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Abstract—In the era of open data, a single data source rarely contains all of the

attributes we need for inference in specific applications. For example, a

marketing department may aim to integrate retailer-specific purchase data with

separate demographic data for purposes of targeted advertising – a capability not

possible with either dataset alone. In this work, we address two key desiderata of

an automated framework for probabilistic data integration over multiple data

sources: (1) we require that each relational data source share at least one

attribute with another relational data source, but we do not require these

attributes to be foreign keys (e.g., attributes such as gender, age, and postal

code are not foreign keys because they do not uniquely identify individuals in a

data source) and (2) we require inference to be probabilistic to reflect inherent

uncertainty in population-level predictions given the absence of foreign keys.

While some frameworks such as Probabilistic Relational Models (PRMs) address

point (2), they do not address point (1) since they rely on foreign keys to link

tables. To achieve both desiderata simultaneously, we develop an automated

framework to construct Bayesian networks for data integration capable of

answering any probabilistic query spanning the attributes of multiple relational

data sources. We demonstrate that our framework is able to closely approximate

the inference of a global Bayesian network over a single relation that has been

projected onto multiple local relations and further investigate properties of local

relations such as the number of shared attributes and their cardinality to

understand how these properties affect the quality of inference.

Index Terms—Bayesian networks, probabilistic data integration
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1 INTRODUCTION

OPEN databases provide unprecedented access to a range of data,
but rarely does a single data source contain all of the attributes that
we need for specific applications. For example, consider the case of
targeted marketing, where a company has data on purchases, gen-
der, and age for a set of consumers, but wants to target advertising
based on consumer education level. To do this, we would like to
integrate external survey or market research data containing edu-
cation level into our consumer behavior model. Specifically, let us
consider the case that we have two datasets to integrate: one that
relates consumer behavior with gender and age, and one that
relates gender and age with education level. Our ultimate goal is to
predict consumer behavior from education level, which requires
reasoning jointly over both data sources. However, this is not a
standard data integration problem for two key reasons: First, no
foreign keys link the two data sources (i.e., privacy concerns may
require anonymization and gender and age do not uniquely select
an entity in either relation) meaning we cannot simply perform
inference by using a global schema mapping as done by [1], [2], [3],
[4]. (2) Second, unlike standard data integration, which focuses on
instance-level inference [5], the predictions will have a high degree
of uncertainty and therefore we would like to assign probabilities
to predicted behavior.

In this work, we attack both problems (1) and (2) by leveraging
a novel Bayesian network methodology for probabilistic reasoning
over multiple data sources. While Probabilistic Relational Models
(PRMs) [6], [7] have been previously proposed as a formalism for
leveraging Bayesian network inference for probabilistic reasoning
over databases, PRMs never explicitly focused on data integration
and further, they require foreign keys for inference. In a different
vein, work on Probabilistic Data Integration (PDI) [8], [9], [10] also
focused on data integration under data uncertainty—often explic-
itly represented by probabilities in the data storage representation.
In contrast to PDI, this work does not assume an explicit represen-
tation of probabilistic uncertainty within the database relations nor
does it require linked data. While it is possible to discover foreign
key or inclusion dependencies [11], [12], [13] that are not explicitly
annotated in the data schema, we focus on the setting where over-
lapping relation attributes cannot act as (implicit) foreign keys, but
can instead be characterized through probability distributions con-
ditioned on other attributes (e.g., gender and age in our previous
example, or even partial foreign keys such as a postal code that
induces a distribution over other attributes).

The critical insight behind our method is that we can adapt
existing Bayesian network structure learning methodologies to the
case of data integration to build a global Bayesian network from
individual local relations. We note that if all local relations could be
joined into a single global relation via foreign keys, we could simply apply
standard Bayesian network structure learning methodology. However,
when we are unable to join local relations, we need to instead intro-
duce special constraints on the structure of the Bayesian network to
ensure it can be learned from the individual local relations. Once
learned, this Bayesian network then permits general probabilistic
queries over the attributes of all local relations. In our marketing
example, this allows us to infer the probability of a person buying
an item given that the person has a Masters degree, even though
the local relations with these attributes are not linked by any for-
eign keys.

Using the restricted search and learning methodology for
Bayesian network learning over local relations without foreign
keys that we contribute in this article, we demonstrate important
properties of our approach: (a) Under conditions that we elucidate
in the paper, it is actually possible to recover the same Bayesian
network structure from local relations that we would have learned
if the original global relation was explicitly given. (b) Second, in
cases that do not meet the previous conditions, we empirically find
that we are still able to recover Bayesian networks that provide
data models and probabilistic inference comparable to Bayesian
networks learned directly from the global relation.

2 BAYESIAN NETWORK PRELIMINARIES

Before we can proceed to define the Bayesian network modeling
methodology in this paper, we first briefly review critical Bayesian
network concepts that will be used later. The following content is
explained with more detail in [14].

Model Definition. A Bayesian network provides a compact repre-
sentation of a probability distribution that exploits conditional
independence of all child nodes in the Bayesian network condi-
tioned on their parents. Formally, for a set of discrete random vari-
ables X ¼ fX1; . . . ; Xng, a Bayesian network factorizes their joint
distribution as follows:

P ðX1; X2; . . . ; XnÞ ¼
Yn

i¼1
P ðXijParentsðXiÞÞ; (1)

where Parents of Xi are determined according to a Directed Acy-
clic Graph (DAG) over X (see the example in Fig. 3).
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Inference. Given this joint distribution, a variety of algo-
rithms permit us to exploit the DAG stucture of the Bayesian
network to efficiently infer any probability P ðQjEÞ given query
Q � X and evidence E � X, where Q \ E ¼ ;. When all random
variables are discrete, Conditional Probability Distributions (CPDs)
P ðXijParentsðXiÞÞ can be represented in a tabular form enumerating
all possible combinations of variable assignments with maximum
likelihood parameters estimated from their empirical distribution.

Conditional Independence. Every Bayesian network DAG implies
a set of (conditional) independences among its variables. As illus-
trated in Fig. 1, for a Bayesian network involving three variables
A;B and C with A being a shared variable, there are four possible
edge orientations.

Orientation (1), (2) and (3) are called I-equivalent as they repre-
sent the same independence relationship, B ? CjA. That is, when
A is observed, B is independent of C so C’s influence cannot flow
to B, and as such, we say there is no active trail (dependence)
between B and C. When A is not observed, B 6? C so one can esti-
mate C by using B as evidence or vice versa, and we say that there
is an active trail between B and C. Orientation (4) represents a dif-
ferent independence relationship, B 6? CjA, which is also called a
“V-structure”. There exists an active trail between B and C when A

is observed, but the active trail is blocked when A is not observed.
We will need to leverage these properties later when defining legal
Bayesian networks for data integration.

Structure Learning. When learning the Bayesian network struc-
ture from a single relation over variables X, we start with isolated
nodes (no edges) and we greedily select actions to modify the
Bayes net structure to maximize a structure scoring function (e.g.,
K2 score [14]) while maintaining the DAG property. There are three
types of legal actions we can perform when learning the edges
E ¼ fE1; E2; . . . ; Emg:

� Add a directed edge, Ei ¼ Xa ! Xb where Ei 62 E and
Xa;Xb 2 X

� Reverse a directed edge, Ei where Ei 2 E
� Delete a directed edge, Ei where Ei 2 E
We keep performing actions that yield the highest score until

we can no longer improve the overall score of the structure. Having
the Bayesian network structure, we use maximum likelihood esti-
mation as outlined previously to learn the parameters of the CPD’s.
We refer to this well-known Bayes net structure learning algorithm
as BNLEARN [14].

Since learning the structure of a Bayesian network is NP-hard, we
performHill Climbing search usingK2 score as a heuristic [14].While
other scores could be used with our approach, K2 conveniently con-
sists of a log likelihood term under a Dirichlet priorwith unit hyperp-
riors plus a log prior over the network structure itself, both of which
can be computed using the same time and information it takes to
compute the structure’smaximum likelihood parameters.

3 FORMAL PROBLEM DEFINITION

In this article, we assume that we have a global relation (table) that
we want to model. However, we are only provided with projec-
tions of that global relation, which we call local relations (tables).
Formally, we use RGðXÞ to represent the global relation over attri-
bute set X ¼ fX1; X2; . . . ; Xng, where in a probabilistic sense, we
can also think of each Xi as a random variable. Also, we use

RLj
ðXjÞ for j ¼ 1 . . . k to represent the jth local relation generated

from RGðXÞ by projecting to the subset of local attributes Xj � X.
Critically, we note that while an attribute Xi may be shared
between local relations, in this paper we consider the case where
Xi cannot be considered as a foreign key but rather induces a dis-
tribution over other attributes, e.g., Xi may represent gender, age,
or postal code, but none of these necessarily independently selects
for a unique row in any local relation.

Our objective in this paper is to find the best Bayesian network
structure over attributes X that: (i) can be used to answer a probabi-
listic query P ðQjEÞ, (ii) can be exactly learned from only the data in
local relations RLj

ðXjÞ (i.e., tables), and (iii) optimizes the K2 score,
making it the best possible Bayesian network structure according
to this metric. The key technical contribution in this article is in
defining a set of constraints regarding dependences (edges) achiev-
ing (i), (ii), and (iii), that we will elucidate shortly after we discuss a
motivating example for our methodology.

4 METHODOLOGY

Our goal is to define an extension of BNLEARN called LR-BNLEARN

that learns a Bayesian network over the local relations RLj
ðXjÞ and

permits probabilistic inference P ðQjEÞ overQ and E containing any
attributes from the local relations. The key idea is that all attributes
(random variables) shared between local relations serve as conduits
that permit information sharing across the LR-BNLEARN’ed Bayes-
ian network (termed the LR Bayesian network) and hence should
allow for effective inference of any P ðQjEÞ. Our ultimate objective
in this construction is for inference in the LR Bayesian network to
match or closely approximate inference in the Global Bayesian net-
work that is BNLEARN’ed from the global relation.1

For example, as illustrated in Fig. 2, assume we have a global
relationRG over variables (relation attributes)A,B, andC projected
onto two local relations RL1

ðA;BÞ and RL2
ðB;CÞ. Assuming our

goal is to query C given A as evidence, we can first learn the Bayes-
ian network with ðB! AÞ and ðB! CÞ as shown for BN1 in Fig. 2.
Then the query P ðCjAÞ exploits the active trail betweenC andA.

4.1 Local Relation Constrained Bayes Net Learning

In the example above, we saw that learning Bayesian networks
over local relations involves a search for DAGs that link variables
(attributes) shared among relations. However, in this section, we
observe that not all legal DAG structures can be learned from
local relations, specifically shared variables cannot participate in
V-structures in the Bayes net. Below, we formally define and dis-
cuss this constraint:

Definition 4.1 (LR-Learnable Node). The conditional probability
distribution (CPD) for a Bayesian network node Xi is LR-learnable if
9j2f1 . . . kg s.t. fXig [ ParentsðXiÞ � Xj for some local relationRLj

.

In short, because maximum likelihood CPD learning for a
node requires empirical frequency counts of data over all joint
assignments to the node and its parents in the Bayes net, we
require all of these variables to be present in at least one local
relation. LR-Learnability then implies that a shared variable can-
not be at the vertex in a V-structure with parents from two differ-
ent local relations. It further implies that two variables that do not
appear in the same local relation cannot be connected by any
edge in the Bayesian network DAG (cf. BN2 in Fig. 2 and the
explanation in the caption).

Fig. 1. All orientations of three nodes, with a being the shared variable.

1. In practice, we do not have access to the global relation since we would not
need to reason over local relations if the global relation was available. However,
our experimental design assumes knowledge of the global relation in order to
compare inference in the global Bayesian network with the LR-BNLEARN’ed
Bayesian network.
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Definition 4.2 (LR-Learnable Model). A Bayes net model is LR-
Learnable if all nodes are LR-learnable.

This provides an easily checked LR-Learnability sufficiency
constraint on Bayesian Network DAG learning over local relations
that we use next in defining LR-BNLearn.

4.2 LR-BNLEARN

In order to construct a Bayesian network DAG to answer a probabi-
listic query P ðQjEÞ w.r.t. a local relation decomposition of a global
relation, we need to modify the original BNLEARN algorithm from
Section 2 (Structure Learning) to take into account LR-Learnability
constraints during DAG structure search. We call this modified
algorithm LR-BNLEARN, which at each step of the BNLEARN DAG
modification process (where edges are added, reversed, or deleted)
ensures that modifications are only considered if the resulting
DAG is LR-Learnable w.r.t. available local relations.

Since LR-BNLearn is simply a restriction of the DAG modifica-
tion search process in the existing BNLearn algorithm, the time
complexity of LR-BNLearn is on the same order as BNLearn—
OðRC2Þ for R rows, C column attributes, and assuming a constant
upper bound on the number of parents of any node. Furthermore,
we note that since the K2 score uses the same information required
to compute the maximum likelihood parameters of the Bayesian
network, K2 extends easily to LR-BNLearn, which ensures that all
parameters can be learned exclusively from local relations.

5 EXPERIMENTS

In our experiments, there are four key questions we want to answer
in order to validate the correctness and effectiveness of our data
integration framework, LR-BNLEARN

2:

1) How much do the probability distributions inferred from
the LR-Learned model differ from the ground truth proba-
bilities (e.g., in terms of absolute error or KL-divergence)?

2) If we have a known ground truth Bayesian network that is
not LR-Learnable w.r.t. the given local relations, how does
this impact the quality of probabilistic inference (e.g., in
terms of absolute error or KL-divergence) in the LR-
Learned Bayesian network compared to the ground truth
Bayesian network?

3) How closely does the probability distribution of the LR-
Learned Bayesian network approximate the ground truth
probability as the quantity of data increases?

4) How does the number (and cardinality) of shared variables
affect the error of probabilistic inference of models learned
by LR-BNLEARN in comparison to the ground truth values?

Experiments that further address the last question are reported
in Appendix A, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/10.1109/
TKDE.2019.2940019, and summarized in Section 5.3.4.

5.1 Data Sets

We constructed four experiments to answer the questions above,
using both synthetic and real-world datasets with discrete and
integer variables described in the following subsections. Each data-
set is randomly divided into a training set (80 percent) and a test
set (20 percent), and the training set is then projected onto local
relations with different but overlapping columns.3 LR-BNLEARN

treats these projected tables as different data sources and automati-
cally trains an LR-Learned Bayesian network from these local rela-
tions. Then, the LR-Learned BN is evaluated against the test set
joint distribution considered to be the “ground truth”.

5.1.1 Experiment 1: Student SAT (Synthetic)

The Student SAT model [14], as illustrated in Fig. 3, describes the
relationship between 5 variables:

� Intelligence of the student (I)
� Difficulty of the course (D)
� Grade of the student (G)
� Student receiving a recommendation letter (L)
� Student’s SAT score (S)
A synthetic dataset of 1,000,000 rows is generated based on this

model; we focus on synthetically sampled data since we aim to test
if the LR-Learned Bayesian network converges to the true distribu-
tion represented by the model.

The five variables are projected into 3 local relations with the
following columns: (1) I, S, (2) G, L, and (3) I, D, G.

5.1.2 Experiment 2: Shared Variables (Synthetic)

This experiment is designed to investigate the effect of the num-
ber of shared variables. Since real-world datasets with a large
number of shared variables are largely unavailable, 1,000,000
rows of synthetic data are generated using the Bayesian network
shown in Fig. 4, with 6 random variables, and the following pro-
jection onto two local relations: (1) A, B, C, D, E and (2) B, C, D, E,
F. To reduce the number of shared variables in experiments, we
simply remove B, C, D, E to achieve the desired amount of
sharing. Also, to investigate the behavior of learning non-BN-
LEARNABLE structure, we intentionally constructed two V-struc-
tures at node D and E.

5.1.3 Experiment 3: 2016 American Jobs Survey

The dataset, 2016 State of American Jobs Survey, is acquired from
Pew Research Center.4 Since this is non-synthetic data, there is no
ground truth Bayesian network. 5,006 data points were collected

Fig. 2. An illustration of LR-Learnability for a global relation in Table 1 decomposed
into two location relations in Tables 2 and 3. While the DAG for BN1 (bottom left) is
LR-Learnable from the local relations, BN2 (bottom right) is not LR-Learnable
because there is no local relation that allows learning of the CPD for edge A! C.

2. https://github.com/bohan-zhang/autopgm

3. In this paper, we assume local relations are projections of the global rela-
tion and hence the marginal distributions of all shared variables match. In prac-
tice, however, it may be the case that local relation projections are subsampled
according to different distributions, especially for open data. While it is beyond
the scope of this article to address sample bias mismatch in its full generality, we
note with an example in Appendix B, available in the online supplemental mate-
rial, that this sample bias may be addressed in certain cases without major
changes to the methodology proposed here.

4. http://assets.pewresearch.org/wp-content/uploads/ sites/3/2017/10/09160742/
May16-data-release.zip
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in this survey and a subset of columns are included in our
experiment:

� Income level (income / In)
� Own or rent an apartment (ownrent / Ow)
� Employment status (em / Em)
� Financial status (financial / Fi)
� Level of happiness (happy / Ha)
These variables are projected onto two separate tables with

overlapping columns, with each containing: (1) income, em, own-
rent, and (2) income, em, happy, financial.

We perform this projection because the data collected in the
local relation (1) and the local relation (2) could come from differ-
ent sources in reality requiring the use of techniques introduced in
this work. For example, a real-estate firm might be interested in
knowing a customer’s preference of renting or purchasing a prop-
erty based on their financial status. In the meantime, an individual
might also be motivated to know whether renting or buying an
apartment would lead to an increased level of happiness.

5.1.4 Experiment 4: HackerRank Survey

HackerRank Developer Survey 2018, acquired from Kaggle,5 contains
25,090 responses from students and developers. Since this is non-
synthetic, there is no ground truth Bayesian network. Among 50þ
columns, we include the following:

� Whether the survey taker is willing to recommend Hacker-
Rank to a friend (recommend / Re)

� Whether they have received a HackerRank challenge
before (hr_challenge/ Hr)

� Age (age / Ag)
� Gender (gender / Ge)
� Student or not a student (stu / St)
� Degree type (degree / De)
� Level of education (edu / Ed)

These seven variables are projected onto two local relations
in the following manner: (1) age, gender, stu, recommend,
hr_challenge, and (2) age, gender, stu, edu, degree. The
rationale is that, HackerRank, as a company, might be interested to
know whether a person is likely to become a HackerRank user
(hr_challenge) or even recommend HackerRank to their friends
(recommend), based on their degree type or educational back-
ground. Knowing this information, HackerRank can optimize its
targeted marketing campaign and thus improve its profitability.

5.2 Metrics

To evaluate the performance of the LR-Learned Bayesian networks,
we use two different metrics: KL Divergence and Mean Absolute
Deviation defined below.

Kullback-Leibler divergence (KL divergence), DKLðP jjQÞ, measures
how the LR-Learned Bayesian network’s distribution Q diverges
from the test data’s joint distribution (ground truth) P and is
defined as follows:

DKLðP jjQÞ ¼ �
X

i

P ðiÞlog2QðiÞ
P ðiÞ:

While KL divergence estimates the divergence between two dis-
tributions, an alternative more interpretable metric for individual
query probabilities would be absolute deviation. Hence, letting
P ðX ¼ ijEÞ be the probability inferred from the LR-learned model
and p�i be the ground truth value, we define Mean Absolute Devia-
tion (MAD) as follows:

MAD ¼ 1

n

Xn

i¼1
jp�i � P ðX ¼ ijEÞj:

5.3 Experimental Evaluation

5.3.1 Performance

Here we recall that the Global BN is the Bayesian network learned
using BNLEARN on the global relation; both are shown in Fig. 7. We
now compare inference in this Global BN to the LR-BN learned
from projected local relations using LR-BNLEARN, with results
shown in Table 4. Here we see that the KL divergence of the Global
BN’s joint distribution from the data it was learned from is very

Fig. 4. Shared variables ground truth Bayesian network.

Fig. 5. Bayesian networks, student SAT experiment.

Fig. 3. Student SAT experiment ground truth Bayesian network.

Fig. 6. Bayesian networks, shared variable experiment.5. https://www.kaggle.com/hackerrank/developer-survey-2018
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small and LR-BN does almost as well indicated by the last column
showing a small % difference.

For Student SAT, the KL divergence approaches 0 (within the
bound of statistical noise) since an I-equivalent structure to Ground
Truth is recovered (Fig. 5). For Shared Variable, where a structure
I-equivalent to Ground Truth is not LR-LEARN-able (Fig. 6), a 0 KL
divergence is more difficult to achieve, but structurally matches
the Global model. For American Jobs Survey, a significantly higher
KL divergence value is obtained because there are only 5,006 data
points available, and the variables have high cardinalities yielding
many parameters to learn. The LR-Learned Bayesian network only
differs from Global due to non-deterministic tie-breaks in (LR-)
BNLearn. For HackerRank, we see a 3.59 percent difference between
the LR-Learned Bayesian network and the original Bayesian net-
work. This is explained by Fig. 8: the edge ðDe! HrÞ spans differ-
ent local relations and cannot be recovered. Overall, we note the
restricted search of LR-BNLearn yields identical or similar models
to BNLearn.

5.3.2 Convergence

‘To verify whether the LR-Learned Bayesian network’s distribution
will converge to the ground truth given as the amount of data
increases, we plot the KL divergence of every experiment versus
the amount of training data in Fig. 9. Unsurprisingly, we see a con-
sistent downward trend across all experiments as more training
data is given, since it is easier for LR-BNLEARN to separate signal
from noise and recover an accurate predictive model as data
increases.

The LR-Learnable Student SAT KL divergence eventually
reaches 0, as I-equivalent structures are learned and ample training
data is given. On the other hand, the other three non-LR-LEARN-
able datasets’ KL divergences have not converged to 0 when given
the full training set, because the amount of training data is insuffi-
cient and/or I-equivalent structures are not possible to be learned
from local relations.

5.3.3 Inference When Global BN cannot be Recovered

In the HackerRank model, the edge ðDe! HrÞ spans across two
local relations and thus is not LR-Learnable. The unrepresented
edge gives rise to a 3.59 percent difference between the KL diver-
gence of the LR-BN and Global BN. In Table 5, we assess the KL
divergence and MAD of queries that require this unrecovered edge
for exact inference. Subscript GT indicates the comparison between
the LR-Learned Bayesian network and the ground truth test data,
and subscript G denotes the comparison between the LR-BN and
the Global BN. In short, the KL divergence is small and the MAD
only a few hundredths off from the data and Global BN estimates,
indicating that unrecoverable edges in the LR-BN do not necessar-
ily inhibit relatively accurate inference.

5.3.4 Number and Cardinality of Shared Variables

We studied the impact of the number of shared variables and the
cardinality of a shared variable on queries spanning local rela-
tions with these shared variables. The models and results detailed
in Appendix A, available in the online supplemental material,
show that the MAD worsens as we reduce the number of shared
variables or we reduce a shared variable’s cardinality. This sug-
gests that (1) more shared variables promote increased accuracy
in LR-BN inference and (2) lower cardinality shared variables
limit the information that can be transmitted in cross-relation
queries.

Fig. 8. Bayesian networks, HackerRank experiment.

Fig. 9. KL divergence of the LR-learned Bayesian network from the test data distribution versus amount of training data.

Fig. 7. Bayesian networks, american jobs experiment.

TABLE 4
KL Divergence of All Experiments

Experiment KL (Global BN) KL (LR-BN) % D

SAT 0.000221 0.000221 0.00%
Shared Variable 0.315862 0.315862 0.00%
American Jobs 0.497224 0.494564 -0.53%
HackerRank 0.216894 0.224685 3.59%

TABLE 5
Mean Absolute Deviation of Cross-Table Queries

Query MADGT KLGT MADG KLG

P ðHrjDe ¼ comsciÞ 0.0229 0.0015 0.0243 0.0017
P ðHrjDe ¼ otherÞ 0.0639 0.0124 0.0458 0.0063
P ðDejHr ¼ YESÞ 0.0378 0.0130 0.0276 0.0080
P ðDejHr ¼ NOÞ 0.0211 0.0069 0.0195 0.0035
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6 CONCLUSION

We proposed LR-BNLEARN, an automated framework to construct
Bayesian networks that allows us to reason probabilistically over
multiple relations not linked by foreign keys—a novel capability not
available in previous probabilistic relational modeling frameworks.
We showed that our framework is able to closely approximate infer-
encew.r.t. ground truth reference data andmodels evenwhen source
relations do not permit optimal recovery of the truemodel.
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