distributions including varying density clusters. To do so, we 

enerate three datasets of 50 0 0 instances with 2 dimensions each 

rom the following distributions: (i) uniform distribution, (ii) nor- 

al distribution, and (iii) varying density clusters. Figure 2 shows 

he contour plots of similarity of objects in the space to the center 

0.5, 0.5) using MP-Similarity ( Fig. 2 (a)–(c)) and the Euclidean dis- 

ance ( Fig. 2 (d)–(f)). In the contour plots, we represent the region 

f high similarity with dark orange color and the region of low 

imilarity with dark blue color. From Fig. 2 , we make the following 

bservations: 

• MP-Similarity adapts to different data distributions. 

Figures 2 and (b) show the contours of MP-Similarity on 

datasets with uniform distribution and normal distribution re- 
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Fig. 3. Clustering results of the MP-DPC algorithm on (i) Jain and Synthetic datasets with diverse densities shown in Figures (a) and (b) and (ii) Jain and Synthetic datasets 

with features transformed to inverse scale. Note that x −1 and y −1 are plotted on the logarithmic scale. Each � represents a cluster center. 
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spectively. As it can be observed, the contours are different for 

the different data distributions which demonstrates the data- 

dependent behaviour of MP-Similarity as it adapts the contours 

to underlying data distribution. However, the data-independent 

similarity measures (e.g., Euclidean distance) produce the same 

contours irrespective of the different distributions. 
• MP-Similarity adapts to different densities. Figure 2 (c) shows 

dataset containing two clusters with varied densities. As shown, 

from the center, the contour decreases slower in the region 

with sparse concentration of objects than in the region with 

dense concentration. Thus, MP-Similarity adapts its contours 

to the local data distribution which is not the case with a 

data-independent similarity measure, where contour vary at 

the same rate on either side regardless of the varying data con- 

centration. This reflects the characteristic of a data-dependent 

measure discussed earlier: two objects in a sparse region are 

more similar than two objects with equal distance in a dense 

region. 

The data-dependent characteristic of MP-Similarity makes it a 

uitable candidate for finding similarity between objects regard- 

ess of the underlying data distribution. Next, we show that MP- 

imilarity can be incorporated with DPC to improve its clustering 

esults on datasets with varying density and scales. 

.3. MP-DPC 

In this section, we present MP-DPC, which incorporates the MP- 

imilarity measure in DPC to create a data-dependent version of 

PC. 

DPC requires pairwise distances/dissimilarities between objects 

o compute ρ and δ as given in Eqs. (1) and (2) . To do so, DPC uses

he default Euclidean distance as the distance measure. We replace 

he default distance measure in DPC by MP-Similarity and we use 
6 
t as follows: 

ist( x,y ) = 1 − MP( x,y ) (6) 

This version of DPC is called MP-DPC, and we argue that it does 

ot require modifying the local density computation (or any other 

teps) in the procedure of the original DPC algorithm. 

Figure 3 shows the performance of MP-DPC on the Jain dataset 

nd a Synthetic dataset that have various densities. Unlike DPC, we 

bserve in Fig. 3 (a) and (b) that MP-DPC is clearly able to iden-

ify the dense and sparse clusters in both datasets as it is able to 

dapt to the local data distribution. Similarly, when the features of 

hese datasets are converted to inverse scale as shown in Fig. 3 (c) 

nd (d), MP-DPC is still able to identify the same clusters as in 

he original scale of the features. This is because MP-Similarity is 

ependent on the number of instances falling between two objects 

hich do not vary when the scale is varied linearly or non-linearly. 

hus, MP-DPC is suitable for varying data distributions, densities 

nd scale. 

Next, we show in Fig. 4 the performance of MP-DPC on two 

omplex shape datasets with multi-density clusters: the Path- 

ased dataset, which consists of three clusters and the Compound 

ataset, which consists of five clusters. We observe that on the 

athbased dataset, MP-DPC identifies the ring cluster better than 

PC but shows some misclassifications on the other two clusters 

nside the ring. For the Compound dataset, we observe that both 

PC and MP-DPC did not perform well: they both correctly identi- 

ed the two sparse clusters on the upper left corner, but they both 

ailed to correctly identify the other clusters. This performance of 

PC and MP-DPC could be an issue of the method of selection of 

luster centers, which we need to further investigate. 

We also incorporate MP-Similarity in SNNDPC [14] to improve 

ts performance and we call this new version MP-SNNDPC. The re- 

aining steps of SNNDPC do not need to be modified as in MP- 

PC. 
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Fig. 4. Performance of DPC and MP-DPC algorithm on multi-density datasets Pathbased and Compound. 

Table 2 

Summary of the Datasets. 

Dataset #Instances #Attributes #Clusters 

Iris 150 4 3 

Wine 178 11 3 

Parkinson 197 23 2 

Thyroid 215 4 3 

Libra 360 90 15 

Dermatology 366 33 6 

WDBC 569 30 2 

Balance Scale 625 4 3 

Statlog (Vehicle) 846 18 4 

Gtzan 1000 230 10 

Hba 1500 187 15 

Wap 1560 8460 20 

Cardiotocography 2126 23 10 

Fbis 2463 2000 17 

Spambase 4601 58 2 

Satimage 6435 36 6 

Corel 10,000 67 100 
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Finally, we note that the time complexity of MP-DPC and MP- 

NNDPC remains the same as their original counterparts based on 

he Euclidean distance because m 0 ( x,y ) can be estimated in O (n )

ime. 

. Experimental evaluation 

.1. Experimental setup 

In this section, we describe the experimental setup we used in 

ur evaluations, including a description of the baselines, details of 

ur implementation, the datasets, and the metrics used. 
7 
.1.1. Baselines 

We demonstrate the performance of our MP-DPC and MP- 

NNDPC algorithms by comparing them against the following 

tate-of-the-art algorithms: 

• DPC: the original DPC algorithm using the Euclidean distance; 
• SNNDPC: the original SNNDPC algorithm using the Euclidean 

distance; 
• IK-DPC: DPC algorithm using a similarity measure based on Iso- 

lation Kernel (IK) [31] ; 
• IK-SNNDPC: SNNDPC algorithm using the IK measure; 
• Lin-DPC: based on Lin’s similarity measure [32] ; 
• Lin-SNNDPC: SNNDPC using Lin’s similarity measure; 
• k -means [16] : which is used as a simple baseline. 

We note that there exist other data-dependent measures, which 

an be categorized into one-dimensional and tree-based measures 

13] . We have selected IK as it is a popular tree-based measure 

31] and Lin as it is based on a similar idea as MP. 

Specifically, IK [31] is a data-dependent similarity measure 

ased on an ensemble of t random trees called Isolation Forest 

33] . Each tree H i (i = 1 , 2 , . . . t) partitions the space using a small

ubsample of data D i ⊂ D ( |D i | = ψ). Partitions are created such 

hat sparse regions comprise of larger partitions than the dense 

egions adapting to local data distribution. The similarity of two 

bjects is estimated as the number of trees in which the two ob- 

ects fall in the same partition. 

Regarding the Lin similarity measure [32] , it introduces a notion 

f similarity based on information theory for ordinal data. Aryal 

t al. [13] presented its multidimensional version to measure the 

imilarity of two data objects x and y in multidimensional contin- 

ous domain, which aggregates the Lin’s similarity in each dimen- 
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Table 3 

AMI: Performance of Clustering algorithms and their data-dependent variants. 

Datasets k -means 

DPC 

k -means 

SNNDPC 

Euclidean IK Lin MP Euclidean IK Lin MP 

Iris 0.7387 0.7810 0.8286 0.8479 0.8479 0.7387 0.9133 0.7696 0.8968 0.8625 

Wine 0.8514 0.7847 0.7702 0.6752 0.7070 0.8514 0.8769 0.8101 0.9209 0.9099 

Parkinson 0.2318 0.1916 0.2833 0.2769 0.2115 0.2318 0.2637 0.2193 0.2873 0.2821 

Thyroid 0.5909 0.3097 0.7530 0.7858 0.7947 0.5909 0.5858 0.6318 0.8497 0.8076 

Libra 0.5399 0.5706 0.5234 0.5210 0.5264 0.5399 0.6283 0.5407 0.5237 0.5299 

Dermatology 0.8811 0.8096 0.8121 0.8820 0.9370 0.8811 0.8990 0.8509 0.9108 0.9301 

WDBC 0.6226 0.2447 0.6342 0.7182 0.6614 0.6226 0.7335 0.5872 0.6983 0.6933 

Balance Scale 0.1116 0.1763 0.1002 0.2144 0.2144 0.1116 0.1726 0.1502 0.1876 0.1809 

Statlog 0.0966 0.1735 0.2129 0.3368 0.3413 0.0966 0.2050 0.2457 0.3405 0.3230 

Gtzan 0.3288 0.2738 0.1667 0.2785 0.2813 0.3288 0.3179 0.1969 0.2965 0.2944 

Hba 0.3018 0.1977 0.2280 0.3024 0.3097 0.3018 0.2424 0.2743 0.3653 0.3556 

Wap 0.3143 0.1147 0.1269 0.1415 0.2908 0.3143 0.1203 0.1383 0.2119 0.3798 

Cardiotocography 0.2763 0.2241 0.2764 0.2940 0.3200 0.2763 0.2391 0.3157 0.3571 0.3510 

Fbis 0.1762 0.3163 0.1189 0.2589 0.3442 0.1762 0.2319 0.0222 0.0280 0.2095 

Spambase 0.0098 0.0950 0.0758 0.2186 0.3815 0.0098 0.0737 0.1568 0.2065 0.3633 

Satimage 0.6119 0.6377 0.6194 0.5891 0.5958 0.6119 0.6475 0.5807 0.6816 0.7107 

Corel 0.1973 0.1473 0.1753 0.2018 0.2079 0.1973 0.1743 0.2162 0.2493 0.2514 

Avg. 0.4048 0.3558 0.3944 0.4437 0.4690 0.4048 0.4309 0.3945 0.4713 0.4962 

Fig. 5. Post-hoc Nemenyi test ( α = 0.10) based on AMI scores shown in Table 4 . 

Fig. 6. Post-hoc Nemenyi test ( α = 0.10) based on ARI scores in Table 4 . 
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ion as shown below: 

in ( x,y ) = 

1 

n 

n ∑ 

i =1 

2 × log 
∑ max (x i ,y i ) 

z i = min (x i ,y i ) 
P (z i ) 

log P (x i ) + log P (y i ) 
(7) 

We use the idea of equal-frequency bins and data mass in bins 

s in the case of MP-Similarity to compute P (z i ) , P (x i ) and P (y i ) ef-

ciently. The fundamental difference between these two measures 

s the ability of MP-Similarity to capture data-dependent informa- 

ion in features where x i = y i . In Lin’s measure, the similarity of

 and y in a dimension i is 1 regardless of the likelihood of x i .

n the example discussed in Table 1 , both features i and j con- 

ribute equally to the overall similarity of Inst1 and Inst2 though 

hey share a frequent value in the dimension j and a rare value in 

he dimension i . But, they contribute differently in MP-Similarity. 

.1.2. Implementation details 

The implementations of SNNDPC and k -means we used are 

ased on [14] and [34] respectively. The implementation of IK is 
8 
ased on the tree-partition mechanism of Isolation Forest as de- 

cribed in [31] . The implementation of Lin is similar to the imple- 

entation of MP as both require | R i ( x,y ) | for the computation of

imilarity of two objects x and y in dimension i . 

All algorithms requires parameters tuning to obtain optimal 

erformance. Specifically, DPC requires the parameter d c to be pre- 

pecified. Authors of the original DPC paper [5] suggested d c to be 

uch that the total number of neighbours are between 1–2% of the 

otal number of points. Extensions of DPC [14,21,23] have modified 

he percentage to obtain the best results. We modify and extend 

his range from 1% to 3% with step size of 0.1% and report the best

esults. SNNDPC requires tuning the parameter k for obtaining the 

est results [14] , which we selected in the range of [5, 50] with a

tep size of 5. For consistency, we use the same setting of d c and

 with the data-dependent and data-independent variants of DPC 

nd SNNDPC. 

For MP-DPC and Lin-DPC, MP-Similarity and Lin’s measure re- 

uire setting an appropriate number of bins b. We vary b from 
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Table 4 

ARI: Performance of Clustering algorithms and their data-dependent variants. 

Datasets k -means 

DPC 

k -means 

SNNDPC 

Euclidean IK Lin MP Euclidean IK Lin MP 

Iris 0.7163 0.7196 0.8266 0.8681 0.8681 0.7163 0.9222 0.7498 0.9222 0.8857 

Wine 0.8685 0.8191 0.7627 0.6661 0.6999 0.8685 0.8922 0.8226 0.9284 0.9295 

Parkinson 0.0520 0.3363 0.3758 0.3811 0.2879 0.0520 0.2916 0.2172 0.2148 0.2985 

Thyroid 0.6283 0.1822 0.8256 0.8601 0.8623 0.6283 0.6823 0.6638 0.9064 0.8618 

Libra 0.3207 0.3503 0.3055 0.3024 0.3018 0.3207 0.4134 0.3141 0.3012 0.2914 

Dermatology 0.7426 0.8159 0.7912 0.8785 0.9409 0.7426 0.8434 0.8216 0.8637 0.9302 

WDBC 0.7302 0.2712 0.7327 0.8183 0.7741 0.7302 0.8308 0.6724 0.8052 0.8055 

Balance Scale 0.1351 0.1348 0.1138 0.2934 0.2934 0.1351 0.2203 0.1885 0.1871 0.1997 

Statlog 0.0757 0.1092 0.1531 0.2286 0.2346 0.0757 0.1509 0.1762 0.2813 0.2653 

Gtzan 0.1876 0.1580 0.0915 0.1700 0.1670 0.1876 0.1513 0.0673 0.1391 0.1391 

Hba 0.1471 0.1087 0.1087 0.1396 0.1454 0.1471 0.079 0.0897 0.2016 0.1828 

Wap 0.1485 0.0555 0.0699 0.0638 0.2368 0.1485 0.0551 0.0479 0.1447 0.1831 

Cardiotocography 0.1317 0.0820 0.1320 0.1651 0.1889 0.1317 0.1248 0.1622 0.2315 0.1964 

Fbis 0.0493 0.1227 0.0401 0.129 0.2437 0.0493 0.1111 -0.0014 -0.0031 0.0942 

Spambase -0.0048 0.1514 0.0654 0.2987 0.4344 -0.0048 -0.003 0.1297 0.2427 0.4492 

Satimage 0.5263 0.5120 0.5139 0.5016 0.5198 0.5263 0.5824 0.4937 0.6660 0.7021 

Corel 0.0462 0.0307 0.0297 0.0493 0.0489 0.0462 0.0253 0.0361 0.0553 0.0619 

Avg 0.3236 0.2917 0.3493 0.4008 0.4263 0.3236 0.3749 0.3324 0.4169 0.4398 

Fig. 7. Post-hoc Nemenyi test ( α = 0.10) based on FMI scores in Table 5 . 
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he set [20, 40, 60, 80, 100, l og 2 (m ) ], where l og 2 (m ) is the de-

ault value used in [13] . IK has two parameters, the sampling size 

 ψ) and the number of trees (t). For ψ , we select a value from

 2 a | a = 2 , 3 , . . . , 8 } , while the number of trees is fixed to the de-

ault value of 100, as suggested in [31,33] . Since the algorithm is 

andom, we run it 5 times for each sampling size and report the 

ean score for each evaluation metric discussed in Section 5.1.4 . 

In k -means, the initial centres are selected using the k -means++ 

35] method. Additionally, all algorithms require specifying the 

umber of cluster centers. To be consistent, we fixed the number 

b

Table 5 

FMI: DPC algorithm with data-independent Euclidean distance and data-dependen

Datasets k -means 

DPC 

Euclidean IK Lin M

Iris 0.8112 0.8159 0.8846 0.9115 0

Wine 0.9126 0.8801 0.8452 0.7800 0

Parkinson 0.5957 0.8140 0.8059 0.7433 0

Thyroid 0.8546 0.5697 0.9206 0.9356 0

Libra 0.3726 0.4009 0.3627 0.3564 0

Dermatology 0.7947 0.8519 0.8325 0.9034 0

WDBC 0.8770 0.6595 0.8778 0.9142 0

Balance Scale 0.4666 0.5478 0.5042 0.6025 0

Statlog 0.3070 0.4209 0.3872 0.4540 0

Gtzan 0.2942 0.2971 0.2326 0.3020 0

Hba 0.2351 0.2015 0.2084 0.2350 0

Wap 0.3642 0.1961 0.2706 0.2615 0

Cardiotocography 0.2498 0.2310 0.2773 0.3265 0

Fbis 0.1916 0.2779 0.2588 0.2693 0

Spambase 0.7160 0.7179 0.6931 0.7221 0

Satimage 0.6142 0.6299 0.6145 0.6032 0

Corel 0.0564 0.0514 0.0622 0.0739 0

Avg 0.5126 0.5037 0.5317 0.5526 0

9

f clusters in these algorithms to be equal to the number of classes 

n the ground truth. 

.1.3. Datasets 

The above algorithms are evaluated on 17 real-world datasets, 

hich are described in Table 2 . Many of these datasets are widely 

sed in existing DPC literature, such as [14,21,23] , and are obtained 

rom UCI Machine Learning Repository [36] . These datasets are dif- 

erent in terms of number of objects, dimensionality, and the num- 

er of clusters. The varying properties of these datasets help to 
t (dis)similarity measures. 

k -means 

SNNDPC 

P Euclidean IK Lin MP 

.9115 0.8112 0.9479 0.8350 0.9478 0.9233 

.7952 0.9126 0.9330 0.8825 0.9525 0.9532 

.6982 0.5957 0.8167 0.6932 0.7584 0.7036 

.9351 0.8546 0.8611 0.8525 0.9572 0.9349 

.3547 0.3726 0.4598 0.3649 0.3605 0.3505 

.9526 0.7947 0.8824 0.8572 0.8944 0.9441 

.8938 0.8770 0.9217 0.8467 0.9084 0.9085 

.6025 0.4666 0.5251 0.5105 0.6552 0.6533 

.4610 0.3070 0.3881 0.4281 0.4793 0.4713 

.3028 0.2942 0.3226 0.3005 0.3343 0.3343 

.2410 0.2351 0.2359 0.2086 0.2772 0.2713 

.3410 0.3642 0.3122 0.3056 0.3122 0.3747 

.3335 0.2498 0.2531 0.2814 0.3689 0.3233 

.3309 0.1916 0.2917 0.3176 0.3239 0.2886 

.7537 0.7160 0.7186 0.7213 0.7224 0.7551 

.6095 0.6142 0.6934 0.5986 0.7382 0.7677 

.0728 0.0564 0.0791 0.0803 0.0929 0.0939 

.5641 0.5126 0.5672 0.5344 0.5932 0.5913 
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Fig. 8. Variation in AMI score of algorithms after scaling features as 
√ 

x , log x and x −1 . 
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omprehensively evaluate the performance of the clustering algo- 

ithms, as they can represent different situations. 

To eliminate large differences in the range of dimensions, we 

ormalise the feature values of the datasets to be in the range of 

0,1] using min-max normalisation. Note that normalisation is not 

equired for MP-Similarity as it does not use the data values in the 

imilarity calculation, but it is important for distance-based mea- 

ures such as Euclidean distance. 

.1.4. Evaluation metrics 

We evaluate the performance of all clustering algorithms using 

he following popular metrics: Adjusted Mutual Information, Ad- 

usted Rand Score and Fowlkes-Mallows Index. Specifically, let’s U

nd V be respectively the ground truth cluster labels and cluster 

ssignments by a clustering algorithm for m data objects, a be the 

umber of object pairs that belong to the same cluster in U and V ,

be the number of object pairs that belong to the same cluster in 

but not in V , c be the number of object pairs that belong to the

ame cluster in V but not in U , d be the number of object pairs
10 
elonging to different clusters in U and V . The metrics are defined 

s follows: 

• Adjusted Mutual Information (AMI): AMI is used to measure 

the similarity between two clusterings of the same data. It is 

a variation of Mutual Information (MI) that informs the reduc- 

tion in the Entropy (H) of class labels when the class labels 

are known. Unlike mutual information, AMI is adjusted against 

chance which means that the similarity is only governed by the 

structure of the dataset appearing in two clustering and not by 

chance. AMI is calculated as follows [34] : 

AM I = 

M I(U, V ) − E [ MI(U, V )] 
1 
2 
(H(U) + H(V )) − E [ MI(U, V )] 

(8) 

where E [ MI(U, V )] is the expectation of the mutual informa- 

tion. 
• Adjusted Rand Index (ARI): ARI [37] is another metric to eval- 

uate the similarity of the clusterings. It considers the number 

of objects existing in the same cluster and in different clusters, 
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Table 6 

Clustering results of the algorithms before and after feature scaling in the Jain dataset. 
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and measures the fraction of pairs of points that are correctly 

clustered to the same or different clusters. 

ARI = 

a − (a + c)(a + b) /d 

(a + c) + (a + b) / 2 − (a + c)(a + b) /d 
(9) 

• Fowlkes Mallows Index (FMI): FMI [38] is used to measure the 

similarity of clusters obtained through different clustering algo- 

rithms. It is computed as follows: 

F MI = 

a √ 

(a + b)(a + c) 
(10) 

A perfect clustering will result in achieving a maximum score 

of 1 for the above metrics. 

.2. Results 

In this section, we report the results of our experiments com- 

aring the performance of our proposed MP-Similarity measure in 

PC and SNNDPC algorithms with other contenders. 

.2.1. Performance analysis 

The obtained clustering results are shown in Tables 3 , 4 , and 5 ,

or respectively AMI, ARI, and FMI. The different variants of DPC 

nd SNNDPC are denoted by the name of the similarity measure 

hey use. The average score over all the datasets is presented in 

he last row of each table. 
11 
Table 3 shows the AMI score obtained by the DPC and the 

NNDPC algorithm using the different similarity measures (dis- 

ussed earlier) and the k -means algorithm on different datasets. 

he results show that MP-DPC outperforms other variants of DPC 

nd k -means on most datasets. An interesting observation is that 

ll the data-dependent variants have generally better performance 

han that of the Euclidean. While IK could not achieve the best 

core on any dataset, it shows better results than the Euclidean 

n many datasets. k -means obtained best score on three datasets 

ut has less overall average score than the MP and Lin. On the 

ther hand, for SNNDPC, Lin has the best score on seven datasets, 

P on five datasets and Euclidean on four datasets. However, MP 

chieves better average score than any of the contenders including 

in, demonstrating its superior performance. 

In terms of ARI ( Table 4 ) and FMI score ( Table 5 ), similar be-

aviour is observed. While the performance of algorithms varied 

or some datasets, MP-DPC and MP-SNNDPC still outperform their 

ther counterparts as well as k -means algorithm on most datasets. 

he close competitor to MP in all the three metrics is Lin as they 

oth consider the probability mass of the objects in each dimen- 

ion. 

Further, we conduct the Friedman test with the post-hoc Ne- 

enyi test [39] to evaluate whether the performance difference 

etween any two algorithms is significant based on the three met- 

ics. For each metric, we show the results of significance test for 

PC and SNNDPC clustering algorithms in Figs. 5 , 6 , and 7 . We

ote that two algorithms are significantly different if there is not 



Z. Rasool, S. Aryal, M.R. Bouadjenek et al. Pattern Recognition 137 (2023) 109287 

Table 7 

Clustering results of the algorithms before and after feature scaling in the Thyroid dataset. 
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 line linking them. The results show that the MP variants of the 

lgorithms are better than at least two other clustering algorithms. 

.2.2. Sensitivity to varying feature scales 

In this section, we compare the performances of the MP vari- 

nts of DPC and SNNDPC against the IK and Euclidean variants 

hen the units/scales used to measure/represent the data features 

ary. As we have already shown that MP and Lin have similar per- 

ormance, we do not include the results of Lin in this section. 

e use six datasets (Jain, WDBC, Parkinson, Thyroid, Libra and 

tzan) having different characteristics (size, dimensions, clusters 

nd applications) for this experiment. We note that for the sake 

f brevity, we avoid presenting the results of the other datasets. 

For the comparison, we transformed the data values of each 

eature x to: 
√ 

x , log x and x −1 . Note that the transformations log x 

nd 1 /x are undefined for x = 0 , Therefore, we apply the transfor-

ation to c(x + α) , where α = 0 . 0 0 01 and c = 10 0 to obtain the

esults as done in [13] . The scaled data is again normalised in the

ange of [0,1]. 

Figure 8 shows the bar plots of the best AMI score achieved 

y contending algorithms in six different datasets. As can be ob- 

erved from the plots of different datasets, the AMI scores of DPC, 

NNDPC, IK-DPC and IK-SNNDPC varies greatly when the scale 

s changed. On the other hand, the results of MP-DPC and MP- 

NNDPC are not affected on the 
√ 

x and log x scale. A slight vari- 

tion is noticed in the inverse transformation for the MP variants 

f DPC and SNNDPC because of the binning involved in the pre- 

rocessing step where bin cut points falls in bins at different sides 
12 
s inverse reverses the order. These results show that MP-DPC and 

P-SNNDPC are robust to changes in the scale of the data. The 

bove results have been previously hypothesized and shown in 

ection 4 . 

To further explain these results, we visualise the effect of vary- 

ng scale on the results of the DPC, SNNDPC and MP-DPC using the 

ain and Thyroid datasets. We plot the clusters obtained for these 

atasets using the above algorithms on the x , 
√ 

x and log x scale 

nd check if there is a variation. Tables 6 and 7 show the plots of

rue clusters based on ground truth (in the first row) and clusters 

dentified by DPC, SNNDPC and MP-DPC in the Jain and Thyroid 

atasets. To plot the results of the Thyroid dataset, we reduced its 

imensionality to 2 using PCA. Note that we have not used all the 

lgorithms (such as IK-based DPC or SNNPDC and MP-SNNDPC) or 

cales ( x −1 ), as we have already covered them in Fig. 8 . 

As observed in both Tables 6 and 7 , MP-DPC produces clusters 

ery similar to the ground truths in all cases, whereas those of 

PC and SNNDPC vary significantly. In particular, DPC and SNNDPC 

esults are worst on the Thyroid dataset with scaled features. These 

esults of DPC and SNNDPC confirm our previous observations. The 

ear perfect clustering results of MP-DPC are due to its ability to 

dapt to the local density distribution and robustness to the scaling 

f data features. 

.2.3. Sensitivity to parameter d c 
In this section, we analyse the sensitivity of the parameter d c in 

PC and MP-DPC. We used the Jain (synthetic) and Thyroid (real- 

orld) datasets for this purpose and compare the effect of varying 
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Fig. 9. Effect of varying d c . 
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 c on the clustering results of MP-DPC and DPC. Ten d c values cor- 

esponding to different percentages in the range of 1% to 3% were 

hosen as shown in Fig. 9 . For the Jain dataset, MP-DPC showed 

erfectly consistent results for values of d c from 2.2 to 2.6. DPC, 

n the other hand, had highly varying results in the set of selected 

alues. Similarly for the Thyroid dataset, while MP-DPC achieved 

imilar AMI score for many d c values, the results of DPC varied for 

he different values of d c as shown in the figure. 

Overall, the results show that MP-DPC is less sensitive to the 

hange in the value of d c compared to DPC with Euclidean dis- 

ance. 

. Conclusion 

In this paper, we focused on the popular Density Peak Cluster- 

ng (DPC) algorithm, which is used in many applications. However, 

ts inability to deal with varying density clusters and sensitivity 

o the representation of data limit its effectiveness for real-world 

roblems where: (i) data have complex structure with varying den- 

ity clusters; and (ii) how data features are expressed/represented 

ay not be known. We overcome these two limitations of DPC 

y introducing a new data-dependent and scale-invariant simi- 

arity measure, which we call MP-Similarity. We show that MP- 

imilarity when incorporated into DPC (i) improves its perfor- 

ance on a range of datasets with varying characteristics, and (ii) 

rovides consistent results even when the data is represented us- 

ng different scales. Similar improvement in performance is also 

bserved when MP-Similarity is used with SNNDPC algorithm, a 

ariant of DPC algorithm, thus demonstrating the advantage of us- 

ng MP-Similarity. Further, we show that another data-dependent 

nd scale-invariant similarity measure (known as Lin’s measure) 

lso improves the performance of DPC and SNNDPC algorithm. This 

emonstrates the effectiveness of such measures in clustering com- 

lex real-world data. The experimental results using the popular 

lustering metrics validate our claim. 

Although MP-Similarity produces better results, it has a few 

imitations. Because MP-Similarity is based on m 0 -dissimilarity, 

hich assumes that the attributes are independent and computes 

he dissimilarity in each dimension separately, it may perform 

oorly when there is a strong correlation between the attributes. In 

uch cases, measures such as IK may perform better. However, not- 

ng from the experimental insights, MP-DPC provides better per- 

ormance compared to other contenders across various datasets of 

ifferent dimensions and sizes, which shows that such effect may 

ot be significant in practice. 

Future work includes investigating the performance of MP- 

imilarity on other popular clustering algorithms such as DB- 

CAN and hierarchical clustering. These algorithms also use 

dis)similarity measures based on data-independent Euclidean dis- 

ance. We also plan to extend this work on mixed data consisting 

f both numerical and categorical attributes as these are common 
13 
or many real-world datasets. It would also be of interest to study 

he behaviour of the proposed similarity in the context of classifi- 

ation and anomaly detection. 
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