
LAICOS: An Open Source Platform for Personalized
Social Web Search

Mohamed Reda
Bouadjenek

∗

PRiSM Laboratory
Versailles University

mrb@prism.uvsq.fr

Hakim Hacid
∗

Sidetrade
114 Rue Gallieni, 92100

Boulogne-Billancourt, France

hhacid@sidetrade.com

Mokrane Bouzeghoub
PRiSM Laboratory

Versailles University
mokrane.bouzeghoub@

prism.uvsq.fr

ABSTRACT

In this paper, we introduce LAICOS, a social Web search
engine as a contribution to the growing area of Social In-
formation Retrieval (SIR). Social information and personal-
ization are at the heart of LAICOS. On the one hand, the
social context of documents is added as a layer to their tex-
tual content traditionally used for indexing to provide Per-
sonalized Social Document Representations. On the other
hand, the social context of users is used for the query expan-
sion process using the Personalized Social Query Expansion
framework (PSQE) proposed in our earlier works. We de-
scribe the different components of the system while relying
on social bookmarking systems as a source of social infor-
mation for personalizing and enhancing the IR process. We
show how the internal structure of indexes as well as the
query expansion process operated using social information.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Systems]: Information Search and Retrieval

General Terms: Algorithms, Experimentation.

Keywords: Information Retrieval, Social networks.

1. INTRODUCTION
The Web 2.0 has strengthened end-users position in the Web
through their integration in the heart of the ecosystem of
content generation. This has been made possible mainly
through the availability of tools such as social networks, so-
cial bookmarking systems, social news sites, etc. impacting
the way information is produced, processed, and consumed
by both humans and machines. As a result, on the one hand,
the user is no longer able to digest the large quantity of in-
formation he has access to, and is generally overwhelmed
by it. On the other hand, this abundance of information
captures in general an explicit feedback of users and repre-

∗This work has been mainly done when the authors was at
Bell Labs France, Centre de Villarceaux.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD’13, August 11–14, 2013, Chicago, Illinois, USA.

Copyright 2013 ACM 978-1-4503-2174-7/13/08 ...$15.00.

sents an interesting opportunity for enhancing existing data
management systems or proposing new ones.

Information Retrieval (IR) is performed every day in an
obvious way over the Web [1], typically under a search en-
gine. However, finding relevant information on the Web still
becomes harder for end-users as: (i) usually, the user doesn’t
necessarily know what he is looking for until he reaches it,
and (ii) even if the user knows what he is looking for, he
doesn’t always know how to formulate the right query to
find it (except if in cases of navigational queries [7]). In ex-
isting IR systems, queries are usually interpreted and pro-
cessed using document indexes and/or ontologies, which are
hidden for users. The resulting documents1 are not neces-
sarily relevant from an end-user perspective, in spite of the
ranking performed by the Web search engine.

To improve the IR process and reduce the amount of irrel-
evant documents, there are mainly three possible improve-
ment tracks: (i) query reformulation using extra knowledge,
i.e. expansion or refinement of the user query, (ii) post fil-
tering or re-ranking of the retrieved documents (based on
the user profile or context), and (iii) improvement of the IR
model, i.e. the way documents and queries are represented
and matched to quantify their similarities.

In this demonstration, we introduce LAICOS, an open
source Personalized Social Web Search Engine prototype,
in which social information and personalization are at the
heart of the IR process. Actually, this prototype is relying on
social bookmarking systems as a source of social information
for personalizing and enhancing the IR process but can be
extended to use any source of social metadata, i.e. tweets,
comments, etc.

2. ANATOMY OF LAICOS
Figure 1 illustrates the different components of LAICOS,

which are: (i) a set of connectors, crawlers, and a database
storing the data, (ii) data indexing engines, and (iii) a query
processing engine. In the following, we briefly describe some
of these components.

2.1 Crawlers in LAICOS
LAICOS possesses two crawlers: (i) a crawler for web

pages based on Heritrix2, which was specifically designed for
web archiving and crawling. For each crawled web page, (ii)
a folksonomy crawler engine will download all the annota-

1We also refer to documents as web pages or resources.
2http://crawler.archive.org/index.html

1446

Indexing
process

Query-time
components

Social

Index
Textual

Index

Web

Crawling
process

Web crawler

Folksonomy
crawler

Document
collection and their
social annotations

Searchers

Social Indexer

Textual Indexer

Interface for
search and results

PSQE

RetrievalRetrieval

Ranking

PSDV

Figure 1: Architecture of LAICOS.

tions that are associated to it through APIs3. Annotations
are recovered from social bookmarking systems especially,
the delicious website4.

2.2 Social Indexes in LAICOS
Crawled web pages and their social annotations are stored

into a repository. Two indexing engines are responsible for
indexing and keeping up to date the following index struc-
tures: (1) A textual content based index structure, which is
based on indexing the collection of crawled documents using
the inverted index structure. The Apache Lucene search en-
gine leverages this part5. (2) A social based index structure,
which is based on the crawled annotations assigned by users
to web pages in social bookmarking websites. We imple-
ment our own indexing engine and structure for this part.
The textual-content based index structure is well described
in [12]. Hence, we only describe the social-based index struc-
ture of LAICOS. This index consists of the following seven
main data structures (See Table 1 for the internal format
and compression used for each structure):

• Docs: it stores web pages’ ids (md5 hash of a web
page name), the number of tags and users associated
to the web page, as well as the offset in the Docs Users
posting list.

• Tags: it stores tags’ ids (md5 hash of the tag text),
the number of web pages and users associated to the
tag, and the offset in the Tags Docs posting list.

• Users: it stores users’ ids (md5 hash of the user user
name), the amount of web pages and tags associated
to the user, and the offset in the Users Tags posting
list.

• Docs Users: it stores the posting list of users for web
pages. In particular, for each web page, this structure
stores: the id of the user who tags this web page, the
amount of tags he has used to annotate this web page,
and the offset in the Bookmarks posting list.

3http://delicious.com/developers
4http://delicious.com/
5http://lucene.apache.org/core/

• Tags Docs: it stores the posting list of web pages for
tags. In particular, for each tag, this structure stores:
the id of the web page which is tagged with this tag
and the amount of users who have used this tag to
annotate this web page.

• Users Tags: it stores the posting list of tags for users.
In particular, for each user, this structure stores: the
id of the tag used by this user and the amount of web
pages tagged by this user with this considered tag.

• Bookmarks: it stores the posting list of tags for a
document and a user. In particular, for each unique
pair of web page and a user, this structure stores: the
ids of tags used by this user to annotate this web page.

Structure Contents Structure Contents

Docs id (32) Tags id (32)

(44) Number of users (4) (44) Number of users (4)

Number of tags (4) Number of web pages (4)

Byte offset in

Docs Users (4)

Byte offset in Tags Docs

(4)

Users id (32) Docs Users userid (32)

(44) Number of web pages (4) (40) Number of tags (4)

Number of tags (4) Byte offset in

bookmarks(4)

Byte offset in

Users Tags (4)

Tags Docs docid (32) Users Tags tagid (32)

(36) Number of users (4) (36) Number of web pages (4)

Bookmarks (32) tagid(32)

Table 1: Details on the format and compression

used for each index data structure. The numbers

in parenthesis are the size of each entry in bytes.

2.3 Query pre-processing engine in LAICOS
In IR systems, queries are usually pre-processed by being

reformulated. This process includes either: (i) the reduction
of queries, which is a technique to reduce long queries to
more effective ones [11], or (ii) expansion of queries, which
consists of enriching the user’s initial query with additional
information [10].

In LAICOS, queries are interpreted and processed using
the Personalized Social Query Expansion (PSQE) frame-
work [5]. In order to achieve a social and a personalized
expansions of a query, PSQE considers: (i) the semantic
similarity between candidate terms and the query, and (ii)
the extent to which the candidate terms are likely to be in-
teresting to the user. The experiments performed on the
PSQE framework in [5] show that it enhances web search
significantly.

2.4 IR model in LAICOS
Modeling in IR consists of two main tasks [1]: (i) the def-

inition of a conceptual model to represent documents and
queries and (ii) the definition of a ranking function to quan-
tify the similarities among documents and queries.

To model the textual content of documents, LAICOS is
based on the Apache Lucene search engine. However, to
model the social annotations associated to the corpus of

1447

documents, LAICOS uses the Personalized Social Document
Representation (PSDR) framework described in [6].

Basically, PSDR is a framework that uses social informa-
tion to enhance, improve and provide a personalized social
representation of documents to each user. Briefly, when a
user submits a query, the framework constructs, on the fly,
a PSDR of all documents that potentially match the query
based on other users’ experience (while considering both
users that are socially close to the query issuer and rele-
vant to documents). The experiments performed in [6] show
that the PSDR framework enhances web search significantly.

2.5 Ranking model in LAICOS
In the classical non-personalized search engines, the rel-

evance between a query and a document is assumed to be
only based on the textual content of the document. How-
ever, relevance actually dependents on each user [14]. Thus,
only query terms matching with the textual content of doc-
uments is not enough to generate satisfactory search results
for various users.

In LAICOS, the ranking score for a document d that ap-
pears in the results list obtained when a user u issues a
query q is computed using the SoPRa [4] ranking function
as follows:

Rank(d, q, u) = γ × Sim(−→q ,
−−→
Sd,u) + (1− γ)×

[

β × Sim(−→pu,
−−→
Sd,u) + (1− β)× Sim(−→q ,

−→
d)

] (1)

where, γ and β are weights that satisfy 0 ≤ (γ, β) ≤ 1,

SES(
−→
d) is the Search Engine Score (SES) given to the doc-

ument d,
−−→
Sd,u is the PSDR of the document d according to

the user u, and −→pu is the profile of u.
Inspired by the Vectorial Space Model, queries, profiles,

documents and their PSDR are modeled as vectors. Hence,
the similarities between these vectors are computed using
the cosine measure. At the end of this process we obtain a
list of ranked documents according to: (i) a textual content
matching score of documents and the query, (ii) a social
matching score of documents and the query, and (iii) the
social interest score of the user to documents.

3. LIFECYCLE OF A USER QUERY
The on-line IR sub-process, which is illustrated in the

right part of Figure 1 takes in charge the user query in
LAICOS. The query is sent in the form of keywords using the
main interface, which is similar to classical search engines.
Then, the PSQE framework handles the query. The user is
also able to activate and tune the parameters of the expan-
sion process of PSQE through an interface as illustrated in
Figure 2. As an output of this first step, PSQE returns an
adapted user query as a vector of weighted terms, which is
expected to be as close as possible to the user’s information
needs.

Next, the new query is processed by a retrieval engine,
which retrieves all documents that contain the query terms
in their textual content. This process is based on the Apache
Lucene search engine. Then, a ranking score is computed for
each retrieved document as described in Section 2.5. The re-
sulted list of documents is sorted based on this final ranking
score from the most relevant to the less relevant one. Finally,
the top ranked documents are formatted for presentation to
the user as illustrated in Figure 3.

Figure 2: Parameter settings.

Figure 3: Search results.

4. PERFORMANCE AND SCALABILITY

4.1 Performance of LAICOS
LAICOS has already been evaluated in an off-line study

following the evaluation methodology proposed and used
in [5, 8, 17] for assessing personalized search algorithms.
Particularly, LAICOS has been compared to many social
ranking algorithms including [2, 3, 9, 13, 15, 17]. As illus-
trated in Figure 4, the results show significant benefits of
the LAICOS social search engine compared to the closest
state of the art approaches for ranking algorithms. Espe-
cially, our approach outperforms the LDA-P approach and
the Xu08 approach, which we consider as the closest works
to the LAICOS ranking function (LDA-P is described in [6]).

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07

MAP MRR

LAICOS
SPR-[2]

Dmitriev06-[09]
BL-Q

Xu08-[17]
Lucene

LDA-Q-[6]
LDA-P-[6]

Noll07-[13]
tf-if-[15]

Sem-Search-[3]

Figure 4: Retrieval performances.

4.2 Scalability of LAICOS
Currently, the main complexity of LAICOS is in its ability

to compute a PSDR for documents while processing a query.
Actually, this complexity scales linearly with the number of
retrieved documents, which indicates that this approach can
be applied to a very large datasets. By using parallel compu-
tation, we can easily and considerably reduce the execution

1448

time. This is part of our future work to improve LAICOS.
As an illustration, Figure 5 shows the execution time needed
for processing queries according to the number of documents
that they match w.r.t. several parameters. The queries and
the users were randomly selected 10 times independently,
and we report the average results each time. As depicted in
Figure 5, none of these parameters have an impact on the
execution time. This latter still scales linearly with the num-
ber of documents. The results are obtained on a MacBook
Pro with a 2.8GHz Intel Core i7 CPU and 4GB 1333MHz
DDR3 of RAM, running MacOS X Lion v10.7.4.

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

m
s
)

Number of documents (x10
3
)

l = 2
l = 3
l = 5

l = 10

Figure 5: Execution time of LAICOS.

5. WHAT WILL BE DEMONSTRATED?
This demonstration is illustrated using documents indexed

from a delicious dataset. This dataset is public, described
and analyzed in [16]6. The initial list of urls submitted to the
LAICOS crawlers was the tagged web pages of this dataset.
We setup the crawlers in such a way to remove all the non-
english web pages, an operation performed using the Apache
Tika toolkit. Note that all the web pages that return an http
error code was considered as unavailable. Table 2 gives a de-
scription of the resulted corpus of data after our cleansing
and pre-processing:

Table 2: Details of the delicious dataset
Bookmarks Users Tags Web pages Unique terms

9 675 294 318 769 425 183 1 321 039 12 015 123

In this demonstration, we show mainly the retrieval per-
formances of LAICOS by comparing it to many retrieval
algorithms. Hence, we illustrate mainly the following search
scenario:

1. A user is asked to register his delicious account, which
is instantly crawled (or to use an existing one);

2. The user is then asked to issue a query. The results are
presented as illustrated in Figure 3, where a summary
of the social annotations of each document is given;

3. The user can then process the same query over differ-
ent retrieval algorithms such as [2, 9, 13, 15, 17] to
compare the obtained results;

4. Finally, the user can judge whether or not a document
is relevant. This will serve to perform an end-user
evaluation for LAICOS and the existing algorithms
and to build a testbed benchmark for evaluating SIR
approaches.

6http://data.dai-labor.de/corpus/delicious/

6. CONCLUSION
This demo paper introduces LAICOS, a personalized so-

cial web search engine that includes the social context of
both users and documents in the IR process. On the one
hand, the social context of documents is added as a layer to
the textual content traditionally used to index a collection
of documents to provide a personalized social representa-
tion of documents using the PSDR framework. On the other
hand, the social context of users is used for the query expan-
sion process using the Personalized Social Query Expansion
framework (PSQE) and for ranking purpose. The proto-
type of LAICOS is implemented using the Apache Lucene
IR platform and will be soon available for researcher un-
der a GNU General Public License. A strong characteristic
of LAICOS is the fact that it is a modular system that
allows easily developing, integrating and evaluating SIR ap-
proaches. In particular, eLAICOS is the module that is re-
sponsible for this ease integration and evaluation of SIR ap-
proaches, which is out of the scope of this paper. LAICOS is
already available at http://159.217.144.88:8080/laicos-prototype/.

7. REFERENCES
[1] R. A. Baeza-Yates and B. Ribeiro-Neto. Modern Information

Retrieval. Addison-Wesley Longman Publishing Co., Inc., 2
edition, 2010.

[2] S. Bao, G. Xue, X. Wu, Y. Yu, B. Fei, and Z. Su. Optimizing
web search using social annotations. In WWW, 2007.

[3] M. Bender, T. Crecelius, M. Kacimi, S. Michel, T. Neumann,
J. X. Parreira, R. Schenkel, and G. Weikum. Exploiting social
relations for query expansion and result ranking. In ICDE
Workshops, 2008.

[4] M. R. Bouadjenek, H. Hacid, and M. Bouzeghoub. SoPRa: A
New Social Personalized Ranking Function for Improving Web
Search. In SIGIR, 2013.

[5] M. R. Bouadjenek, H. Hacid, M. Bouzeghoub, and
J. Daigremont. Personalized Social Query Expansion Using
Social Bookmarking Systems. In SIGIR, 2011.

[6] M. R. Bouadjenek, H. Hacid, M. Bouzeghoub, and A. Vakali.
Using Social Annotations to Enhance Document Representation
for Personalized Search. In SIGIR, 2013.

[7] A. Broder. A taxonomy of web search. SIGIR Forum, 36(2),
September 2002.

[8] D. Carmel, N. Zwerdling, I. Guy, S. Ofek-Koifman, N. Har’el,
I. Ronen, E. Uziel, S. Yogev, and S. Chernov. Personalized
social search based on the user’s social network. In CIKM,
2009.

[9] P. A. Dmitriev, N. Eiron, M. Fontoura, and E. Shekita. Using
annotations in enterprise search. In Proceedings of the 15th
international conference on World Wide Web, WWW ’06,
pages 811–817, New York, NY, USA, 2006. ACM.

[10] E. N. Efthimiadis. Query expansion. Annual Review of
Information Systems and Technology (ARIST), 1996.

[11] G. Kumaran and V. R. Carvalho. Reducing long queries using
query quality predictors. In SIGIR, 2009.

[12] M. McCandless, E. Hatcher, and O. Gospodnetic. Lucene in
Action, Second Edition: Covers Apache Lucene 3.0. Manning
Publications Co., Greenwich, CT, USA, 2010.

[13] M. G. Noll and C. Meinel. Web search personalization via
social bookmarking and tagging. In ISWC’07/ASWC’07, 2007.

[14] J. Pitkow, H. Schütze, T. Cass, R. Cooley, D. Turnbull,
A. Edmonds, E. Adar, and T. Breuel. Personalized search.
Commun. ACM, 45(9):50–55, September 2002.

[15] D. Vallet, I. Cantador, and J. M. Jose. Personalizing web
search with folksonomy-based user and document profiles. In
ECIR, 2010.

[16] R. Wetzker, C. Zimmermann, and C. Bauckhage. Analyzing
social bookmarking systems: A del.icio.us cookbook. In ECAI,
2008.

[17] S. Xu, S. Bao, B. Fei, Z. Su, and Y. Yu. Exploring folksonomy
for personalized search. In SIGIR, 2008.

1449

http://159.217.144.88:8080/laicos-prototype/

	Introduction
	Anatomy of LAICOS
	Crawlers in LAICOS
	Social Indexes in LAICOS
	Query pre-processing engine in LAICOS
	IR model in LAICOS
	Ranking model in LAICOS

	Lifecycle of a user query
	PERFORMANCE AND SCALABILITY
	Performance of LAICOS
	Scalability of LAICOS

	What will be demonstrated?
	Conclusion
	References

