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Abstract

Alzheimer's disease (AD) is an irreversible and pro-

gressive disorder where a large number of brain cells and

their connections degenerate and die, eventually destroy

the memory and other important mental functions that

affect memory, thinking, language, judgment, and beha-

vior. Not a single test can effectively determine AD;

however, CT and magnetic resonance imaging (MRI) can

be used to observe the decrease in size of different areas

(mainly temporal and parietal lobes). This paper proposes

an integrative deep ensemble learning framework to

obtain better predictive performance for AD diagnosis.

Unlike DenseNet, we present a multiresolutional

ensemble PartialNet tailored to Alzheimer detection

using brain MRIs. PartialNet incorporates the properties

of identity mappings, diversified depth as well as deep

supervision, thus, considers feature reuse that in turn

results in better learning. Additionally, the proposed en-

semble PartialNet demonstrates better characteristics in

terms of vanishing gradient, diminishing forward flow

with better training time, and a low number of para-

meters compared with DenseNet. Experiments
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performed on benchmark AD neuroimaging initiative

data set that showed considerable performance gain

(2+%) and (1.2 +%) for multiclass and binary class in

AD detection in comparison to state‐of‐the‐art methods.

KEYWORD S

Alzheimer, brain disorder, DenseNet, ensemble learning,
PartialNet

1 | INTRODUCTION

Alzheimer's disease (AD) is an irreversible and progressive neurological disorder that generally
affects elderly people. According to recent statistics, AD is the fourth worldwide leading cause
of death following cardiovascular disease, cancer, and stroke.1 Clinically, AD is characterized
by abnormal accumulation of amyloid plaques and neurofibrillary tangles in human brains,
which slowly destroys memory and thinking power, and, eventually, the ability to carry out the
simplest tasks. An illustration of the biomarkers that show the progress of AD disease is shown
in Figure 1.* Although AD affects people with an average age above 65, if diagnosed early it is
referred to as early onset of AD. In 2019, about 46 million persons worldwide suffer from AD,
56% of them was at an early stage of onset.2 Symptoms of early‐onset AD can include mild
memory loss and trouble concentrating or finishing daily life tasks. Similar to Parkinson's there
is no cure; however, its progression can be delayed through effective management plans that
temporarily slow the worsening of dementia symptoms and improve the quality of life. Only
definitive approach to diagnose AD is to examine the brain tissue after one's death. However,
physicians can use other clinical examinations and tests to assess patients' mental abilities,
diagnose dementia, and rule out other conditions. Additionally, specialized brain imaging, such

FIGURE 1 Graphical depiction of biomarkers as indicators of Alzheimer's disease. MCI, mild cognitive
impairment [Color figure can be viewed at wileyonlinelibrary.com]
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as magnetic resonance imaging (MRI), computed tomography (CT), and positron emission
tomography (PET), is widely used for AD diagnosis and follow‐up of disease progression,3,4 see
example in Figure 2.

In recent years, extensive research interest has grown exponentially toward computer‐aided
diagnosis (CAD) tools for brain disorder diagnosis.6–8 Particularly, machine learning (ML) ap-
proaches have been extensively explored to improve AD diagnosis and its prodromal dementia
stage, mild cognitive impairment (MCI), from normal controls (NC). Literature methods can be
generally categorized into four major categories: region‐of‐interest (ROI)‐based methods, voxel‐
based methods, patch‐based methods, and methods based on the whole image as input. ROI‐based
methods are confined to a coarse‐scale limit region, thus they may ignore the important fine‐scaled
information within the region. On the other hand, voxel‐based methods are prone to overfitting due
to high‐dimensional data. While patch‐based methods are often desired, they ignore brain re-
presentation and focus on fixed‐size patches. Finally, methods based on the whole image are
unable to identify the subtle disease progression in the brain structures through changes with time.
Leveraging the trade‐off between local and global representations may, therefore, better help un-
derstand the progression of the disease, while not overemphasizing the one aspect only.

In this study, we develop an integrative deep ensemble learning framework to obtain better
predictive performance. The proposed framework is based on ensemble PartialNet learning that
incorporates a deep multiresolutional ensemble PartialNet, which possesses the properties of identity
mappings and diversified depth. Additionally, the proposed pipeline integrates deep supervision and
transition blocks to provided better feature representation. To further improve the gradient propa-
gation and information flow between layers, we utilize a partial connectivity pattern by connecting
some of its subsequent layers but not all. The following summarizes our major contributions:

FIGURE 2 Visual examples of the brain atrophy patterns in the different AD subtypes.5 Note that GCA‐F,
MTA, and PA stand for medial temporal atrophy, posterior atrophy, and global cortical atrophy‐frontal,
respectively. AD, Alzheimer's disease
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• Unlike DenseNet that utilizes each layer in convolution neural network to all preceding
layers, PartialNet considers the feature reuse efficiently by limiting the connection to its
preceding layers, which in turn results in better learning.

• We utilize a block concept that limits the skip connection within a block and utilizes a
multiresolution ensemble; hence, every block behaves like a unique structure and con-
tributes more to gradient magnitude than a deeper network.

• Supervision and transition blocks are exploited in each PartialNet block to help in inter-
mediate features learning.

• Besides, we bound the path in each block as well as limit the number of dense connections;
hence, gradient flow is enhanced when compared with a partially dense path.

• Both two‐level or binary (i.e., AD–MCI, MCI–CN, and AD–CN) and multiclass (AD, MCI,
and CN) classifications have been studied and evaluated using Alzheimer's disease neuroi-
maging initiative (ADNI) data set that showed a considerable gain in performance in com-
parison to benchmark methods.

The remainder of the paper is organized into five sections. In Section 2, an overview of the
literature's related work is presented. This is followed by the details and description of the
proposed multiresolutional ensemble PartialNet framework in Section 3.2. Experimental set-
tings and results are fully discussed in Section 4. Results discussions, observations, and lim-
itations are provided in Section 5. Finally, Section 6 provides conclusions and future directions.

2 | RELATED WORK

AD is a neurodegenerative disorder and its diagnosis at an early stage is of immense im-
portance. A great deal of research work for early‐stage AD diagnosis or prognosis has been
developed in recent years. This has been supported by recent advances in ML approaches,
especially the deep learning (DL) techniques.9–11 This section provides a review of different
ML‐ and DL‐based classification methods employed in this direction.

Particularly, Suk et al.12 developed a model for AD detection using hierarchical feature re-
presentation and multimodel (MM) fusion. Their study utilized both MRI and PET scans of 398
subjects selected from ADNI data set: 93 AD, 104 MCI, and 101 NC. The MR images were
preprocessed to remove gradient nonlinearity and b1 field in homogeneity. The PET images were
preprocessed to intensity normalization, spatially aligned, and smoothed. Authors have utilized
feature learning at patch level and presented MM Deep Boltzmann Machine (DBM) and utilize the
densities tissues in MRI image patch as well as voxel intensities of patch from PET image. Latent
and hierarchical features from the trained MM DBM are extracted for the paired patches and then
supplied to the multilevel restricted Boltzmann machine (RBM) classifier. The achieved accuracy,
sensitivity, and specificity of AD versus cognitive normal (CN) were 95.35%, 94.65%, and 95.22%,
respectively, and 85.67%, 95.37%, and 65.87%, respectively, for MCI versus CN.

Sarraf et al.13 introduced a DL framework for the Alzheimer diagnosis from healthy and
Alzheimer patients. The study is conducted on 28 Alzheimer and 15 healthy subjects collected from
ADNI data set. Extensive preprocessing methods such as spatial smoothing, motion correction,
skull stripping, noise removal, and registration are applied to improve the quality of input data.
After preprocessing, data were passed to the DL model called LeNet, which achieved an accuracy of
96.85%. Similarly, Mathew et al.14 considered a subset of ADNI database (151 MRI images from
patients, including 71 NC and 87 AD) and applied several preprocessing methods, such as image
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cropping, resize, normalization, and reorientation. Principal component analysis (PCA) and dis-
crete wavelet transform (DWT) are used to extract features followed by classification using support
vector machine (SVM) and achieved an accuracy of 91% and 84% for MCI versus CN, and AD
versus CN, respectively. In another work, Iftikhar and Idris proposed an ensemble classifier to
differentiate MCI and AD patients.15 Volumetric cortex and cortical thickness‐based features are
extracted and forwarded to the ensemble classifier. The study is conducted on 180 subjects (60 MCI,
60 AD, and 60 NC) and achieved a specificity of 89% and a sensitivity of 92% with an accuracy of
91.66% to differentiate AD versus MCI. A deep three‐dimensional (3D) convolutional neural net-
work (3D‐CNN) by Hosseini‐Asl et al.16 was proposed for AD diagnosis. The framework is based on
the extraction of local features from 3D skull‐stripped and spatially normalized input image using
Convolutional AutoEncoder (CAE). Features dementia case study is utilized as a biomarker, and
fine‐tuned transfer learning is utilized to identify Alzheimer's patients on ANDI. The model
training and experiments were carried out on CAD dementia data set which contains 70 CN, 70
MCI, and 70 AD. The fine‐tune approach showed significantly better performance by achieving
97.6% accuracy for CN versus AD task. Recently, Ashraf et al.17 employed multiple convolution
neural networks for the classification of AD, MCI, and CN. Thirteen deep transfer learning‐based
networks were evaluated and compared using augmented data of ADNI data set and reported the
highest accuracy up to 99.05 with fivefold cross‐validation using the Dens‐Net model. Furthermore,
the authors investigate the freeze features of multiple CNN architectures in Reference [18]. More
recently, Ju et al.19 utilized multimodal data by integrating textual data (gender, age, and genetic
information) along with MRI images for the diagnose of Alzheimer's patient. The study is con-
ducted on 91 MCI and 79 NC MRI images extracted from ADNI‐2 data set. Besides, MRI images,
the age, gender, and genetic information are also extracted and used to find prevalence between
MCI and gender, age, and ApoE. Their analysis pipeline used Data Processing and Analysis of
Brain Imaging (DPABI) for preprocessing. Similarly, the study is conducted on functional MRI
(fMRI) time‐series data as well as correlation coefficient using SVM, logistic regression (LR), linear
discriminant analysis (LDA), and autoencoder. The study showed gain in performance (accuracy/
sensitivity/specificity) 67.72%/65%/66%, 71.38%/77%/62%, 78.91%/79%/64%, and 86.47%/92%/81%
using LDA, LR, SVM, and autoencoders, respectively. The results showed that correlation coefficient
could be used to improve the diagnosis performance. In another work, Farooq et al.20 examined
multiple DL techniques for multiclass classification of AD. Namely, they applied ResNet‐152,
GoogLeNet, and ResNet‐18 for diagnosis of Alzheimer patients on ADNI data set (33, 22, 449, and 45
cases of AD, LMCI, MCI, and CN, respectively). The experiment showed that GoogLeNet showed
better performance with an accuracy of 98.8%, while ResNet‐152 and ResNet‐18 (98.14% and 98.01%,
respectively) also achieved competing performance.

Bäckström et al.21 described a simple, yet effective method to detect AD called 3D CNN
architecture (3D ConvNet) using brain MRIs. Their framework started with cortical re-
construction, edge trimming, image resizing, and intensity normalization as preprocessing
steps. Then automated features were extracted from the prepossessed images using the pro-
posed DL technique. Experimental data were gathered from ADNI data set, namely, 340
subjects were used which include 1190 MRI scans of 199 AD patients (103 male and 96 female)
and 141 NC (75 male and 66 female) and achieved 98.78% Alzheimer diagnosis accuracy.

Kazemi and Houghten22 considered fMRI images to different AD patients at different
stages. Several preprocessing methods such as extraction of brain, spatial smoothing, slice
timing correction, spatial normalization, high pass filtering, and image conversion were applied
to improve the quality of input data. Finally, AlexNet is used for classification on 197 subjects
(90 male and 107 female) to differentiate patients among five classes: CN, AD, Late Mild
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Cognitive Impairment (LMCI), Early Mild Cognitive Impairment (EMCI), and subjective
memory complaints (SMCs). Data split for each experiment was conducted as in Reference [21].
Overall accuracy was 97.63%, and per‐class accuracies were 94.97%, 95.64%, 95.89%, 98.34%, and
94.55% for AD, EMCI, LMCI, CN, and SMC, respectively. Another approach based on transfer
learning was proposed by Ebrahimi‐Ghahnavieh et al.23 to detect AD using MRIs from ADNI data
set. Recurrent neural network along with CNN to better observe the association between sequences
of input slices. CNN is used to extract features, and a recurrent neural network is applied to
consider the relationship between slices that result in improvement of diagnostic performance. A
summary of the literature related work is summarized in Table 1.

3 | METHODOLOGY

The proposed integrative deep ensemble learning framework for AD detection using MRI is
schematized in Figure 3. As demonstrated in the system block diagram, our developed fra-
mework incorporates a deep multiresolutional ensemble PartialNe to obtain better predictive
performance. The input to the proposed pipeline is MRI data obtained from the ADNI data sets
and our system provides both binary and multiclass classification. To analyze the data, data
preparation, that is, preprocessing, is required to help in targeting the ROI. Next, we describe
the preprocessing steps employed in our analysis pipeline followed by full description of the
deep multiresolutional ensemble approach.

3.1 | Prepossessing

In this study, we have applied several preprocessing methods to improve the performance of
the proposed PartialNet. At first, we have converted the raw MR images into one‐channel
images of different sizes. We further performed resizing and cropping to remove the white
spaces and enhance the quality of the images. We have extracted ROI to determine the extreme
points in contours along with the x‐ and y‐coordinates. Besides, we have applied several data
augmentations, such as rotation (90°, 180°, and 270°), illumination, zoom in and zoom out,
vertical flipping, and horizontal flipping. With the application of different data augmentations,
the number of database images is increased from 3925 images to 37,590.

3.2 | Proposed PartialNet ensemble framework

Deeper the DenseNet means an exponential increase in computational and space complexity
due to the increased dense block depth. In addition, it results in a much larger number of
parameters. Unlike DenseNet that utilizes each layer in convolution neural network to all
preceding layers, we present a deep multiresolutional ensemble PartialNet that incorporates the
properties of identity mappings, diversified depth, and deep supervision, thus, considers
the feature reuse, which in turn results in better learning. In addition, we have limited the
structure to blocks aided with supervision and transition block in each that forces the network
to consider intermediate features as well as low‐level features.

Deeper layers do not contribute to gradient propagation and behave like ensembles of the same
network. Besides, the ResNet and DenseNet, paths are different lengths (i.e., skip connection from
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input to output); hence, shallow network contributes more to gradient magnitude. To overcome the
aforementioned challenge, we utilize the block concept that limits the skip connection within a
block and adopt a multiresolution policy. Therefore, every block behaves like a unique structure
and contributes more to gradient magnitude than a deeper network. The path length plays a major
role in gradient magnitude; thus, gradient flow is better over a partially dense path. The proposed
framework is based on a partially dense network; therefore it has the benefits of feature reuse,
which results in better learning. Figure 3 illustrates the proposed framework. The partially con-
nected layers from different levels help improve the information flow between layers. Besides, it
also alleviates the vanishing gradient problem due to direct connectivity between and later layers.
In addition, we have introduced supervisor block and transition layer.

The proposed ensemble framework consists of three multiresolutional networks as shown
in Figure 3 and each of which consists of four blocks. Each block consists of a partially
connected dense layer, supervision layer followed by transition layer. Unlike the densely
connected layer, we have considered partial connectivity which has threefold benefits: reduce
the parameter and better feature learning, and avoid overfitting. Unlike DenseNet, PartialNet
improves the flow of information by directly connecting some of its subsequent layers and
concatenating the feature map, that is, the feature map received at the lth layer simply receive
the information from the preceding layers ∕l − 1 2 (Figure 4).

x H x x x= ([ , , …, ]),l l 0 2 l 2− (1)

here “++” is the concatenation operation, Hl denotes the composite nonlinear transformation
consists of batch normalization (BN), leaky rectified linear unit (ReLU), and 3 × 3 × 3

FIGURE 3 Schematic illustration of the proposed framework‐multiple partialNet fusion [Color figure can
be viewed at wileyonlinelibrary.com]
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convolution. In each partially connected block, each layer li receives a features map from ln
preceding layers. x x x[ , , …, ]l0 1 −1 is the connectivity of earlier l − 1 layers into a single tensor.

Unlike DenseNet, partial dense blocks consist of partial connectivity of earlier layer. The layer in
partial block consists of1 × 1 × 1 and 3 × 3 × 3 convolution layers. The denser block is followed by
supervision and transition layers. The supervision block consists of 1 × 1 and 3 × 3 convolution, and
the transition block consists of BN, 1 × 1 convolution, and 2 × 2 pooling. The aim of the supervision
block is to filter the information and force the network to learn intermediate features.

Every ensemble network of multipath networks processes the information of different
scales and depth levels. To learn the intermediate features, PartialNet is aided with supervision
and transition block to have supervised feature transformation. The supervision block consists
of 1 × 1 convolution and 3 × 3 convolution whereas the transition block consists of 1 × 1,
3 × 3, and 1 × 1 convolution filters. The supervision block filters the information and learns
intermediate features. It is worth mentioning that we have not utilized the supervision and
transition block after the last PartialNet block. As the last PartialNet block does not have any
further block, thus there is no need to bound the skip connection. Besides, it also degrades the
performance. The feature maps from ensemble PartialNets are concatenated. Table 2 lists the
output size and the parameters of each network layer in the DenseNet model.

X x x x= + + + + ,i 1 2 3 (2)

⋯Z X X X X= + + + + + + + + .r0 1 2 (3)

Where Z is the final concatenated features, Xi represents the output from PartialNet, and r
is the total number of ensemble networks.

In traditional DenseNet, a layer has input from all its preceding layers, thus multiplicity of the
network is nk2 ; however, multiresidual network has much less number of connections. In com-
parison to DenseNet and ResNet, PartialNet has a moderate number of skip connections
(ResNet PartialNet DenseNet< < ). One of the key aspects of PartialNet is the growth rate that
describes the rate at which the size of each layer within each block of PartialNet grows.
The growth rate in each block individually acts as a regulator to control the flow of information from
a layer to its following layers. For example, the growth rate k = 16 shows that a filter size of 16 is

FIGURE 4 Basic PartialNet structure. As can be readily observed there is less number of connections to its
preceding layers. BN, batch normalization; ReLU, rectified linear unit [Color figure can be viewed at
wileyonlinelibrary.com]
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used at each layer in each block. We have noticed that a smaller growth rate showed better per-
formance and transfer information efficiently between the layers. Similar to Lodhi and Kang,24 we
have further introduced the bottleneck layer (1 × 1 convolution) before each 3 × 3 convolution in
each block that helps reduce the input feature maps. Unlike DenseNet, the shortcut connections were
used to cross two or three convolutional layers. Two 3 × 3 convolution layers with a bottleneck of
1 × 1 were used which also concatenate multiple convolutional features. Then, these feature maps
are fed to the transition layer. We have ensembled multiresolutional PartialNet based on probability
by integrating the probabilities of the softmax layer as shown in Equation (4).

( )P α α α= , , …, ,i i i
n
i

1 2 (4)

where αj
i indicates the probabilities of the class j.

Pi in Equation (4) can be normalize as









P
P

max α α α
=

, , …,
.i

i

i i
n
i

1 2
(5)

The prediction can be determined based on output of multiresoultion PartialNet based on
probability as

TABLE 2 PartialNet configurations

Layers Configurations

Input 224 × 224 × 3

Convolution 7 × 7 stride 2

Max pooling 3 × 3 stride 2

Partial block 1 (1 × 1 conv, 3 × 3 conv) × 2

Supervision block 1 (1 × 1 conv, 3 × 3 conv)

Transition block 1 (1 × 1 conv, 3 × 3 max pool)

Partial block 2 (1 × 1 conv, 3 × 3 conv) × 2

Supervision block 2 (1 × 1 conv, 3 × 3 conv)

Transition block 2 (1 × 1 conv, 3 × 3 max pool)

Partial block 3 (1 × 1 conv, 3 × 3 conv) × 2

Supervision block 3 (1 × 1 conv, 3 × 3 conv)

Transition block 3 (1 × 1 conv, 3 × 3 max pool)

Partial block 4 (1 × 1 conv, 3 × 3 conv) × 2

Global average pool

Fully connected

Softmax

  





( ) ( ) ( )Y arg max log α log α log α= , , …, .

i

m
i

i

m
i

i

m

n
i

=1
1

=1
2

=1
(6)
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4 | EXPERIMENTAL RESULTS

This section details the experimental design, data set, and the classification results of the
proposed framework compared with other state‐of‐the‐art (SOTA) methods. This study is
conducted on benchmark ADNI data set. We implemented PartialNet using MATLAB and
tested using various block sizes, multiresolution networks, and growth rates. We have used the
stochastic gradient descent (SGD) method for training and performed 10‐fold cross‐validation
by partitioning the data set randomly. Evaluation is conducted using several metrics, including
accuracy (for both test and validation), sensitivity, and specificity. Additionally, the results of
ablation studies for the proposed model conducted using multi‐DenseNet fusion with fully and
partially connected dense blocks are also discussed. All the experiments were performed on a
system with NVIDIA RTX5000 GPU.

Evaluation is performed using the neuroimaging data that are obtained from the publicly
available ADNI database.25 DR. Michael W. Weiner launched ADNI is multisite, longitudinal back in
2004, which was financially supported by both private and public partnership (27 million by 20
companies and 40 million from National Institute on Aging). ADNI develops clinical, imaging,
genetic, and biospecimen biomarkers for the early diagnosis of AD.25 The primary goal of ADNI has
been to assess the capabilities of the integration between imagine‐derived biomarkers (e.g., MRI and
PET), clinical and other neurological assessments to detect AD at the early stage of MCI. The data sets
(ADNI, ADNI 2, ADNI 3, and ADNI GO) include 1800 female and male subjects. In our study, we
have considered 350 subjects and collected T1 weighted structural MRI images (95 CN, 95 AD, and
146 MCI) from ADNI data set. The data set consists of multiple scans of each user performed at
different times. In this study, we have used a minimum and maximum scan number of 3 and 15,
respectively. Table 3 describes the statistics of data set used in this study.

Experiments were performed on the ADNI data set, described above, using the proposed
multiresolutional ensemble PartialNet. We compare the performance of our pipeline against its
counterpart networks. All networks were trained using the SGD method. Learning rate, weight
decay, and Nesterov moment were set to 0.1, 10−4, and 0.9, respectively. We reduce the learning
rate by 10% at 50% and 75% of training epochs. We have randomly portioned the available data
samples into 60%, 20%, and 20% for training, testing, and validation, respectively. The number of
ensemble networks is set to 3 and the number of PartialNet/DenseNet/ResNet blocks is set to 4.

In this study and by using the available data set, we performed both binary classification
(i.e., MC vs. AD, AD vs. CN, and MCI vs. CN) and multiclass classification. In our first
experiment, we have considered a binary class problem to differentiate patients among different
classes. The results are summarized in Table 4. We further have performed different ensemble
methods (voting, averaging, and probability). Table 5 describes the ablation study. As readily
seen in Tables 5 and 4, PartialNet achieved significantly better performance than DenseNet.

TABLE 3 Demographic details of data set used in our study

Class # Subjects Male/female Total # scans

AD 95 44/51 1425

MCI 138 66/72 1021

CN 146 87/59 1479

Abbreviations: “AD,” “MCI,” and “CN” stand for Alzheimer's disease, mild cognitive impairment, and cognitive normal,
respectively.
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TABLE 4 Comparative analysis of each class and overall recognition results using different ensembling
approaches

Multiresolution architecture

Modalities DenseNet PartialNet

AD versus CN versus MCI

AD 96.77 97.87

MCI 97.43 98.74

CN 94.43 97.31

Overall 96.72 98.23

AD versus CN

AD 76.43 85.11

CN 83.22 88.65

Overall 80.11 87.11

AD versus MCI

AD 95.98 98.43

MCI 97.23 99.87

Overall 96.65 99.26

CN versus MCI

CN 95.23 100

MCI 97.43 100

Overall 96.77 100

Abbreviations: AD, MCI, and CN stand for Alzheimer's disease, mild cognitive impairment, and cognitive normal, respectively.

TABLE 5 Overall recognition rate for both binary and multiclass classification comparing the proposed
ensemble multiresolution PartialNet architecture with DenseNet

Binary classification

Multiclass
classification

Multiresolution
architecture

AD vs. CN
vs. MCI

AD
vs. CN

AD
vs. MCI

MCI
vs. CN

Max voting Ensemble DenseNet 93.42% 78.35 94.60 94.87

Ensemble PartialNet 96.41% 81.22% 97.89% 99.43%

Model averaging Ensemble DenseNet 94.88% 79.43 9.65 93.98

Ensemble PartialNet 97.10% 83.74% 98.43% 99.13%

Probabilistic Ensemble DenseNet 96.72% 80.11 96.65 97.76

Ensemble PartialNet 98.23% 83.74% 99.26% 100%

Note: Bold values indicate highest performance achieved by proposed framework.

Abbreviations: AD, MCI, and CN stand for Alzheimer's disease, mild cognitive impairment, and cognitive normal, respectively.
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Besides the accuracy, we can notice that PartialNet has significantly less computational and
space complexity due to less number of connections in comparison to DenseNet.

To achieve the best network and parameter, we have performed several experiments. Tables 5
and 6 describe the ablation study. Notice that performance degraded by adding the supervision and
transition block after the last PartialNet block consistent with earlier blocks. As the last PartialNet
block does not have any further block, thus there is no need to bound the skip connection. Besides,
gradient flow is also better. Similarly, we can notice that PartialNet should better perform in
comparison to the same multiresolution ensemble of DenseNet and ResNet. It might be due to the
fact that both DenseNet and ResNet have paths of different lengths. For example, skip connection
from input to output, we bound the path in each block as well as limit the number of dense
connections; hence, gradient flow is better over the partially dense path.

To highlight the advantage of the proposed pipeline, we compared its performance against
several SOTA methods. The comparison of our work with other literature work is summarized
in Table 7. The table also summarizes the modalities, techniques, and accuracy of all compared
methods. Table 7 lists the methods only that are evaluated on ADNI data set.

5 | DISCUSSION AND OBSERVATIONS

In this paper, we sought an integrative deep pipeline for the detection of AD. The proposed
analysis pipeline is based on an ensemble learning technique that incorporates a deep multi-
resolutional ensemble PartialNet. Compared with DenseNet, the proposed approach demon-
strated high performance due to efficient feature reuse. That can be explained in part by
limiting the connection in each block and utilizing the block concept, which limits the skip
connection within a block and utilized a multiresolution ensemble, as every block behaves like
unique structure and contribute more to gradient magnitude than deeper network. The pro-
posed pipeline has demonstrated high accuracy for both binary and multiclass classifications
when evaluated on ADNI data set. Namely, our experiments showed a considerable gain in
detection performance in comparison to SOTA methods. PartialNet achieved a maximum
classification accuracy of 100% for MCI versus CN, 99.26% for MCI versus AD, 88.71% for NC
versus AD, and 98.23% for NC versus MCI versus AD with sensitivity and specificity 98 plus.

Additionally, our pipeline showed a considerable gain in performance in comparison to bench-
mark methods. As evident from data presented in Tables 6–8, PartialNet showed considerably out-
performed all the other approaches. We have compared the performance of the proposed PartialNet
with its variant DenseNet with the same set of parameters and ensemble frameworks. Table 6
summarizes the evaluation results of PartialNet and DenseNet. We can notice that PartialNet showed
significantly better performance 98.23%/87.11%/99.26%/100% for the task of AD versus CN versus

TABLE 6 Overall recognition rate for both binary and multiclass classifications comparing the proposed
ensemble multiresolution PartialNet architecture

Multiresolution architecture AD vs. CN vs. MCI AD vs. CN AD vs. MCI MCI vs. CN

Ensemble DenseNet 96.72% 80.11 96.65 97.76

Ensemble PartialNet 98.23% 87.11% 99.26% 100%

Note: Bold values indicate highest performance achieved by proposed framework.

Abbreviations: AD, MCI, and CN stand for Alzheimer's disease, mild cognitive impairment, and cognitive normal, respectively.
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MCI, AD versus CN, AD versus MCI, and MCI versus CN in comparison to 96.72%/80.11%/96.65%/
97.76% using DenseNet. With 3‐way classification, we can notice that PartialNet so far has produced
better results with 98.23% accuracy in comparison to 96.72 using the DenseNet ensemble. The
classwise comparison of SOTA models is described in Table 7. In competing with SOTA methods,
PartialNet showed better performance for both 2‐way and 3‐way Alzheimer diagnoses. We can notice
a gain in performance in terms of all parameters (sensitivity, specificity, and accuracy). The proposed
PartialNet framework achieved 98.67/99.27/98.22 sensitivity in comparison to Farooq et al.,20 Gupta
et al.,32 and Hosseini‐Asl et al.2 that achieved 98/97/97, 96/74/88, and 100/80/47 sensitivity, for AD/
MC/NC, respectively. Experiment results showed that our proposed PartialNet has produced more
promising and consistent results for all the three classes the sensitivity, specificity, and accuracy
remained above 98%, 97.7%, and 98.23%, respectively. PartialNet performs well because it follows a
simple connectivity rule in comparison to DenseNet and forces the network to learn representation at
each block that incorporates identity mappings naturally as well as it diversified the depth and
considers deep supervision.

We can summarize that an ensemble of PartialNet showed considerably better general-
ization than its parent network. PartialNet incorporates the properties of identity mappings,
diversified depth as well as deep supervision, thus, considers the feature reuse which in turn
results in better learning, thus better in terms of vanishing gradient, diminishing forward flow
with better training time, and a low number of parameters in comparison to DenseNet. An
experiment is performed on benchmark ADNI data set that shows considerable gain (2+%)
and (1.2+%) for multiclass and binary class in Alzheimer detection performance in com-
parison to SOTA methods. In summary, we have the following key observations:

• The block concept forces the network to extract a unique structure and contribute more to
gradient magnitude than a deeper network.

• The number of blocks depends upon the problem, and larger data sets with complex nature
require a more number of blocks.

• Gradient flow is enhanced when compared with its variants DenseNet that helped to im-
prove the performance, especially for CN class.

Despite the demonstrated effectiveness of the proposed ensemble PartialNet and significant
improvement in performance for AD diagnosis, the proposed pipeline has some limitations.

TABLE 8 Comparative accuracy of various SOTAs on ADNI (baseline) with 813 (228 NC, 187 AD, and 398
MCI) subjects

Study AD vs. CN MCI vs. AD

Hon and Khan27 84.14 82.26

Wang et al.33 79.93 76.86

Snapshot ensemble34 54.93 68.02

Ensemble transfer35 85.27 83.11

Proposed PartialNet 87.11 99.26

Note: Bold values indicate highest performance achieved by proposed framework.

Abbreviations: AD, Alzheimer's disease; ADNI, Alzheimer's disease neuroimaging initiative; CN, cognitive normal; MCI, mild
cognitive impairment; NC, normal control; SOTA, state‐of‐the‐art.
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First, the number of blocks depends upon the data set complexity and size, which will increase
the number of parameters. Second, even though, the model showed a notable gain in perfor-
mance in comparison to SOTA, it showed poor performance of AD versus CN in comparison to
other classes, which may be due to the complexity of the images.

6 | CONCLUSION

In this paper, we presented multiresolutional ensemble PartialNet tailored to Alzheimer de-
tection using brain MR imaging data. PartialNet incorporates the properties of identity map-
pings, diversified depth, and deep supervision, thus, considers feature reuse that in turn results
in better learning. Compared with DenseNet, the proposed multiresolutional ensemble Par-
tialNet has demonstrated better performance in terms of vanishing gradient, diminishing for-
ward flow with better training time, and a low number of parameters. An experiment is
performed on benchmark ADNI data set that showed a considerable gain in detection per-
formance in comparison to SOTA methods. PartialNet achieved a maximum classification
accuracy of 100% for MCI versus CN, 99.26% for MCI versus AD, 88.71% for NC versus AD, and
98.23% for NC versus MCI versus AD with sensitivity and specificity 98 plus.

By observing the main results from PartialNet and DenseNet, we can summarize that an
ensemble of PartialNet showed considerably better generalization than its parent network. This
may be due to limiting the connection in each block and utilizing the block concept which
limits the skip connection within a block and utilized a multiresolution ensemble, as every
block behaves like a unique structure and contributes more to gradient magnitude than a
deeper network. In future, we plan to explore group equivariant PartialNet to aid translations,
reflections, and rotations capability. Besides, we also plan to explore diver prediction to un-
derstand biological relevance that will help observe the disease progression.
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