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Support Matrix Machine via Joint ℓ2,1 and Nuclear
Norm Minimization Under Matrix Completion

Framework for Classification of Corrupted Data
Imran Razzak , Senior Member, IEEE, Mohamed Reda Bouadjenek , Raghib Abu Saris, and Weiping Ding

Abstract— Traditional support vector machines (SVMs) are
fragile in the presence of outliers; even a single corrupt data point
can arbitrarily alter the quality of the approximation. If even
a small fraction of columns is corrupted, then classification
performance will inevitably deteriorate. This article considers the
problem of high-dimensional data classification, where a number
of the columns are arbitrarily corrupted. An efficient Support
Matrix Machine that simultaneously performs matrix Recovery
(SSMRe) is proposed, i.e. feature selection and classification
through joint minimization of ℓ2,1 (the nuclear norm of L).
The data are assumed to consist of a low-rank clean matrix
plus a sparse noisy matrix. SSMRe works under incoherence
and ambiguity conditions and is able to recover an intrinsic
matrix of higher rank in the presence of data densely corrupted.
The objective function is a spectral extension of the conven-
tional elastic net; it combines the property of matrix recovery
along with low rank and joint sparsity to deal with complex
high-dimensional noisy data. Furthermore, SSMRe leverages
structural information, as well as the intrinsic structure of data,
avoiding the inevitable upper bound. Experimental results on
different real-time applications, supported by the theoretical
analysis and statistical testing, show significant gain for BCI,
face recognition, and person identification datasets, especially in
the presence of outliers, while preserving a reasonable number
of support vectors.

Index Terms— Joint matrix recovery, outliers, support matrix
machine, support vector machines (SVMs).

I. INTRODUCTION

MORE often than not, real-world data are multidimen-
sional and imperfect. These attributes pose serious

challenges, especially in datasets of limited size. Traditional
support vector machines (SVMs) [1], [2], [3] are fragile in the
presence of outliers; even a single corrupt point can arbitrarily
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affect classification performance. Persistent or nonprobabilistic
data corruption stems from failures in sensor inputs, or from
malicious data tampering.

In addition to data corruption, some of the available data
may not conform to the presumed low-dimensional model,
i.e., if most of the columns are in low-dimensional space,
the corresponding matrix is low rank and a small number
of columns are outliers that correspond to a column-sparse
matrix [4], [5], [6].

Vector-based methods have been successively applied for
classification and with good results. State-of-the-art vector-
based methods are linear discriminant analysis (LDA) [7],
[8], [9], [10], SVMs [1], [2], [3], and k-nearest neighbor
(KNN) [11], [12], [13]. However, the data have to be reshaped
into vectors for further classification and this can in turn
destroy the structural information embedded within. An alter-
native solution to avoid this problem is to concatenate the
matrix into a vector for classification. However, this results
in an increase in dimensionality that leads to over-fitting.
Recently, some efforts have been made to cast matrices into
vectors using common spatial patterns [14], [15], [16], [17],
[18], [19]. However, these methods ignore the topological
structure embedded in matrix data, and this structural infor-
mation is of great interest, considering it helps to improve
classification.

Recently, several efforts have been made to classify matrices
directly without conversion to their respective vector repre-
sentation, in so doing exploiting the correlation between the
columns or rows of the matrix. Rank-k SVM [20] and Rank-k
Logistic Regression [4], [5] model the regression matrix as a
sum of the k rank-one orthogonal matrix. Song et al. [5] pre-
sented 2-D large margin nearest neighbor to improve the KNN
classification for matrix data by adopting left projection and
right projection matrix to define the matrix-based Mahalanobis
distance. In another work, authors have presented rank-k 2-D
multinomial logistic regression for multiclass matrix classifi-
cation problem by modeling each category through left and
right projection matrices with rank k. Pirsiavash et al. [21]
presented a bilinear classifier by applying the hinge loss for
model fitting through factorization of the regression matrix
into a low-rank matrix. Zhang et al. [22] devised low-rank
linearization to transform the nonlinear SVM to a correspond-
ing linear SVM, through a kernel map computed from the
low-rank approximation of matrices. One major disadvantage
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of these methods is that each new feature in a low-dimensional
subspace is the linear combination of all the original features in
high-dimensional space. Thus, such treatments usually affect
classification performance due to the inclusion of redundant
features. Furthermore, it is often difficult to interpret new
features when treated in this way.

To tackle the challenge of robust feature selection, the
sparsity regularization in dimensionality reduction has recently
been investigated for feature selection i.e., ℓ1 [23], [24],
ℓq [25], ℓ2,0 [26], and ℓ2,1 [27], [28]. The Frobenius norm
has also been applied to introduce sparsity in a regression
matrix [4], [5], [29]. These approaches work well and consider
the correlation between columns and rows under the low-rank
assumptions and provide satisfactory performance [30]. How-
ever, these approaches consider all the entities of the matrix
as explanatory factors, whereas in the real world, some
features might be redundant (even useless) for certain clas-
sification tasks; in other words only a small set of useful
features are used when classifying unseen data. For exam-
ple, due to the low-ranked nature of gene or human facial
images, obtaining relevant features by removing irrelevant and
redundant features, reducing computational costs without sig-
nificant loss of information nor negatively degrading learning
performance.

Besides intra-sample outliers, traditional classifiers, whether
vector-based or matrix-based support machines, are fragile in
the presence of outliers [31] and are not suitable as classifiers
at all in the presence of corrupt data. Recent matrix classifiers
(such as rank-k SVM and bilinear classifiers) incorporate
the low-rank property and introduce certain constraints on
the regression matrix to leverage the correlation. However,
it requires predetermination of rank of the regression matrix
which is complex and requires tuning. Recently, low-rank
matrix completion methods have proven the importance of
exact matrix recovery from partial observations. For instance,
suppose we are given a partially observed matrix, and we know
that the full matrix can be decomposed as X = L + S, where
matrix L is low rank and S is sparse and consists of only few
nonzero columns. Here, both matrices L and S have arbitrary
magnitude, the rank of matrix L as well as position and
number of corrupted columns of the matrix S are unknown.
Can we classify this type of corrupted data efficiently?

The short answer is yes. We can classify these data by
combining the low-rank matrix completion with the support
matrix machine, even where a fraction of columns is corrupted.
The solution is dependent on the efficient recovery of matrix L
on noncorrupted columns, and the selection of structural and
intrinsic features. To solve this, we propose joint minimization
of matrix recovery and hinge loss which helps to account intra-
sample outliers.

Another challenge is the dimensionality and loss of
structural information from reshaping data into vectors for
classification [32], [33], [34]. Reshaping into vectors can
destroy the structural information embedded within the data,
as well as increasing its dimensionality. To address the afore-
mentioned, we simultaneously optimize nuclear norm, ℓ2,1
norm (the nuclear norm of L), and hinge loss on matrix data.
We provide convex optimization formulation of a proposed

objective function and identify the sufficient conditions under
which it classifies corrupted data efficiently through a low-rank
feature recovery process. Results show, under certain natural
conditions, the optimum of this convex program yields the best
classification performance through low-rank feature recovery,
even when a fraction of columns is corrupted. Compared to
the state-of-the-art featured selection methods, we can describe
the theoretical and empirical key contributions of this work as
follows:

1) a novel classifier is proposed effectively combining the
hinge loss function for model fitting, low-rank matrix
recovery, and elastic net penalty for regularization on
a regression matrix, and simultaneous matrix recovery
is performed followed by clean feature extraction and
classification;

2) we present a method, called Support Matrix Machine,
by simultaneously performing matrix Recovery (abbre-
viated SMMRe), that is able to classify data with denser
corruption (L ≤ (Cr n/log(n)) and S ≤ Csn, where Cs

and Cr are numerical constants) through exact recovery
of the intrinsic matrix of higher rank based on incoher-
ence conditions;

3) since convex optimization cannot perform an exact
recovery of a corrupted matrix, an oracle problem
for matrix recovery is used. As a result, convex
optimization-based SMMRe performs correct matrix
recovery as well as identifying outliers, which improve
classification performance;

4) the goals above are achieved by employing a regular-
izing term [a combination of low-rank and ℓ2,1 (the
nuclear norm of L)] which promotes structural sparsity
and matrix recovery as well as selecting features across
all data points with joint sparsity. The low-rank matrix
recovery helps to recover unobserved entities as well
as avoid the inevitable upper bound for the number of
selected features occurring in ℓ2,1-norm SVM;

5) since the optimization is convex (but nonsmooth), one of
the major challenges is how nonsmooth optimization can
be efficiently solved. To this end, we devised an efficient
algorithm to solve the proposed objective function.

Rest of the article is organized as follows. Section II
introduces the basic notations and preliminaries used in this
article followed by motivation of this work in section III.
In Section IV, we present the related work on support matrix
machines and in Section V, we present the proposed problem
formulation followed by the proposed objective function,
its optimization, and theoretical justification in Section VI.
Section IX reports the experimental results on different
datasets. Finally, Section X conclude this article.

II. NOTATIONS AND PRELIMINARIES

We start by establishing the notations and preliminaries used
throughout this article. Following standard conventions, scalar,
vector, and matrix are represented by lowercase letters (e.g., x),
lowercase bold letters (e.g., x), and uppercase letter (e.g., X),
respectively. Let � and �′ represent both sets of matrix entries
and the linear space of matrices supported on these entries;
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Fig. 1. Motivation for joint low-rank plus matrix recovery-based classification
for missing plus corrupted data.

similarly, Ao and AS denote both the set of column indices
and the linear space of matrices supported on these columns.
We let Ip denoted by p × p matrix. For a linear subspace
S, we let P(S) denotes the orthogonal projection onto linear
subspace S. For a matrix X ∈ Rp×q , ℓ2,1, norm of matrix is
denoted as ||X ||2,1 =

∑q
i=0 ||x i

||2 =
∑q

i=0(
∑p

j=0 ||X2
i, j ||)

1/2.
It is rotational invariant for rows for any rotational matrix R
i.e., ||X R||2,1 = ||X ||2,1. The ℓ2,1 norm can be generalized to
r, p-norm.

As we know, the nuclear norm ||X ||∗ =
∑r

i=1 σi of a matrix
X as a function from Rp,q to R1 cannot be differentiated.
Alternatively, we have to consider the sub-differential of ||X ||∗

that is denoted by ∂||A||∗. It is a set of sub-gradients. For a
matrix X of dimension p × q of rank r

∂||A||∗ =
{
UX V T

X + Z : Z ∈ Rp×q ,

U T
X Z = 0, Z VX = 0, ||Z ||2 ≤ 1

}
. (1)

We further introduce the singular value thresholding (SVD)
operator to approximate the matrix with minimum nuclear
norm. It simply applies a soft-thresholding rule to the singular
values of X , effectively shrinking these toward zero [35], [36],
[37].

For any τ ≥ 0, the SVD operator is defined as follows:

Dτ [X ] = UX Sτ [6X ]V T
X

where Sτ [6] = diag([σ1(X) − τ ]+, . . . , [σr (X − τ ]+) and
[z]+ = max(z, 0).

III. MOTIVATION

In this article, our concern is classification problem on a set
of corrupted data matrix. Input data are high in dimension and
noisy; hence, we focus our attention on regularizers that have
the ability to recover the corrupted data and promote structural
sparsity to find robust solutions against outliers. Moreover, our
target is to endow the feature space that does not penalize the
features individually as in the case of the ℓ1 norm. Recently,
low-rank matrix recovery has shown tremendous performance
for the recovery of unobserved noisy data [38]. Inspired by this
performance, we intend to combine the matrix recovery into
support matrix machines through simultaneous optimization.
As a result, iteratively SMMRe is not only able to recover
the unobserved entities, but also combines the property of low
rank and sparsity together. Figs. 1 and 2 illustrate the proposed
framework. Fig. 2 shows that SMMRe first recover the clean
matrix followed by classification.

IV. RELATED WORK

In this section, we provide a brief description and formal-
ization of the matrix classification problem. Practically, it has
been noticed that the selection of features and model designs is
far more important than the choice of loss [39]. Hence, in this
coherence, we focused the regularization term in promoting
the structural sparsity and leveraging the intrinsic structure of
data.

We have given a set of training samples T = {X, yi }
n
i=1,

where X i ∈ Rp×q is the the i th input sample matrix
and yi ∈ {1, −1} is its corresponding class label.
Generally, the data needs to be transformed into
corresponding vector. To fit a classifier, matrix X is
needed to be stacked into vector. Let xi = vec(X T

i ) =

([X i ]11, [X i ]12, . . . , [X i ]1q , [X i ]2,1, [X i ]22, . . . , [X i ]pq)
T

∈

Rpq .
The classical soft margin SVM is defined as

arg min
1
2

tr(wT w) + C
n∑

i=1

1 − yi [tr(W T xi ) + b]+ (2)

where 1 − yi [tr(W T X i ) + b]+ is the hinge loss, W ∈ Rpq is
the vector of regression coefficients, b ∈ Rpq is an offset term,
and C is a regularization parameter.

In (2), we need to reshape the matrix into vectors which
result in losing the correlation among columns or rows in
the matrix. An alternative solution for this problem is to con-
catenate the matrix into a vectors for classification. However,
it results in increase in dimensionality that leads to model
overfitting. Recently, some efforts have been made to suppress
the matrix into vectors using common spatial patterns [14],
[15], [16], [17], [18], [19]. However, these methods ignore
the topological structure (the relationship between neighboring
data points) embedded in the matrix data, whereas considering
structural information is of great interest and helps to improve
the classification.

By directly transforming the (2) for matrix, we get

arg min
1
2

tr(W T W ) + C
n∑

i=1

1 − yi [tr(W T X i ) + b]+. (3)

It is known that tr(W W T ) = vec(W )vec(W T ) and
tr(W T X i ) = vec(W )T vec(X i ), thus the above objective func-
tion cannot capture the intrinsic structure of each input matrix
efficiently, due to the loss of structural information during the
reshaping process. To take the advantage of intrinsic structural
information within each matrix, one intuitive way is to capture
the correlation within each matrix through low-rank constraints
on the regression parameter.

As the hinge loss enjoys the large margin principle, it also
embodies sparseness and robustness, which are two desir-
able properties for a good classifier. Motivated by this,
Luo et al. [40] presented the sparse matrix machine shown in
(4) . The objective function in (4) consists of hinge loss plus
nuclear norm and Frobenius norm as a regularizer

arg min
W,b

1
2

tr(W T W )+τ ||W ||∗+C
n∑

i=1

{1−yi [tr(W T X i )+b]}+.

(4)
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Fig. 2. Proposed joint low-rank plus matrix recovery-based classification
framework (matrix recovery + classifier).

The spectral elastic net regularization (1/2)tr(W T W ) +

τ ||W ||∗ captures the correlation within each matrix. In addi-
tion, the nuclear norm in the regularizer is used to control
the rank of W that is NP-hard problem. In this scenario,
it provides the best approximation of rank of the matrix W .
The objective function shown in (4) is capable of capturing
the latent structure within each matrix and further performs
the classification based on all entities of each matrix which
effect the classification performance, thus, making the model
complicated. To overcome this challenge, Zheng et Al. [41]
presented sparse support matrix machine that consists of loss
plus nuclear norm and ℓ1 as regularizer term

arg min γ ||W ||1 + τ ||W ||∗ + C
n∑

i=1

{1 − yi [tr(W T X i ) + b]}+.

(5)

The classification function in (7) incorporates the loss
and constraints on the regression matrix which is a linear
combination of ℓ1 norm and nuclear norm. ℓ1 norm encourages
matrix W to be sparse by serving as a convex surrogate for
nonzero entries. The regularizer term in (7) is combination of
ℓ1 norm and nuclear norm which provides structural sparsity.
A common features of approach based on Frobenius norm [40]
and ℓ1 norm [41] are that they treat both indices (row
and column) in the same way. However, they have different
meanings i.e., i and j run through data points and spatial
dimensions, respectively. This subtle distinction makes it easy
to get loss for the matrix, whereas, ℓ2,1 norm captures this
subtle distinction and provides structural sparsity. Furthermore,
studies have shown that ℓ2,1 is sparser than ℓ1-regularization as
it finds the joint solutions and encourages multiple predictors
to share similar sparsity patterns.

V. PROBLEM FORMULATION

Suppose we are given data X with dimension p ×q to clas-
sify, a fraction of these columns span r -dimensional subspace
while rest of the columns are arbitrarily corrupted. We are
given only a partial set of observations and our goal is to clas-
sify such type of data based on the partial set of observations.
The data matrix can be decomposed as X = L + S. L is the
column-sparse matrix that corresponds to corrupted columns,
thus at most αn columns are nonzeros. L corresponds to

noncorrupted matrix, thus rank(L) = r and (1 − α)n columns
of matrix L are nonzeros, corresponding to the outliers. Better
performance cannot be guaranteed in all cases because there
could be completely unobserved rows or columns resulting
in no hope of selecting features belonging to the missing
data; in such case, missing value cannot be recovered. Notice
that we have fraction of observed. Suppose � ⊂ [p] × [q]

are observed entities, and P(�) is the orthogonal projection
onto the linear subspace of matrices supported on � i.e.,
P�(M) = Mi, j if i, j ∈ � and P�(M) = 0 if i, j /∈ �.
We intend to classify the corrupted data efficiently through
matrix recovery framework. Thus, we propose to optimize
matrix recovery and classification with an additional objective
of low-rank feature representation. We assume that the matrix
L satisfies the incoherence conditions (max |Uei |

2
≤ µ(r/p)

and max |V e j |
2

≤ µ(r/(1 − α)n)), where e is the unit matrix.

VI. PROPOSED SMMRE

In this section, we introduce the proposed SMMRe, which,
as a matter of fact is a novel classifier. SMMRe simultaneously
recovers the corrupted matrix while removing the redundant
information. The classifier also selects the discriminant pat-
terns and considers the strong correlation of rows and columns
in the matrix. It is well known that hinge loss enjoys the large
margin as it provides tight and convex upper bound on the indi-
cator function which penalizes misclassifications. It embodies
sparseness and robustness as it acts like a regularizer which
induces joint sparsity (in term of support vectors, SVM is
sparse as compared to least-squares SVM). In this regard,
we adopt the loss function and propose a robust approach that
efficiently performs matrix recovery, cleans feature extraction
from recovered matrix, imposes sparseness, and preserves the
structural information. The proposed objective function is joint
optimization of low-rank matrix recovery, hinge loss for model
fitting plus the regularization on regression matrix. To this end,
we have the objective function

arg min
W,b,{L i ,Si }

n
i=1

n∑
i=1

(α1||L i ||∗ + α2||Si ||2,1) + τ ||W ||∗

+

n∑
i=1

{1 − yi [tr(W T L i ) + b]}+

such that ∀i, X i = L i + Si (6)

where L i ∈ Rp×q , Si ∈ Rp×q , and W ∈ R×q are the low-rank
matrix corresponding to noncorrupted columns, sparse matrix
corresponding to corrupted columns, and regression matrix,
respectively. α1, α2, and τ are positive scalars that penalize
the sparse matrix, nuclear norm of low rank and nuclear norm
of regression matrix, respectively.

The above (6) is a combination of four terms, hinge loss
function, matrix recovery (ℓ2,1, nuclear norm of L), and
nuclear norm of W . In results, the objective function not only
inherits the properties of matrix recovery and identifies the
corrupted column with high probability but also holds the
properties of low rank and sparsity together which helps to
deal with outliers and corrupted data. Moreover, the regularizer
terms in (6) are able to encode the prior knowledge and guide
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the selection of features by modeling the structure of the
feature space.

A. Matrix Recovery and Training

The objective function in (7) consists of four terms, all
of which are convex. The ℓ2,1-norm and nuclear norm are
convex as both satisfy the triangle and homogeneity properties
whereas the other term is a linear function thus it is also
convex. The optimization problem for the SMMRe is convex,
nonsmooth, and nondifferentiable; however, the combination
of hinge loss, ℓ2,1-norm and nuclear norm makes the problem
nontrivial to be solved directly. To decouple the hinge loss and
nuclear norm with respect to W in SMMRe, we have intro-
duced an auxiliary variable, and applied Lagrange multiplier.
The above equation can be written as

min
W,b,{L i ,Si }

n
i=1

n∑
i=1

(α1||L i ||∗ + α2||Si ||2,1) + τ ||W ||∗

+ C
n∑

i=1

h(W, b, L1)

s.t. ∀i, X i = L i + Si and
W = Z where Z is auxiliary variable. (7)

Now the constrained problem in (7) can be efficiently solved
using augmented Lagrangian multiplier algorithm (ALM). The
key of ALM method is to search for a saddle point of the
augmented Lagrangian function instead of solving the original
constrained optimization problem. The augmented Lagrangian
function is given as follows:

L(W, Z , b, L i , Si , V, M)

=

n∑
i=1

h(W, b, L i ) + τ1||Z ||∗

+ tr[V T (Z − W )] +
µ1

2
||Z − W ||

2
F

+

n∑
i=1

{
α1||L i ||∗ + α2||Si ||2,1 + tr

×
[
MT

i (X i − L i − Si ) +
µ2

2
||X i − L i − Si ||

2
F

}
(8)

where h(W, b, L i ) = 1 − yi [tr(W T L i ) + b]+, M , V ∈ Rpq

are the Lagrange multiplier. µ1 and µ2 are the positive penalty
parameters. α1, α2, and τ control the trade-off between hinge
loss and regularization terms i.e., α1, α2 controls the recovery
process and clean feature selection whereas τ captures the
correlation of data matrix. Updating Lagrange multipliers as

(W k, Z k, bk) = min
W,Z ,b

L(W, Z , b, Lk−1
i , V k−1) (9)

(Lk, Sk) = min
L i ,Si

L
(
W k, bk, L i , Si , Mk−1

i

)
(10)

V k
= V k−1

+ µ1(Z k
− W k) (11)

Mk
i = Mk−1

i + µ2
(
X i − Lk

i − Sk
i

)
. (12)

Notice that, the (9) estimates the model parameter for matrix
classification, (10) perform the matrix recovery and clean

feature selection simultaneously. Thus, it validates the core
objective of clean feature extraction through matrix recovery.
As (9) is difficult to solve directly, thus, we solved (described
in Theorem 1) it by minimizing L against W , Z , and b.

To compute Z, minimizing (8) (L(W, Z , b, L i , Si , V, M))
with respect to Z , we get

f (Z) = τ1||Z ||∗ + tr(V T Z) +
µ

2
||Z − F ||

2
F . (13)

Z can be updated based on the following theorem.
Theorem 1: For any positive scalars α and µ1, consider

f (Z) denotes τ1||Z ||∗ + tr(V T Z) + (µ/2)||Z − F ||
2
F .

We have ∂ f (Z) = 0.
Minimizing f (Z) with respect to Z, we reach the following

optimal solution:

Z =
1
µ1

Dξ (µ1W − V ). (14)

Dξ can be computed as

Dξ = USτ (6)V T

where Sτ is the entry-wise soft thresholding operator.
Proof: The (13) consist of quadratic terms, thus f (Z) is

convex. There exist an optimal minimizer Z ′ such that Z =

(1/µ1)Dξ (µ1W −V ). Z ′ minimizes f (Z) only if sub-gradient
of f (Z ′) is 0. We can write

0 ∈ ∂||Z ′
||∗ + V + µ1(Z ′

− W ) (15)

where ∂||Z ||∗ is the set of sub-gradients of nuclear norm.
Consider Z is an arbitrary matrix, we can write

∂||Z ||∗ = U V T
+ M s.t. M ∈ Rp×q

U T M = 0, MV = 0, ||M ||F ≤ 1. (16)

To prove Z = (1/µ1)Dξ (µ1W − V ) satisfies (15),
we decompose µ1W − V into following components:

µ1W − V = U060V T
0 + U161V T

1 .

From the above equation, we can write

µ1(W − Z ′) − V = µ1W − V − µ1 Z ′

= τ(U0V T
0 +

1
τ

U161V T
1 . (17)

Comparing (16), we can define M = (1/τ)U161V T
1 . Thus,

it can be verified that U0 M0 = 0 and MV0 = 0 and ||M ||F ≤

0. Thus, we have µ1(W − Z ′)− V ∈ τ∂||Z ′
||∗, Hence proved.

Similar to compute W and b, we can rewrite the (8) as

min
W,b

n∑
i=1

h(W, b, L i ) − tr(V T W ) +
µ2

2
||Z − W ||

2
F . (18)

W is computed as

W =
1
µ

(
µZ + V +

n∑
i=1

ai yi L i

)

a = max
α

−
1
2
αY Kα + qT α

K =
1
α1

yi y j tr(LT
i , L j )
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TABLE I
ALGORITHMIC PROCEDURE OF PROPOSED SPARSE SUPPORT MATRIX

MACHINE UNDER MATRIX RECOVERY FRAMEWORK (SMMRE)

and

q = 1 −
1
α1

yi tr(α1 Z + V )T L i )

b =
1
n

n∑
i=1

(
yi − tr(W T L i )

)
.

Finally, to compute Lagrange multipliers, differentiating (8),
we get

min
L i

h(W, b, L i ) + α1||L i ||∗ − tr
(
MT

i L i
)
+||X i − L i − Si ||

2
F

(19)
L i = Dξ (yi W + α1(X i − Si ) + Mi )

min S = α2||Si ||2,1 − tr(MT Si ) +
α1

2
||X i − Si ) + Mi ). (20)

The above equation can be computed using column wise soft
thresholding.

Now updating the Lagrange multipliers and coefficient

M K
= Mk−1

+ α2(X i − L i − Si )

V K
= V k−1

+ α1(Z − W ) (21)
α1 = pα1

α2 = pα2. (22)

The above convex optimization cannot recover the matrix
correctly. To overcome this challenge, we used an oracle
problem that is defined by the structure we are interested
in recovering. Thus, oracle-based convex optimization-based
SMMRe algorithm is able to recover the corrupted columns
correctly as well as can identify the outliers.

For the algorithm to succeed, it is sufficient for the recovered
pair (L ′, S′) to have the right column space and correct
column of noncorrupted matrix L . Similarly, it requires right
column support for sparse matrix S. To identify such a

TABLE II
SUMMARY OF DATASET

solution, we consider the oracle problem. α denotes the
space of matrices supported on the set of all entries in
the noncorrupted columns plus the observed entries in the
corrupted columns. We are required to minimize min ||L||∗ +

||S||2,1 subject to Pα(L + C) = Pα X , P(L) = L and PI (S) =

S. Consider (L , S) is the solution for the oracle problem
as we know it is feasible due to the feasibility of true pair
(L ′, S′). Now, we must satisfy the conditions, (L ′, S′), as an
optimal solution to Algorithm 1 and it must have correct
column space and column support. Q is a dual certificate as
long as it satisfies the following conditions: (I) Q′

∈ �; (II)
Pα(Q′) − U V T

= 0; (III) Pα(Q′) < 1; (IV) |PI (Q′)|∞,2; and
(V) PI (Q′) ∈ λH s.t H ∈ Rpq

|PI (H) = 0). The next step is
to consider any feasible perturbation, (L ′

+1L , S′
+1S). For

a given Q′, if it satisfies the above conditions, it shows that
(L ′

+ 1L , S′
+ 1S) is suboptimal solution

n∑
i=1

ξ +

n∑
i=1

(α1||L i ||∗ + α2||Si ||2,1) + τ ||W ||∗ ≤

n∑
i=1

ξ

+

n∑
i=1

(α1||L i + 1L ||∗ + α2||Si + 1S||2,1) + τ ||W ||∗.

(23)

The next step is the construction of dual certificate that satis-
fies the following conditions: (I) Q′

∈ �; (II) Pα(Q′)−U V T
=

PαR−1(B) s.t. B = ((m/2pn)λ)1/2; (III) Pα(Q′) ≤ 0.5; (IV)
|PI (Q′)|∞,2; and (V) PI (Q′) ∈ (λ/H) s.t H ∈ Rpq

|PI (H) =

0). Ignoring the requirement of Q′
∈ � is a more manageable

problem that allows to consider the fully observed problem of
separating the low-rank matrix from a column-sparse matrix.
The final step is the sampling i.e., compute Q from Q′ that
is performed by modified batched sampling-with replacement
scheme [42].

B. Convergence of SMMRe

We consider the convergence of SMMRe algorithm
described in Table I. Alternative direction method of min-
imization (ADMM) is an optimization algorithm that has
recently become very popular due to its capabilities to solve
large-scale and/or distributed problems. We have used ADMM
optimizer to converge to an optimal primal-dual optimal solu-
tion. Equation (8) depicts the augmented Lagrangian L of (7),
where µ1 and µ2 are fixed positive parameters. Furthermore,
Table I is a step-by-step algorithm of the ADMM method
depicted in (9) and (10).

To be specific, L is first minimized with respect to (W, Z , b)

holding (L , S, V, M) fixed at (Lk−1, Sk−1, V k−1, Mk−1),
and then L is minimized with respect to (L , S) holding
(W, Z , b, V, M) fixed at (W k, Z k, bk, V k−1, Mk−1).
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TABLE III
CLASSIFICATION PERFORMANCE (ACCURACY) OF DIFFERENT ALGORITHMS ON DATASET BCI 2B

TABLE IV
COMPARATIVE EVALUATION BASED ON AVERAGE CLASSIFICATION ACCURACY ON BCI 2A

TABLE V
COMPARATIVE EVALUATION BASED ON AVERAGE CLASSIFICATION ACCURACY ON BCI III–IVA

Fig. 3. Sample images from Caltech face dataset (first two rows) and INRIA
person dataset (last two rows). The human detection is challenging due to
similar appearance of persons and human statues.

Note, (W k, Z k, bk) are the new values. Finally, the dual
variables V and M are updated in a gradient ascent way.
Consequently, a proof can be established in a way similar to
the one detailed in Mota et al. [43]. This shows that all the
sequences produced by ADMM converge.

C. Classification

Since the test data are rich in outliers, thus, we also need to
consider the noise reduction to be classified by SMMRe. For a
given set of input test data [X t ]

n
t=1, X t can be decomposed into

low-rank matrix and sparse noise by optimizing the following:

arg min
[L t ,St ]

n
t=1

||L t ||∗ + γ ||St ||2,1 s.t. X t = L t + St (24)

where L t and St is the low rank and sparse matrix, respectively.
γ is the positive scalar that adds penalty for sparse noise.
We can notice that equation (24) is similar to RPCA [38].
Once the noisy input matrix is decomposed into noisy and
clean, we have used only clean matrix for testing. We can
predict the label using learned parameters as

Yt = sgn(tr(W T L t ) + b). (25)

VII. DATASET

We evaluated the proposed approach on the most fundamen-
tal applications of classification. We have applied SMMRe on
important datasets (Caltech face dataset and INRIA dataset)
and BCI competition (III–IVa and BCI IV–IIa).

A. Caltech Face Dataset

It is gender recognition dataset of 435 individuals that
consist of images containing various facial expressions of size
592 × 896 captured under different illumination conditions
and backgrounds shown in Fig. 3. We have divided the dataset
into training dataset (147 male and 71 female) and test dataset
(131 male and 86 female). Images are converted to gray scale
and the face in the image has been cropped using Viola-Jones
face detector. We have re-sized the face to 320 × 280 and
used the pixel values as an input matrix without any advanced
feature extraction techniques. Fig. 3 shows sample images of
Caltech face dataset. Notice that, the images share similar
features in terms of face outlines and structure; however,
gender can be differentiated from small detail such as persons’
eyes, hair, etc.
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Fig. 4. Effect of different parameters (τ , α1, and α2) values.

Fig. 5. Comparative evaluation of SVM, SMM, MSMM, and SMMRe on IVa: top left to bottom right (left-hand versus right hand, left-hand versus feet,
left-hand versus tongue, right-hand versus feet, right-hand versus tongue, feet versus tounge).

B. INRIA Person Dataset
It is collected to detect the existence of a person in an image

or video. INRIA person dataset is divided in two formats: orig-
inal images with corresponding annotation files and positive
images in normalized 64 × 128 pixel format. It consists of

2416 images with people and 1218 people-free images for
training, and 1126 images with people and 453 people-free
samples for testing. Person detection is a challenging task
due to similar background and arbitrary appearance of human
in the image. Fig. 3 shows sample image of dataset. In this
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experiment, we have converted each image into gray scale with
dimensions (160 × 96). For person detection, we have used
gray-scale image as it is without feature extraction to show
the structural correlation of pixels; thus, we have converted
the input image into gray level of size 160 × 96.

C. BCI Competition

We further evaluate the SMMRe on the application of
electroencephalogram (EEG) data classification. EEG signals
consist of 2-D matrices that have high correlation among
the rows and columns within each sample, which could be
effectively captured by matrix classification methods [41].
In this experiment, three EEG data observations from BCI
competition-IV, namely BCI III–IVa1, BCI IV–IIa2, and BCI
IV–IIb3, are used to evaluate the performance of proposed
approach. Table II describes the detail of the datasets. Both
datasets contain a small number of samples with redundant
data, a property that makes EEG classification challenging.

VIII. PARAMETER SELECTION

There are three key parameter that need to be carefully
selected for optimal performance. We consider the influence of
parameters (τ, α1, and α2) on SMMRe performance. τ is the
penalty applied to the nuclear norm of the regression matrix
that controls sparseness. α1 is the penalty term on the nuclear
norm that controls the recovery process. α2 is the penalty on
the ℓ2,1 norm to overcome the affect of outliers in the feature
matrix and, as a result, it helps extract robust features from
the cleaned matrix. To select the optimal range of parameter,
we first fix two parameters α1 and α2 and performed several
experiment to find optimal range of τ for each dataset.
Once we found the optimal range of τ , we selected the
optimal range of α1 and α2. We observe that the objective
function degenerates to a traditional support matrix machine
for τ, α1, α2 = 0 that show that SMMRe is a special case of
support matrix machines. Similarly, fixing α1 = 0 degenerates
the model to SMM. To study the influence of the parameter,
we fix α1 and α2 and find the best optimum value of τ

to control sparseness. Once we have a sparseness control,
we repeated the process for the other two terms. Figs. 6, 8,
and 9 shows the effect of different parameter setting of τ , α1,
and α2. Fig. 4 shows the behavior of proposed on different
value of parameters τ , α1, and α2 on subject S9 of BCI 2b
dataset.

IX. RESULT AND DISCUSSION

To evaluate the SMMRe performance, we compare it to
the state-of-the-art vector-based methods such as SVM [44],
sparse SVM (SSVM) [45], LSVM [47], BSVM [51],
TSVM [48] as well as with the state-of-the-art matrix-based
classifiers, i.e., Rank KNN [4], SSMM [41], RSMM [49],
SMM [40], MSMM [50], and regularized matrix regression

1http://www.bbci.de/competition/III/#download
2http://www.bbci.de/competition/iv/#dataset2a
3http://www.bbci.de/competition/iv/#dataset2b

Fig. 6. Comparative evaluation (accuracy) based on average classification
accuracy on real (top) corrupted (bottom) INRIA person dataset.

(RGLM) [46] on benchmark face recognition, person identifi-
cation, and EEG datasets.

Surprisingly, we can simultaneously perform matrix recov-
ery, low-rank feature extraction, identification of noncorrupted
columns and their position and classification based on set
of fraction of observed entries. Fig. 9 shows the effect of
different parameters values on the classification. Tables III–V
and Fig. 5 show the classification results on EEG datasets (BCI
2a, BCI 2b, and IVa). From Fig. 5, we can notice that SMMRe
considerably performed better against challenging conditions
(A2 and A5 in left-hand versus right-hand, A2, A5, and A6 in
left-hand versus tongue, A5, A6 in left-hand versus feet and
right-hand versus feet) in comparison to others.

Results showed that support matrix machines based on
matrix recovery outperform the state-of-the-art methods.
Similar results can be noticed in Figs. 6 and 7 for person iden-
tification on INRIA and Caltech face datasets, respectively.
Furthermore, we can observe that classifiers based on the
matrix data provided better results as compared to those meth-
ods based on data as a vector, which shows that vector-based
methods ignore the structural information thus, they are very
sensitive to the curse of dimensionality. However, matrix-based
approaches leverage the structural information of the data
which is greatly beneficial to the improvement of the clas-
sification performance. The other main reason is the low-rank
property as discriminant features exist in sparse structure and
images are low rank.

In comparison to matrix-based methods, SMMRe outper-
forms both sparse (i.e., SSVM) and low-rank methods (i.e.,
BSVM, SMM, and SSMM) which validate the claim that
SMMRe promotes the structural sparsity and shares similar
sparsity patterns across multiple predictors. To further validate
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Fig. 7. Comparative evaluation (accuracy) based on average classification
accuracy on real (top) contaminated (bottom) Caltech face dataset.

Fig. 8. Effect of different parameters τ .

Fig. 9. Effect of different parameters α1 values.

the robustness against outliers, we have contaminated both
Caltech face dataset and INRIA dataset with random noise,
specifically we have randomly selected 20% images to add

Fig. 10. Effect of different parameters α2 values.

Fig. 11. Convergence curve of SMMRe [objective function value (y-axis)
versus iteration (x-axis)].

noise in each dataset. We corrupted both datasets via the
addition of random noise as well as block occlusions. Random
noise is salt and pepper noise spread randomly at 30%, 50%
on random selection of images from dataset. Similarly, block
occlusion is added by placing blocks of different sizes at
random locations with variable size 5 × 5, 10 × 10, and 10 ×

15. For evaluation on contaminated datasets, we have selected
60% and 70% and 80% samples per individual for each
dataset as training dataset and add blocks of variable sizes.
Figs. 6(b) and 7(b) show the comparative evaluation on INRIA
and Caltech face dataset, respectively. Note that SMMRe
considerably performed better against outliers or challenging
conditions in comparison to others. This is due to the matrix
recovery through identification of noncorrupted columns, low-
rank robust feature extraction, and classification. It shows that
SMMRe is robust even from partially observed matrix which
validate our claim that SMMRe is able to classify data with
denser corruptions through exact recovery of intrinsic matrix
of higher rank based on the incoherence conditions.

We also consider the influence of parameters
(τ, α1, and α2) on the performance of SMMRe. τ is
the penalty on nuclear norm of regression matrix that controls
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the sparseness. α1 is the penalty term on nuclear norm that
controls the recovery process. α2 is the penalty on ℓ2,1 norm
to overcome the affect of outliers in feature matrix; as a
result, it helps to extract robust features from cleaned matrix.
The objective function degenerates to traditional support
matrix machine for τ, α1, α2 = 0, that shows that SMMRe
is the special case of support matrix machines. Similarly,
fixing α1 = 0, degenerate the model to SMM. To study
the influence of parameter, we fix α1 and α2 and find the
best optimum value of τ to control the sparseness. Once we
have sparseness control, we repeated the process for other
two terms. Figs. 8–10 show the effect of different parameter
setting of τ , α1, and α2. Fig. 11, illustrate the convergence of
SMMRe.

X. CONCLUSION

In this article, we have integrated matrix recovery and sup-
port matrix machines for the classification of dense corrupted
data. The method proposed—SMMRe—is simultaneously able
to perform matrix recovery, low-rank feature representation,
and classification, and thus able to classify data with denser
corruptions through the exact recovery of the intrinsic matrix
of higher rank based on incoherence conditions. The regular-
ization term promotes low-rank matrix recovery and structural
sparsity as well as sharing a similar sparsity pattern across
multiple predictors. Furthermore, it also leverages structural
information and avoids the inevitable upper-bound that simul-
taneously promotes a good fit to the data. A comprehensive
experimental study on four publicly available datasets for
image and EEG classification was carried out to validate the
proposed SMMRe approach. The experimental results showed
the gain in performance in most cases with an average increase
to 0.878 from 0.864, 0.906 from 0.893, and 0.82 from 0.81 for
BCI 2b, BCI 2a, and BCI III–IVa datasets, respectively.
Similar trends can be noticed for person identification and
face recognition task. This shows the effectiveness of the
SMMRe approach for solving classification problems, even
when a large fraction of columns is corrupted, while keeping
reasonable the number of support vectors. Our observation
showed that proposed approach is robust against outliers,
it has the property of low rank and joint sparsity to select
features across all the classes. The proposed method is not
restricted to recovery of low-rank matrices. In future, we plan
to explore different incoherence and ambiguity conditions for
highly noisy data.
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