MissDDIM: Deterministic and Efficient Conditional Diffusion for
Tabular Data Imputation

Youran Zhou
echo.zhou@deakin.edu.au
Deakin University
Geelong, Australia

ABSTRACT

Diffusion models have recently emerged as powerful tools for
missing data imputation by modeling the joint distribution of ob-
served and unobserved variables. However, existing methods, typi-
cally based on stochastic denoising diffusion probabilistic models
(DDPMs), suffer from high inference latency and variable outputs,
limiting their applicability in real-world tabular settings. To address
these deficiencies, we present in this paper MissDDIM, a condi-
tional diffusion framework that adapts Denoising Diffusion Implicit
Models (DDIM) for tabular imputation. While stochastic sampling
enables diverse completions, it also introduces output variabil-
ity that complicates downstream processing. MissDDIM replaces
this with a deterministic, non-Markovian sampling path, yielding
faster and more consistent imputations. To better leverage incom-
plete inputs during training, we introduce a self-masking strat-
egy that dynamically constructs imputation targets from observed
features—enabling robust conditioning without requiring fully ob-
served data. Experiments on five benchmark datasets demonstrate
that MissDDIM matches or exceeds the accuracy of state-of-the-art
diffusion models, while significantly improving inference speed and
stability. These results highlight the practical value of deterministic
diffusion for real-world imputation tasks.
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1 INTRODUCTION

Missing data is a pervasive challenge in real-world applications
such as healthcare [11], finance [2], recommendation systems [4],
and sensor networks [5, 27]. In tabular datasets, missing values
degrade model performance and introduce bias or uncertainty in
downstream analysis. Effective imputation—the task of estimating
missing entries from observed data—is thus a critical step in many
data-centric workflows. Traditional imputation methods such as
mean/mode substitution [9, 17], k-nearest neighbors [23], MICE [6],
and MissForest [18] are efficient and stable, but often fail to capture
feature dependencies and struggle under structured missingness.
In contrast, deep generative models have shown great promise for
modeling the joint distribution of observed and missing variables.
Approaches based on GANSs (e.g., GAIN [21], MisGAN [1]) and varia-
tional inference (e.g., MIWAE [12], HI-VAE [13]) have demonstrated
stronger performance, while newer architectures like GRAPE [22]
and IGRM [25] incorporate iterative or graph-based interactions for
greater expressiveness. More recently, diffusion models [3, 7, 20]
have emerged as powerful generative frameworks, particularly in
vision and time series domains. Their gradual denoising process
allows fine-grained, high-fidelity generation. In the tabular setting,
several adaptations have been proposed: TabCSDI [24] employs con-
ditional score-based diffusion; MissDiff [14] uses an unconditional
formulation; and TabDDPM [10] extends diffusion to mixed-type
data. Despite their modeling capacity, these methods face key limi-
tations: (i) they rely on stochastic DDPM sampling, which incurs
high inference latency and output variability; and (i) many assume
fully observed training data or lack robust conditioning on partial
inputs—assumptions that rarely hold in practice [15, 26]. To address
these challenges, we propose MissDDIM, the first framework to ap-
ply Denoising Diffusion Implicit Models (DDIM) [16] to imputation
on incomplete tabular data. Unlike DDPMs, DDIM performs de-
terministic, non-Markovian sampling, enabling consistent outputs
with significantly reduced inference cost. We further introduce a
self~masking strategy that dynamically creates training targets from
partially observed data, allowing MissDDIM to learn directly from
incomplete inputs. Through extensive experiments on five real-
world datasets, we demonstrate that MissDDIM achieves competi-
tive imputation accuracy while offering substantial improvements
in inference speed and output stability. By bridging the gap between
expressive generative modeling and efficient, deployment-friendly
inference, MissDDIM provides a practical solution for real-world
tabular imputation tasks.
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2 THE PROPOSED METHOD

Let X € R™9 be a tabular dataset with n samples and d features,
where each sample x € R? is drawn from an unknown data distri-
bution. Given a sample x¢ that contains missing values, we aim to
generate imputation targets X‘O“is € X™iS by exploiting the observed
values ngs € XS where X™is and X°PS are subsets of the full

feature space X = R,

2.1 Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models (DDPMs) [8] model com-
plex data distributions by simulating a Markov chain that gradually
adds noise to the data (forward process) and then learns to reverse
the corruption (reverse process). Let xg € X denote a data sample
drawn from the unknown data distribution q(xo). The forward pro-
cess defines a sequence of latent variables x, ..., x7 in the same
space X, where T is a predefined number of time steps. At each step
t € {1,...,T}, Gaussian noise is incrementally added to produce
x; from x;_1 according to:

q(x¢ | xe-1) = N(x5V1 = Brxe—1, BeD),
where {ﬁt}thl is a variance schedule controlling the amount of
noise injected at each step. This leads to a closed-form marginal:

t
q(xt | x0) = N (xes Varxo, (1-a)D), where a; = [ [(1-:). (1)
i=1

The reverse process is modeled as a denoising procedure learned
via a parameterized distribution:

po(xi-1 | x;) = N(xi-15 po(xs. 1), 05(x1, D), @)

with pg derived from a noise prediction network €p:

et ®)

While DDPMs yield high-quality generations, their reliance on
long sampling chains (typically hundreds of steps) results in high in-
ference latency, making them less practical for real-time imputation
tasks that require rapid and stable outputs.

1
po(xp,t) = — [x¢ —
a

2.2 MissDDIM: Efficient Imputation with
Conditional DDIM

While DDPMs have demon-
strated strong generative ca-
pabilities, their sequential
and stochastic nature leads q(alxy)

to computationally expen-

sive and inherently variable @ «--- @ e
inference. These limitations G )| gl ) ‘
pose practical challenges for
missing value imputation
in real-world applications,
where stability and speed
are crucial for downstream
pipelines. To address this,
we propose MissDDIM, a con-
ditional diffusion model that adapts Denoising Diffusion Implicit
Models (DDIM) [16] for efficient and deterministic imputation

Figure 1: Different sampling
processes: traditional sto-
chastic diffusion (top) vs. de-
terministic non-Markovian
inference (bottom).
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on tabular data. Unlike DDPMs, DDIM enables non-Markovian,
parameter-free sampling trajectories, significantly reducing the
number of inference steps while preserving generation quality
(see Figure 1). Despite DDIM’s success in image synthesis, it has
not yet been explored in the context of missing value imputa-
tion—particularly for tabular data, where heterogeneous feature
types and partially observed inputs introduce unique challenges.
MissDDIM bridges this gap by developing a conditional DDIM frame-
work specifically tailored for imputation tasks.

2.2.1 Conditional DDIM. We aim to estimate the conditional distri-
bution py (xmls | x"bs) where the generative model focuses solely
on missing components. To this end, we define a conditional noise
prediction network

e (™, 1| x™)
which predicts the noise applied to missing entries, given the ob-
served context. This design explicitly conditions the reverse gen-
eration on known values at both training and inference stages,
enabling targeted and stable imputation.

The reverse process is modified accordingly:

pa(xm‘s|xob5>—p<x‘;“)ﬁpe<xm“ XY, (@)

Po (S | X, x8%) = N (x;mi, o (<, | x5, o2()1), 5)

where pg is derived from the conditional noise prediction net-
work [19] as:

mis bS) — mis _ B

1

” (xt —
In standard DDPM-based samplers, the reverse process involves
sampling from a Gaussian distribution with a learned mean and
fixed variance. DDIM generalizes this by introducing a non-Markovian
sampling schedule, where the level of stochasticity at each timestep

is controlled by a noise parameter o;. When o; > 0, the process
remains stochastic; when o; = 0, it becomes fully deterministic.

In MissDDIM, we adopt the deterministic variant by explicitly
setting o; = 0 for all ¢, eliminating randomness in sampling and
ensuring consistent outputs across runs—a critical property for
reproducible imputation. The resulting update rule simplifies to:

Xmls - Xrtrus _ Weg (Xmls ¢ | XObS)
= Vor-1
t—1 (_at (7)

T— a1 eg (x5, 1 | x3P),

po(xP,t | x eo(xS 1 | xJ’S)). (©)

This deterministic formulation brings two key advantages: (i) it
reduces inference latency by an order of magnitude due to fewer
sampling steps; (ii) it ensures output consistency across runs, ad-
dressing the variability inherent in stochastic DDPM-based im-
puters. These properties make MissDDIM particularly suitable for
latency-sensitive applications such as risk modeling, recommenda-
tion systems, and real-time analytics.

2.2.2 Training Objective. We adopt the standard DDPM/DDIM
training strategy, adapted for conditional imputation. Given a sam-
ple with observed features ngs and missing targets xm1S we cor-
rupt the missing components using the forward dlffusmn process

x‘tniS = +foy, xomis 4 V1 — ay, €, where € ~ N(0,I). A conditional
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Figure 2: Illustration of the self-masking training strategy
used in MissDDIM. Observed values are randomly partitioned
into conditional inputs and pseudo-targets during training.

noise prediction network €6 (Xrtnis! t xgbs) is trained to recover the
injected noise, i.e., eG(x‘tnis,t | xgbs) ~ €. The model is optimized
via a conditional denoising score matching loss:

mginL(G) =Exy et [He - ee(xrtnis,t | xgbs)

2
e
where xg ~ q(x0) and ¢ ~ Unif({1,...,T}).

2.2.3 Self-masking Strategy. Most generative imputation methods
rely on prior imputers (e.g., mean filling) or externally provided
masking vectors to handle missing inputs. In contrast, we adopt a
self-masking strategy that enables the model to learn directly from
partially observed data without auxiliary imputations (see Figure 2).
Specifically, during training, a random subset of observed entries is
masked and treated as targets, while the remaining observed values
serve as conditional context.

2.3 Implementation

Our implementation is based on the TabCSDI architecture [24].
Specifically, we remove the temporal transformer module and retain
only the feature-wise transformer encoder and residual MLP blocks
to better suit static feature spaces. Although MissDDIM builds upon
TabCSDI, our DDIM-style sampler is model-agnostic. It depends
only on the learned noise prediction network €y, and is therefore
compatible with any DDPM-based imputer, regardless of backbone.
This makes MissDDIMa drop-in replacement for stochastic samplers,
offering a general-purpose mechanism to accelerate and stabilize
diffusion-based imputation pipelines.

3 EXPERIMENTS

We evaluate MissDDIM from three perspectives: (i) Imputation ac-
curacy: how well the imputed values match ground truth; (ii) Sam-
pling efficiency: the trade-off between inference time and sam-
pling steps; (iii) Stability: the consistency of results across runs.
Code will be available at: https://github.com/echoid/MissDDIM

3.1 Experimental Setup

3.1.1 Datasets. We use five real-world datasets from the UCIRepos-
itory and Kaggle, covering both continuous-only data (Banknote,
California, Letter) and mixed-type data (Adult, Student). Missing
values are simulated at four levels (10%, 30%, 50%, 70%). We eval-
uate both direct reconstruction error and downstream predictive
performance.
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Figure 3: RMSE across five benchmark datasets under vary-
ing missing rates. The final panel presents an aggregated
summary of RMSE distributions using boxplots, combining
results from all datasets and missingness levels.

3.1.2 Baselines and Evaluation Protocol. We compare MissDDIM

against three categories of baselines: (i) statistical methods (Mean/Mode,

MICE [6], MissForest [18]), (ii) deep generative models (GAIN [21],

MIWAE [12]), and (iii) diffusion-based approaches (CSDI [19], TabCSDI [24],

MissDiff [14]). All diffusion-based baselines use T=100 steps with
100 stochastic samples per instance (median-aggregated). MissDDIM
yields deterministic imputations in a single forward pass. All results
are averaged over 5-fold cross-validation with 20% of data held out
for testing in each fold. Continuous features are standardized before
imputation. Imputation accuracy is measured using RMSE averaged
over missing entries. To evaluate downstream utility, we train an
XGBoost classifier for classification tasks and XGBoost regressor
for regression tasks on imputed data and report weighted F1-score
or MAE respectively.

4 RESULTS AND ANALYSIS
4.1 Imputation Utility

Figure 3 summarises the imputation performance of methods un-
der varying missing rates.The performance of all models generally
degrades with increasing missingness. However, MissDDIM demon-
strates relatively stable performance across different settings. The
last subplot provides a boxplot that aggregates results across all
datasets and missing rates, highlighting the superior stability of our
method. Furthermore, Table 1 shows that MissDDIM achieves strong
performance in downstream predictive tasks, consistently outper-
forming or matching state-of-the-art baselines. Standard deviation
regions are also reported to illustrate the robustness.

4.2 Sampling Time

Existing diffusion-based models such as CSDI, TabCSDI and MissD-
iff typically generate 100 samples and take their median to produce
stable imputations, which significantly increases inference time. In
contrast, MissDDIM adopts a deterministic sampling process that
requires only a single forward pass. Table 2 reports the inference
time and imputation accuracy under both standard (100-sample)
and DDIM with single-sample settings for different T setted . For
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Table 1: Performance under 30%, 50%, and 70% missingness across five datasets. Classification tasks are evaluated using weighted
F1-score, while the Student dataset (regression) uses MAE. Best results are shown in bold, and second-best results are underlined.

Method Adult Banknote California Letter Student (MAE)
Rate 30% 50% 70% 30% 50% 70% 30% 50% 70% 30% 50% 70% 30% 50% 70%
Mean 0.4966  0.4750  0.4440 | 0.9000 0.7870  0.6703 | 0.8577 0.7595 0.6259 | 0.7960  0.6277  0.4046 | 2.2286 2.3608  2.5107
MICE 0.6734  0.6447 0.6218 | 0.9416 0.8414 0.7512 | 0.7963  0.7373  0.6103 | 0.7862  0.7850  0.4370 | 2.0147 2.1097  2.4936
MissForest | 0.6971  0.6517  0.6347 | 0.9517 0.8727 0.7821 | 0.8274 0.7556  0.6300 | 0.8323  0.8148 0.4524 | 1.7569 2.0165 1.9655
GAIN 0.6048  0.5775 0.5441 | 0.9217 0.8725 0.7957 | 0.8291 0.7564 0.6094 | 0.8221 0.7567 0.4054 | 1.2574 1.4025 1.5993
MIWAE 0.6941  0.6327 0.6014 | 0.9226 0.8937 0.8125 | 0.8531 0.6905 0.6261 | 0.8674 0.8186  0.4253 | 1.2347 1.4582 1.4614
CSDI 0.6827  0.6424  0.6218 | 0.9358 0.8867 0.8025 | 0.8446  0.8163 0.6291 | 0.8479 0.8090  0.4249 | 1.0257 1.2477 1.2098
TabCSDI 0.7214  0.6851 0.6318 | 0.9527 0.9014 0.8657 | 0.8886 0.8386  0.6289 | 0.9049 0.8471 0.4467 | 0.8712 1.1371 1.1816
MissDiff 0.7046  0.6711  0.6247 | 0.9416 0.8867 0.8237 | 0.8552 0.8253 0.6318 | 0.8503 0.8242  0.4541 | 0.8571 1.1297 1.1575
MissDDIM | 0.7228 0.6724 0.6318 | 0.9527 0.9214 0.8772 | 0.8993 0.8608 0.6236 | 0.9117 0.8559 0.4581 | 0.8214 1.1143 1.1713

Table 2: Inference time and imputation accuracy (RMSE) com-
parison of generative imputation models.

#Samples | Method Time (s) | | RMSE |
CSDI 820.73 0.3730
100 TabCSDI 794.21 0.3319
MissDiff 765.92 0.3163
MissDDIM (T = 100) 775.31 0.3051
1 MissDDIM (T = 50) 385.12 0.3167
MissDDIM (T = 20) 154.61 0.3343

fairness, we evaluate all methods using the same batch size and
computational environment. MissDDIM consistently demonstrates
superior efficiency while maintaining competitive performance,
confirming its practical advantage for real-time or large-scale im-
putation scenarios.

Step T Step T Step T

Step T
(d) Letter

Step T
(e) Student

Step T
(f) Average
Figure 4: RMSE Comparison with varying n values.

4.3 Ablation Study

To evaluate the practical utility of MissDDIM, we assess its sampling
efficiency and output stability under varying inference-time con-
figurations. We control sampling stochasticity via the DDIM noise
parameter 7 € {0.0,0.5, 1.0}, where =0 yields fully deterministic
trajectories (MissDDIM), and larger values inject increasing levels of
noise, transitioning toward standard DDPM behavior. The variance

. . [1-ar,_ =
at each timestep 7; is defined as: o, () =1 %ﬁ” 1= a"‘_l’
T Ti_1

Table 3: Impact of sampling stochasticity (1) and number of
sampling steps (T) on RMSE under 50% missing rate.

Letter California Average
1 25 100 25 100 25 100
0.0 | 0.3214 0.2254 | 0.5014 0.3254 | 0.4977 0.3293
0.5 | 0.6780 0.2054 | 0.7421 0.3054 | 0.7412 0.3167
1.0 | 0.7510 0.2796 | 0.8510 0.2996 | 0.8170  0.3343

which allows us to isolate the impact of stochasticity while keeping
model parameters fixed. We also vary the number of sampling steps
T € {25,50,75,100} to examine trade-offs between computational
cost and imputation quality—reflecting latency-sensitive deploy-
ment scenarios. Table 3 and Figure 4 report RMSE and its standard
deviation across multiple runs. As expected, MissDDIM (y=0) pro-
duces deterministic outputs with low variance. At lower T, smaller
n values converge more rapidly and achieve competitive accuracy.
As T increases, stochastic methods may slightly improve perfor-
mance but at the cost of higher variance. Overall, MissDDIM strikes
an effective balance between inference speed, output stability, and
imputation fidelity.

5 CONCLUSION

We proposed MissDDIM, the first imputation framework that adapts
deterministic DDIM sampling to tabular data. By reformulating
DDIM in a conditional setting, MissDDIM supports incomplete in-
puts natively and enables efficient, stable imputation without re-
peated sampling. Unlike existing diffusion-based approaches that
rely on stochastic DDPM processes, our method achieves consis-
tent outputs with significantly reduced inference time. Experiments
across diverse datasets demonstrate that MissDDIM delivers com-
petitive or superior accuracy, while offering practical advantages
in latency-sensitive and deployment-oriented scenarios. In future
work, we plan to extend MissDDIM to support more complex missing
data mechanisms and explore strategies for improving robustness
under heterogeneous data type .
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