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Abstract. Handling incomplete and heterogeneous data remains
a central challenge in real-world machine learning, where missing
values may follow complex mechanisms (MCAR, MAR, MNAR)
and features can be of mixed types (numerical and categorical). Ex-
isting methods often rely on imputation, which may introduce bias
or privacy risks, or fail to jointly address data heterogeneity and
structured missingness. We propose the Heterogeneous Incomplete
Probability Mass Kernel (HI-PMK), a novel data-dependent rep-
resentation learning approach that eliminates the need for impu-
tation. HI-PMK introduces two key innovations: (1) a probability
mass-based dissimilarity measure that adapts to local data distribu-
tions across heterogeneous features (numerical, ordinal, nominal),
and (2) a missingness-aware uncertainty strategy (MaxU) that con-
servatively handles all three missingness mechanisms by assigning
maximal plausible dissimilarity to unobserved entries. Our approach
is privacy-preserving, scalable, and readily applicable to downstream
tasks such as classification and clustering. Extensive experiments on
over 15 benchmark datasets demonstrate that HI-PMK consistently
outperforms traditional imputation-based pipelines and kernel meth-
ods across a wide range of missing data settings. Code is available
at: github.com/echoid/Incomplete-Heter-Kernel

1 Introduction
Missing data is a common challenge in real-world, data-driven ap-
plications, caused by factors such as data collection errors, survey
non-responses, or system malfunctions [3]. These missing values
can occur across all data types—numerical, categorical, or heteroge-
neous—making data analysis more complex and degrading machine
learning model performance, often leading to biased or sub-optimal
outcomes. Existing methods for handling missing data fall broadly
into two categories: imputation-based approaches and representation
learning approaches (see Figure 1).

Imputation-based methods estimate missing values using ob-
served data, creating imputed complete datasets for downstream
analysis. These methods are often preferred due to their intuitive
evaluation process, where imputed data can be directly compared to
the original complete dataset. However, they face two significant lim-
itations: (i) revealing original data during imputation raises privacy
concerns, and (ii) access to complete datasets is often impractical,
necessitating reliance on indirect downstream metrics, which can ob-
scure the evaluation of imputation quality.

Representation learning methods, in contrast, bypass imputation
entirely by learning robust representations directly from incomplete
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Figure 1. Comparing imputation and representation learning approaches
for incomplete data handling.

data for downstream tasks. This approach mitigates privacy risks, re-
duces computational overhead, and eliminates dependence on com-
plete datasets for evaluation. By focusing on meaningful representa-
tions, these methods provide a secure, efficient, and adaptable frame-
work for handling incomplete datasets.

Another major limitation in existing methods is their reliance on
assumptions about data types and missing mechanisms. Most tradi-
tional techniques are designed for numerical data [14, 40, 10] and
extend to heterogeneous datasets through preprocessing steps like
one-hot encoding, which increase dimensionality and computational
cost [1] . Furthermore, while many methods assume data is Missing
Completely at Random (MCAR), real-world data often follows more
complex patterns, such as Missing Not at Random (MNAR) or Miss-
ing at Random (MAR) [30]. Failing to address these mechanisms can
result in biased outcomes [25].
Our contribution: We propose Heterogeneous Incomplete
Probability Mass Kernel (HI-PMK)—a novel, data-dependent ker-
nel method that computes pairwise similarities directly from the
observed portions of the data. HI-PMK supports both numerical
and categorical features, models uncertainty without imputation, and
accommodates arbitrary missing data mechanisms (MCAR, MAR,
MNAR). Our approach provides a privacy-preserving, representation
learning framework that is model-agnostic and readily applicable to
downstream tasks such as classification and clustering. Extensive
experiments on over 15 benchmark datasets with varying missing
rates and mechanisms show that HI-PMK consistently outperforms
both imputation-based pipelines and kernel baselines. The proposed
method is simple, scalable, and robust—offering a practical alterna-
tive to conventional approaches for learning from incomplete hetero-
geneous data.



2 Related Works
Imputation Methods for Incomplete Data. Conventional tech-
niques—such as mean substitution, MICE, k-NN, and matrix factor-
ization [10, 40, 17, 12]—are simple but struggle with heterogeneous
features and often distort downstream distributions. Generative ap-
proaches based on VAEs [22, 16, 26], GANs [41, 2], or diffusion
models [38, 9] model complex uncertainty, but typically assume ho-
mogeneous data, require large training samples, and are not task-
aware. Recent empirical studies [46] show that such models often un-
derperform on small tabular datasets. Surveys [23, 37] confirm these
limitations, particularly in handling mixed-type features and diverse
missingness mechanisms. These challenges motivate imputation-free
strategies like representation learning.

Representation Learning for Incomplete Data. Instead of fill-
ing in missing values, representation learning directly encodes in-
complete inputs into task-specific embeddings. Popular approaches
include autoencoders [8] for reconstruction and graph neural net-
works [45, 7, 21] for propagating partial observations. These meth-
ods excel in complex domains, e.g., multimodal [19] adb temporal
where structural dependencies aid representation. However, in tab-
ular datasets with mixed types, unstructured missingness, and lim-
ited samples, deep models can overfit or generalize poorly. In such
scenarios, lightweight methods like probabilistic modeling [17] and
similarity-based estimators [29] often remain competitive.

Kernel-Based Approaches for Incomplete Data. Kernel methods
offer a non-parametric alternative by modeling similarities in latent
space without requiring complete input. Early variants adapt Gaus-
sian or polynomial kernels through observed-feature reweighting or
regularization [35, 27, 6, 33, 34], but typically assume numerical in-
puts and neglect missingness structure. More recent work estimates
similarity directly from partial data, including affinity learning with
kernel correction [43], low-rank matrix recovery [44], and online
estimation [42]. Although effective in spectral clustering or matrix
completion, these methods often rely on scaling, kernel tuning, and
assume real-valued inputs that limiting their application in mixed-
type tabular settings. Our HI-PMK fills this gap by enabling type and
uncertainty-aware similarity estimation without such assumptions.

3 Problem Formulations
Let X ∈ Rm×n denote a dataset with m instances and n features,
potentially containing missing values. We decompose X into an ob-
served component Xo and a missing component Xm, with a binary
mask M ∈ {0, 1}m×n indicating the missingness pattern: M ij = 1
if Xij is missing, and 0 otherwise. The missingness process is gov-
erned by latent parameters Ψ, which encode factors that influence
whether an entry is observed or missing. This relationship can be
formalized as a conditional distribution:

f(M | X,Ψ),

where M is potentially dependent on both observed and unobserved
parts of X , depending on the missingness mechanism. The missing
mechanism, determined by Ψ, is typically categorized into the fol-
lowing types:

Missing Completely at Random (MCAR). The probability of a
value being missing is entirely independent of both observed (Xo)
and missing (Xm) data. The missingness depends only on Ψ and can
be expressed as:

f(M | Ψ)∀X.

For example, in a healthcare dataset, some patients may miss follow-
up medical tests due to random scheduling conflicts. Here, the ob-
served part (Xo) includes attributes like age and previous test results,
while the missing part (Xm) comprises the unrecorded follow-up test
results.

Missing At Random (MAR). The probability of missingness de-
pends only on the observed data Xo. This can be expressed as:

f(M | Xo,Ψ)∀Xm.

For instance, in the same healthcare dataset, older patients may be
less likely to attend follow-up medical tests. Here, the missingness
depends on the observed age (Xo) but is unrelated to the actual test
results (Xm).

Missing Not At Random (MNAR). The probability of missing-
ness directly depends on the values of the missing data Xm. This is
expressed as:

f(M | Xm,Ψ)∀Xo.

For example, in the same healthcare dataset, patients with very poor
test results might avoid follow-up visits due to fear or reluctance. In
this case, the missingness depends directly on the test results (Xm),
making it an MNAR mechanism.

4 Data-Dependent Kernel
Data-dependent kernels enhance similarity computation by incorpo-
rating local data distributions into pairwise comparisons [4, 5, 39,
49], enabling better handling of heterogeneous features and captur-
ing nuanced relationships. However, existing methods are not well
equipped to operate under incomplete data. To address this, we pro-
pose the Heterogeneous Incomplete Probability Mass Kernel (HI-
PMK), a novel data-dependent kernel designed to handle both hetero-
geneity and missingness. In HI-PMK, the H-component models data
type diversity, while the I-component captures missingness-aware
uncertainty, enabling robust and flexible similarity estimation.

4.1 Probability Mass Kernel (PMK)

The Probability Mass Kernel (PMK) builds upon the concept of m0-
dissimilarity [4, 28], extending traditional distance metrics by in-
corporating the local data distribution surrounding the objects be-
ing compared. Unlike data-independent kernels, such as Gaussian or
Laplacian kernels—where the similarity between two points depends
solely on their spatial distance—PMK adjusts similarity based on the
density of data in the surrounding region. For example, in sparse re-
gions, two points at the same distance may be considered more simi-
lar than in densely populated regions. This adaptability allows PMK
to capture complex structures and patterns in data, resulting in more
accurate similarity measures.

Let X ∈ Rm×n be a dataset with m instances and n features. The
i-th instance can be denoted as a vector x(i) = ⟨x(i)
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count quantifies local data density, enhancing the similarity measure
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Intuitively, if many data points fall within the region, the two in-
stances are considered more dissimilar, as a dense data distribution
surrounds them. Conversely, sparse regions yield small dissimilarity
scores.

To efficiently compute |Rk(x
(i)
k , x

(j)
k )|, each feature k is discre-

tised into b bins, and a pre-computed bin data mass is used. A matrix
stores the data masses between all bin pairs for each feature, enabling
fast lookups to determine the region size and significantly speeding
up the computation process. Finally, the m0 score is normalized to
obtain the PMK:

PMK(x(i),x(j)) =
2 ·m0(x

(i),x(j))

m0(x(i),x(i)) +m0(x(j),x(j))
. (2)

This normalization ensures symmetry and self-similarity, aligning
PMK with Mercer kernel requirements and enabling its integration
with kernel-based learning frameworks.

4.2 PMK for Heterogeneous Data

The original PMK was limited to numerical data. To handle mixed
data types, it was extended with the H-Component, enabling similar-
ities across numerical and categorical features. This enhanced frame-
work is called H-PMK.

In Equation 1, |Rk(x
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k

,x
(j)
k

)|
m

is the probability mass in the re-
gion, denoted as P (Rk(x

(i)
k , x

(j)
k )), which is calculated by discretiz-

ing the values of the numerical features. For categorical features,
P (Rk(x

(i)
k , x

(j)
k )) can be computed using probabilities of categor-

ical labels. The computation depends on whether the categorical fea-
ture k is ordinal (where values follow a natural order, such as size
= S, M, L, XL, XXL}) or nominal (where values have no inherent
order, such as color = Red, Green, Blue, Yellow, White}), as outlined
below:

P (Rk(x
(i)
k , x

(j)
k )) =



max(x
(i)
k

,x
(j)
k

)∑
zk=min(x

(i)
k

,x
(j)
k

)

P (zk), ordinal k

P (x
(i)
k ∨ x

(j)
k ), nominal k

(3)

where P (zk) represents the frequency of the feature value zk divided
by the total number of instances m, and P (x

(i)
k ∨ x

(j)
k ) denotes the

probability of a feature k having the label of x(i)
k or x(j)

k .

4.3 PMK for Incomplete Data

The I-Component extends PMK to handle incomplete data by ad-
dressing missing values under various mechanisms. This enhance-
ment, called I-PMK, ensures robust performance on incomplete
datasets.

Separated Bucket Bk for Missingness Frequency. Since PMK
relies on probability mass computed from the data distribution, we
treat missing values as a distinct category. For each feature k, we in-
troduce a special bucket Bk that collects all missing entries in that
feature. The size of this bucket, denoted |Bk|, reflects the empirical
frequency of missingness and is later used to adjust pairwise similar-
ity computations involving missing values.

Adjusting Probability Mass Estimation for Incomplete Entries
(Maximizing Uncertainty). To compute P (Rk(x

(i)
k , x

(j)
k )) when

one or both values are missing, we adopt a conservative strategy
that reflects the maximum plausible dissimilarity under uncertainty.
Specifically, we approximate the probability mass using the largest
possible region consistent with the observed data distribution. This
design aligns with the principle of Maximizing Uncertainty (MaxU),
which treats missing values as potentially taking any value in the
feature space.
Only one of them is missing: For any numeric or ordinal feature k,
we treat them similarly since numerical data is converted into ordi-
nal through discretization. In this context, xk represents the observed
value in the pair we are analyzing, while ‘?‘ denotes the missing
value. The region size |Rk(xk, ?)| can be estimated by examining the
data masses between the bin containing xk (Bin(xk)) and the bins
representing the first (minimum value) and last (maximum value) in
the feature range. We let ML(xk) and MR(xk) represent the data
masses to the left and right of Bin(xk), respectively, including the
mass of Bin(xk) itself (as shown in Figure 2). Since ‘?’ denotes a
missing value and can correspond to any possible value, we take a
conservative approach named Maximize Uncertainty (MU) and as-
sign the maximal possible dissimilarity as follows:

|Rk(xk, ?)| = max(ML(xk),MR(xk)) + |Bk| (4)

If k is a nominal feature, |Rk(xk, ?)| is computed based on the fre-
quencies of nominal labels:

|Rk(xk, ?)| = M(xk) + max
a∈Sk

M(a) + |Bk| (5)

Here, M(xk) is the frequency of the observed label xk, and Sk rep-
resents the set of all possible nominal labels for feature k. The term
maxa∈Sk M(a) accounts for the most frequent label, assuming ‘?’
could correspond to it, resulting in maximal dissimilarity. In both
cases, we include the frequency of missing values (|Bk|) to ensure
that the contribution of missing data is properly accounted for, re-
flecting their potential to take on any value.
Both of them are missing: When both entries are missing, we adopt
a conservative strategy to approximate their maximum possible dis-
similarity. For numerical or ordinal features, the worst-case assump-
tion is that the two missing values differ maximally, leading to:

|Rk(?, ?)| = m, (6)

where m denotes the total number of instances in the dataset. For
nominal features, since the missing entries may belong to two differ-
ent categories, we estimate the maximal disagreement by summing
the frequencies of the two most common categories:

|Rk(?, ?)| = max
a∈Sk

M(a) + max
b∈Sk\{a}

M(b) + |Bk|, (7)

where Sk is the set of possible categories for feature k, M(a) de-
notes the frequency of label a, and |Bk| is the number of missing
entries in feature k. This formulation ensures that completely miss-
ing pairs are penalized with maximal dissimilarity, while preserving
consistency across feature types.

4.4 Methodology Analysis

Separate Bucket Bk. The bucket Bk stores all missing entries for
feature k and plays a key role in capturing implicit patterns under
structured missingness. Under MCAR, where missingness occurs
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Figure 2. Illustration of probability mass adjustment for missing values in
numeric or ordinal feature k. The red dot marks the observed value xk; B0

and Bb represent the first and last bins, respectively; and Bk denotes the
designated bin for missing values.
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Figure 3. Visualization of mass bucket distributions under different
missingness mechanisms. In Xo, the term Corresponding Missing refers to
observed values associated with missing entries in Xm. In Xm, values are
grouped and stored into buckets Bk , shows the distribution of missingness.

uniformly at random, Bk has limited effect due to the lack of in-
formative structure. However, under MAR and MNAR, Bk becomes
highly informative. In MAR settings, missingness depends on ob-
served values (Xo), which are often correlated with unobserved val-
ues (Xm). As shown in Figure 3 (b), Bk implicitly captures this cor-
relation structure by accumulating contextually similar missing en-
tries. In MNAR cases (Figure 3 (c)), missingness depends directly on
the missing values themselves. Since these unobserved entries tend
to concentrate around specific value ranges or categories, Bk acts as a
proxy for these latent patterns. Thus, the inclusion of Bk significantly
enhances robustness under non-random missing mechanisms.

Maximizing Uncertainty (MaxU). The uncertainty-aware term is
grounded in the principle of maximum entropy [18], which assigns
the largest plausible dissimilarity when a value is missing. MaxU
conservatively models the missing entry as potentially any value
in the feature domain Xk, leading to the worst-case dissimilarity:
|Rk(xk, ?)| = supx′∈Xk

|Rk(xk, x
′)|. This strategy implicitly as-

sumes a uniform distribution over all plausible values, avoiding ar-
bitrary assumptions and improving robustness under adversarial or
structured missingness. Compared to alternative schemes like Aver-
age Uncertainty (AvgU) and Minimum Uncertainty (MinU), MaxU
aligns with the minimax principle [15], preserving discriminative
power by maximizing entropy. While AvgU assumes a mean-case
estimate and MinU favors optimistic matches, both are prone to fail-
ure under high sparsity or biased missing patterns. MaxU avoids such
pitfalls, reducing imputation bias and maintaining kernel expressive-
ness across diverse missing mechanisms.

4.5 Limitation and Complexity Analysis

The original M0 similarity [4] computes dissimilarity via bin-
based histograms, resulting in a preprocessing time complexity of
O(mnb + nb2), where m is the number of instances, n the number

of features, and b the number of bins. This scaling becomes pro-
hibitive for large or high-dimensional datasets. By contrast, our pro-
posed HI-PMK avoids binning and instead uses precomputed proba-
bility masses based on the observed data distribution. The resulting
similarity matrix can be computed in O(m2 · n) time and stored in
O(m2) space—matching the complexity of standard similarity mea-
sures such as Euclidean or cosine distance. This efficiency enables
HI-PMK to scale to moderate-sized datasets while supporting mixed
feature types and structured missingness. A detailed runtime analysis
is provided in Section 5.3.

5 Experimental Results

We evaluate HI-PMK on both clustering and classification tasks.
While PMK was initially designed for clustering, our results show
that HI-PMK generalizes well to classification, highlighting its ro-
bustness across downstream applications. Additional experiments are
available in the Supplementary Material [47]. Code: github.com/
echoid/Incomplete-Heter-Kernel

5.1 Experimental Setup

5.1.1 Datasets.

We evaluate two types of datasets from the UCI Machine Learning
Repository, as summarized in Table 1. (i) Real-World Datasets with
Synthetic Missingness: We introduce MCAR, MAR, and MNAR
patterns at varying missing rates into 10 fully observed datasets
to systematically evaluate robustness under controlled conditions.
(ii) Real-World Incomplete Datasets: Six naturally incomplete
datasets with unknown mechanisms (possibly a mixture of mecha-
nisms), reflecting practical challenges in real-world settings.

Dataset Summary
Dataset N Ord Nom Num C M.R.

Complete Datasets

Adult 48,842 1 7 6 4 -
Australian 69,014 0 8 6 2 -
Banknote 1,372 0 0 5 2 -
Breast 2,869 4 5 0 2 -
Car 1,728 6 0 0 4 -
Heart 303 0 8 5 5 -
Sonar 208 0 0 60 2 -
Spam 4,601 0 0 57 2 -
Student 649 11 16 2 5 -
Wine 4,898 0 0 12 2 -

Incomplete Datasets

Hepat 155 0 13 6 2 5.67%
Horse 368 13 1 8 2 23.80%
Kidney 400 2 10 12 2 10.54%
Mammo 961 4 0 1 2 3.37%
Pima 768 0 0 8 2 12.24%
Wiscon 699 9 0 0 2 0.25%

Table 1. N = instances, Ord/Nom/Num = ordinal/nominal/numerical, C =
classes, M.R. = missing rate.

Synthetic Incomplete Data Generation. We introduced miss-
ingness into complete datasets under three standard mechanisms.
MCAR removes values uniformly at random, independent of fea-
tures or values. MAR introduces missingness based on observed fea-
tures, following the strategy in [24]. MNAR depends on unobserved
values: for numerical features, extreme values (e.g., high/low per-
centiles) are more likely to be missing; for ordinal features, bound-
ary categories have higher missing rates; for nominal features, certain
categories are assigned greater missing probabilities.



Dataset Hepat Horse Kidney Mammo Pima Wiscon

Metric ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

Mean 0.8129 0.0015 0.8398 0.0078 0.9775 0.0067 0.8148 0.0959 0.7735 0.0111 0.9628 0.7295
MICE 0.8129 0.0021 0.8506 0.0024 0.9700 0.0074 0.8241 0.0959 0.7722 0.0910 0.9614 0.7427
EM 0.8000 0.0025 0.8398 0.0079 0.9500 0.0045 0.8200 0.0911 0.7696 0.0211 0.9614 0.7387
MisF 0.8065 0.0014 0.8262 0.0078 0.9650 0.0023 0.8200 0.0959 0.7722 0.0169 0.9628 0.7335
GAIN 0.8274 0.0012 0.8501 0.0071 0.8525 0.0160 0.8106 0.0932 0.7462 0.0596 0.9642 0.7387
genRBF 0.7935 0.0772 0.6304 0.0166 0.6250 0.0132 0.5140 0.0002 0.6510 0.0052 0.5564 0.4505
KPCA 0.7935 0.0159 0.6850 0.0583 0.6250 0.0056 0.8127 0.0117 0.6510 0.0092 0.9500 0.5186
PPCA 0.8000 0.0015 0.8506 0.0540 0.9625 0.0081 0.8241 0.0959 0.7722 0.0909 0.9628 0.7427
Simp - 0.0019 - 0.0001 - 0.0424 - 0.0951 - 0.0556 - 0.0000
Gow - 0.1968 - 0.1280 - 0.3899 - 0.2970 - 0.1069 - 0.6939

HI-PMK 0.8065 0.2001 0.8506 0.1066 0.9875 0.6663 0.8241 0.3271 0.7735 0.1374 0.9700 0.7585

Table 2. NMI scores for clustering tasks on incomplete datasets and Classification accuracy for incomplete datasets. The bold values indicate the
best-performing models, while the underlined values represent the second-best performance for each dataset.
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Figure 4. Critical Difference (CD) Diagram showing the ranking of
models based on their F1 scores across all datasets. Smaller ranking value

represent better performance.

5.1.2 Benchmark Methods for Comparison

Imputation-Based Methods. We include representative impu-
tation techniques: Mean/Mode Imputer as a simple baseline,
MICE [40] for its iterative inference, EM [10, 20] for likelihood-based
estimation, and MisF [36], a tree-based approach tailored for mixed-
type data. Although recent studies [11, 32, 46] question the efficacy
of deep models on tabular data, we also evaluate GAIN [41], a gen-
erative method representative of deep learning-based imputers.

Kernel Representation Methods. We assess genRBF [34],
which directly models similarity in the presence of missing data,
and two classical kernel learning methods—KPCA [31, 48] and
PPCA [13]—which rely on prior imputation (via MICE) and high-
light the limitations of conventional kernels when applied to hetero-
geneous or incomplete datasets.

Clustering Methods. We include Simp and Gow [28], two
similarity-based clustering methods designed for heterogeneous data.
To enable clustering on incomplete datasets, we first apply MICE im-
putation to ensure complete inputs.

5.1.3 Evaluation Metrics

For clustering, we applied K-means with the number of clusters K
set to the ground-truth number of classes. Performance was evaluated
using Normalized Mutual Information (NMI) and Adjusted Rand In-
dex (ARI), where ARI accounts for chance agreement. Each experi-
ment was repeated five times, and results were averaged for stability.

For classification, we used Support Vector Machines (SVM) with
RBF kernels. On complete datasets, we used standard RBF kernels;
for incomplete binary-class datasets, RBF kernels were computed
over similarity matrices. Methods like genRBF and HI-PMK, which
rely on pairwise similarities, were evaluated using SVMs with pre-
computed kernels. We performed 5-fold cross-validation, tuning hy-
perparameters (e.g., C, kernel width) via nested inner 5-fold CV. Fi-

nal models were trained on the full training set and evaluated using
F1 score and accuracy.

5.2 Analysis of Results

Incomplete Data with Unknown Missing Mechanism. Table 2
presents classification accuracy and clustering NMI on real-world
incomplete datasets. As expected, Simp and Gow, being clustering-
only methods, are not applicable to classification. HI-PMK con-
sistently achieves the best or near-best performance, demonstrat-
ing its robustness under unknown and mixed missing mechanisms.
Although these datasets contain relatively low missing rates, HI-
PMK maintains strong results without relying on imputation or prior
knowledge of the missingness pattern.

Complete Data with Synthetic Missing Mechanism. Figure 5 re-
ports F1 scores across varying missing rates and mechanisms, with
Table 3 showing detailed results at 20% missingness. HI-PMK con-
sistently ranks among the top performers under all mechanisms. It
is particularly effective on both numerical datasets and mixed-type
datasets, confirming its adaptability. Unlike most baselines, its per-
formance remains stable even as missingness increases. HI-PMK
also generalizes well to high-dimensional datasets like Sonar and
Spam. The Critical Difference (CD) diagram in Figure 4 ranks meth-
ods based on F1 scores, with HI-PMK achieving the top rank overall,
followed by MisF and GAIN.

5.3 Scalability

We assess the runtime scalability of HI-PMK under varying sample
sizes, feature dimensions, and missing rates using synthetic datasets.
The evaluation settings are as follows:

• Sample Size: n=30 features, missing rate 30%;
• Feature Dimension: n=1000 features, missing rate 30%;
• Missing Rate: d=30 samples, n=1000 features.

Sample Size. HI-PMK demonstrates efficient scaling with increasing
sample size and remains faster than deep models like GAIN for d ≤
2000, making it well-suited for small to medium-scale datasets.
Feature Dimension. As dimensionality increases, HI-PMK’s run-
time grows moderately due to kernel computations. It consistently
outperforms kernel methods such as KPCA and PPCA, which exhibit
steeper growth under high dimensions.
Missing Rate. HI-PMK maintains stable runtime across a wide range
of missing rates. In contrast, deep generative models incur additional
cost due to prolonged training. This stability highlights HI-PMK’s
robustness under high sparsity.
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(c) MNAR

Figure 5. F1 scores for classification tasks under different missingness mechanisms (MCAR, MAR, MNAR), evaluated across varying
missing rates. Each plot illustrates how classifier performance responds to increased data degradation, highlighting sensitivity to the

underlying missing data pattern.
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Figure 6. Scalability across sample size, dimension, and missing rate.

5.4 Ablation Study

We conduct two ablation studies to assess the contribution of HI-
PMK components: (1) a module-level decomposition and (2) a com-
parison of uncertainty modeling strategies. Table 4 reports average
F1 scores over complete datasets under MCAR, MAR, and MNAR

conditions, and average classification and clustering performance on
real incomplete datasets.

Component-Level Analysis. We evaluate: PMK (baseline using
complete data only), H-PMK (PMK with MICE Imputer), I-PMK-
w/o MaxU (removes uncertainty-aware term), I-PMK-w/o Bk (ex-
cludes frequency-based missing bucket adjustment), I-PMK (in-
cludes both MaxU and Bk), and HI-PMK (our model).

Uncertainty Strategy Comparison. We further compare MaxU
with AvgU and MinU, which estimate average-case and optimistic
dissimilarities, respectively. MaxU assumes worst-case uncertainty
by assigning the largest plausible dissimilarity when values are miss-
ing. Results show that MaxU consistently yields superior perfor-
mance, especially under MNAR, validating the benefit of conserva-
tive uncertainty modeling [18]. MaxU leads to significant perfor-
mance gains, particularly in incomplete data with structured miss-
ingness. Its conservative treatment of uncertainty helps avoid biased



MCAR

Model Adult Australian Banknote Breast Car Heart Sonar Spam Student Wine

Mean 0.2546 0.6127 0.7619 0.4278 0.4377 0.1774 0.6912 0.6978 0.1985 0.7962
MICE 0.2178 0.6123 0.7725 0.4508 0.4285 0.1774 0.7406 0.6933 0.2126 0.8563
EM 0.2269 0.4800 0.7709 0.4515 0.3736 0.1774 0.6628 0.5148 0.1742 0.6900
MisF 0.2584 0.6909 0.8109 0.4160 0.3741 0.2281 0.6977 0.5694 0.1660 0.9234
GAIN 0.2423 0.7447 0.7613 0.4135 0.3688 0.2608 0.6046 0.8351 0.1781 0.8463
genRBF 0.2443 0.6575 0.7345 0.4236 0.2059 0.1045 0.6202 0.7939 0.2195 0.8827
KPCA 0.2438 0.5161 0.8102 0.4307 0.3517 0.1817 0.7519 0.6500 0.2285 0.8610
PPCA 0.2384 0.4987 0.7702 0.4148 0.3339 0.1817 0.7142 0.5909 0.2281 0.7617

HI- PMK 0.2697 0.7500 0.8107 0.4605 0.4602 0.2694 0.7538 0.8673 0.2363 0.9329
MAR

Mean 0.2371 0.5115 0.8116 0.4781 0.5181 0.1848 0.7507 0.5755 0.2329 0.7780
MICE 0.2351 0.5245 0.8161 0.4715 0.5096 0.2159 0.7739 0.6347 0.2374 0.8515
EM 0.1960 0.4840 0.8255 0.4943 0.4560 0.2310 0.7117 0.5374 0.1792 0.7179
MisF 0.2710 0.7191 0.8550 0.4127 0.4626 0.2355 0.7556 0.5948 0.1706 0.9470
GAIN 0.2791 0.7905 0.8106 0.4133 0.4458 0.2814 0.6892 0.8665 0.1840 0.9077
genRBF 0.2017 0.4543 0.8089 0.4667 0.4513 0.1889 0.6919 0.5002 0.1808 0.8235
KPCA 0.2084 0.4098 0.8107 0.5108 0.4264 0.2313 0.7819 0.6770 0.2402 0.8843
PPCA 0.2351 0.5236 0.8360 0.4526 0.4027 0.2270 0.7261 0.6229 0.2352 0.7857

HI- PMK 0.2852 0.7841 0.8390 0.5141 0.5250 0.2945 0.8129 0.8984 0.2429 0.9577
MNAR

Model Adult Australian Banknote Breast Car Heart Sonar Spam Student Wine

Mean 0.2129 0.6663 0.6855 0.4127 0.5025 0.1555 0.5402 0.7712 0.2072 0.7237
MICE 0.2316 0.6704 0.7034 0.4413 0.4950 0.2098 0.5809 0.7310 0.1757 0.7268
EM 0.2184 0.5538 0.7506 0.4746 0.3871 0.1547 0.5987 0.4988 0.1743 0.5309
MisF 0.2694 0.7200 0.7222 0.4638 0.3901 0.2672 0.6216 0.8913 0.1793 0.8658
GAIN 0.2769 0.7678 0.7710 0.4849 0.3117 0.2178 0.6414 0.8979 0.1806 0.8543
genRBF 0.1990 0.5967 0.6390 0.4719 0.2059 0.2008 0.6973 0.8493 0.2050 0.8073
KPCA 0.1940 0.5967 0.8011 0.4919 0.4527 0.1882 0.7471 0.7516 0.2275 0.8034
PPCA 0.2311 0.5791 0.7915 0.4541 0.3885 0.1870 0.5289 0.5493 0.2181 0.8483

HI- PMK 0.2858 0.7851 0.8253 0.4925 0.5030 0.2825 0.7737 0.9347 0.2290 0.9111

Table 3. Classification results showing the F1 scores of HI-PMK and other baseline methods at a missing rate of 20% across multiple datasets and
mechanisms (MCAR, MAR, and MNAR).The highest score for each dataset has been highlighted in bold, and the second-highest score is underlined.

similarity estimates. Bk enhances robustness for categorical fea-
tures, especially under MAR and MNAR, where missingness corre-
lates with specific values or categories. While these components offer
marginal gains on complete data, they are critical for performance
under real-world incomplete conditions. HI-PMK achieves the
best overall results, benefiting from the combined effects of hybrid
modeling and uncertainty-aware similarity estimation.

These findings confirm the necessity of jointly modeling un-
certainty and missing value frequency for achieving generalization
across diverse missingness patterns. The effectiveness of HI-PMK
stems from its principled design that integrates both data semantics
and statistical uncertainty.

6 Conclusion
We introduced HI-PMK, a data-dependent kernel framework that di-
rectly models similarity under incomplete and heterogeneous settings
without requiring imputation. By incorporating uncertainty-aware
modeling and frequency-based correction, HI-PMK handles diverse
missingness mechanisms and supports mixed-type features. Exten-
sive experiments demonstrate consistent gains in classification and
clustering tasks across 15+ benchmarks. Future work will focus on

Variant MCAR MAR MNAR Cls. Clus.
PMK 0.509 0.507 0.502 0.751 0.253

H-PMK 0.549 0.521 0.530 0.844 0.340
I-PMK-w/o MU 0.572 0.581 0.572 0.816 0.328
I-PMK-w/o Bk 0.551 0.608 0.610 0.818 0.316

I-PMK 0.592 0.637 0.613 0.827 0.339
HI-PMK 0.630 0.651 0.647 0.869 0.362

HI-PMK-AvgU 0.622 0.616 0.603 0.860 0.359
HI-PMK-MinU 0.592 0.587 0.593 0.842 0.312
HI-PMK-MaxU 0.630 0.651 0.647 0.869 0.362

Table 4. Ablation study comparing components and uncertainty strategies.

reducing quadratic complexity and extending the method to tempo-
ral or graph-structured domains, where missingness patterns exhibit
richer dependencies.
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