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ABSTRACT
This paper proposes a novel mask-based output layer for multi-level
hierarchical classification, addressing the limitations of existing
methods which (i) often do not embed the taxonomy structure being
used, (ii) use a complex backbone neural network with 𝑛 disjoint
output layers that do not constraint each other, (iii) may output
predictions that are often inconsistent with the taxonomy in place,
and (iv) have often a fixed value of 𝑛. Specifically, we propose a
model agnostic output layer that embeds the taxonomy and that
can be combined with any model. Our proposed output layer imple-
ments a top-down divide-and-conquer strategy through a masking
mechanism to enforce that predictions comply with the embedded
hierarchy structure. Focusing on image classification, we evaluate
the performance of our proposed output layer on three different
datasets, each with a three-level hierarchical structure. Experiments
on these datasets show that our proposed mask-based output layer
allows to improve several multi-level hierarchical classification
models using various performance metrics.
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• Computing methodologies → Supervised learning by clas-
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(b) CIFAR-100.

Figure 1: (a) An image of a “Cat” classified by 3 independent
classifiers as a “Bio organism”, an “Animal”, and incorrectly
as a “Bus” for the CIFAR-100 dataset discussed in Section 3.1.
The two correctly identified classes in ℓ1 and ℓ2 could have
helped to identify the correct class for ℓ3. (b) Proportion of
correctly classified images for each level of our taxonomy
of the CIFAR-100 dataset, and the proportion of images in-
correctly classified but for which the other levels in the tax-
onomy were correctly identified. This shows the potential
benefit of a multi-level hierarchical classifier.

1 INTRODUCTION
Multi-level Hierarchical Classification (MLHC) is a specific clas-
sification task, which addresses the problem of classifying items
into a multi-level hierarchy structure of classes [1–7]. MLHC has
attracted a lot of attention over the past few years, mainly because
many real-world applications and services now use a hierarchi-
cal structure to organize their data, e.g., online retailers such as
Amazon, Wikipedia, DMOZ, etc.

To illustrate and assess the benefit of an MLHC, we refer to
Figure 1, which shows (1a) an example of an image classified by
a 3 independent classifiers, and (1b) the proportion of correctly
classified images for each level of our taxonomy of the CIFAR-100
dataset, as well as the proportion of images incorrectly classified
but for which the other levels in the taxonomy were correctly
identified. There are a few important observations here: (i) First,
an MLHC allows to structure large amounts of information using
a hierarchical taxonomy, which can be convenient as it allows
to describe relations between classes by mean of the “subclass-of ”
notion. (ii) Second, from the example shown in Figure 1a, if we could
tell to the last classification layer that the image is a “Bio organism”
and an “Animal”, we could help it to identify the correct class in
ℓ3 – or at least being consistent by selecting a subclass-of “Animal”.
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Finally, (iii) the results presented in Figure 1b show that 4.08% of
images incorrectly classified by ℓ1 were correctly classified by ℓ2
or ℓ3, 11.92% of images incorrectly classified by ℓ2 were correctly
classified by ℓ1 or ℓ3, and 16.06% of images incorrectly classified by
ℓ3 were correctly classified by ℓ1 or ℓ2. This shows and motivates the
potential benefit of an MLHC that embeds the taxonomy structure
with a top-down or a bottom-up classification approach.

There have been several methods proposed for MLHC, and they
can be categorized according to how the hierarchical structure is
explored [4, 8, 9]. In particular, we distinguish: (i) the flat classifica-
tion approach [10, 11], consisting of completely ignoring the class
hierarchy, typically predicting only classes at the leaf nodes and
considering that all its ancestor classes are also implicitly assigned
to that instance; (ii) the local classification approach [12–14], where
for each parent node in the class hierarchy, a multi-class classifier
is trained to distinguish between its child nodes; and (iii) the global
classification approach [9, 15–25], where a single classifier dealing
with the entire class hierarchy structure is used. In this paper, we
argue that flat classification approaches are inefficient as they do not
take into account the taxonomy structure during the training stage,
thus, resulting in very low Hierarchical Evaluation Metric values as
shown in Section 3.2 – aberrant predictions are also obtained as for
example the image in Figure 1a would be hierarchically classified
as “Bus”, “Automotive”, and “Object”. Moreover, we also argue that
local classification approaches are not applicable, as they require 𝑛
networks to be trained and maintained, which can be tedious in
practice. Therefore, in our work we opt and favor global classifica-
tion approaches as they overcome the above constraints. However,
we claim that existing global classification approaches here still suf-
fer from several drawbacks as they: (i) do not “naturally” embed
the taxonomy structure used, (ii) use a complex backbone neural
network with 𝑛 disjoint output layers that do not constraint each
other, (iii) may output predictions that are inconsistent with the
taxonomy in place, and (vi) have often a fixed value of 𝑛, which
means that they lack flexibility as they need substantial changes
for a different value of 𝑛.

This paper addresses these deficiencies by proposing a novel
mask-based output layer for MLHC (Mask-MLHC). Specifically, we
propose a model agnostic output layer that embeds the taxonomy
and that can be combined with any model. Our proposed output
layer implements a top-down divide-and-conquer strategy through
a masking mechanism to enforce that predictions comply with the
embedded hierarchy structure. Focusing on image classification, we
evaluate the performance of our method on three different datasets
including CIFAR-100 [26], Caltech BIRDS-210-2011 [27], and Stan-
ford Cars [28], each with a three-level hierarchical structure. Ex-
periments on these datasets show that our proposed mask-based
output layer allows to improve several MLHC models.

2 METHODOLOGY
This section presents formally the MLHC problem, and then intro-
duces our mask-based output layer to address it.

2.1 Notation and the MLHC problem
Classification: Most classification problems in the literature in-
volve flat classification, where each example is assigned to a class
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Figure 2: Overview of the Mask-based Output Layer.

out of a finite set of flat classes. Formally, given a dataset D =

{(x(1) , 𝑦 (1) ), (x(2) , 𝑦 (2) ), · · · , (x(𝑚) , 𝑦 (𝑚) )}with𝑚 instances, where
each x(𝑖) ∈ X ⊆ R𝑛 is an 𝑛-dimensional input feature vector of the
instance 𝑖 and 𝑦 (𝑖) ∈ Y = {𝑦1, 𝑦2, · · · , 𝑦𝑘 } represents its class, a
classification algorithm must learn a mapping function 𝑓 : X→ Y,
which assigns to each feature vector x(𝑖) its correct class 𝑦 (𝑖) .
Hierarchical classification: In contrast to flat classification in
which classes are considered unrelated, in a hierarchical classifica-
tion problem classes are organized in a taxonomy. The taxonomy is
often organized as a tree, where classes have a single parent each,
or a directed acyclic graph (DAG), where classes can have multiple
parents. Given a set of classesY, Wu et al. [29] defined a taxonomy
as a pair (Y, ≺), where ≺ is the “subclass-of” relationship with the
following properties [8, 29]: (i) asymmetry (∀𝑦𝑖 , 𝑦 𝑗 ∈ Y, 𝑖 𝑓 𝑦𝑖 ≺ 𝑦 𝑗
then 𝑦 𝑗 ⊀ 𝑦𝑖 ), (ii) anti-reflexivity (∀𝑦𝑖 ∈ Y, 𝑦𝑖 ⊀ 𝑦𝑖 ), and (iii)
transitivity (∀𝑦𝑖 , 𝑦 𝑗 , 𝑦𝑘 ∈ Y, 𝑦𝑖 ≺ 𝑦 𝑗 and 𝑦 𝑗 ≺ 𝑦𝑘 implies 𝑦𝑖 ≺ 𝑦𝑘 ).

In this paper, we consider only tree taxonomies, which are or-
ganized with a hierarchy structure of 𝑛 levels ℓ𝑖 , such that ℓ𝑖 ⊂ Y,
ℓ1 ∪ ℓ2 · · · ∪ ℓ𝑛 = Y, ∀𝑦 𝑗 ∈ ℓ1, 𝑦𝑖 ≺ ∅, and ∀𝑦 𝑗 ∈ ℓ𝑖+1, ∃!𝑦𝑘 ∈ ℓ𝑖 s.t.
𝑦 𝑗 ≺ 𝑦𝑘 for 𝑖 ≥ 1 (see Figure 1a for a three-level taxonomy). Finally,
we encode the relationship between two successive levels ℓ𝑖 and
ℓ𝑖+1 in a taxonomy using an |ℓ𝑖 | × |ℓ𝑖+1 | matrix𝑀 [ℓ𝑖 ,ℓ𝑖+1 ] , where the
binary value 𝑀 [ℓ𝑖 ,ℓ𝑖+1 ]

𝑦𝑘 ,𝑦 𝑗
∈ {0(𝑦 𝑗 ⊀ 𝑦𝑘 ), 1(𝑦 𝑗 ≺ 𝑦𝑘 )}, with 𝑦𝑘 ∈ ℓ𝑖

and 𝑦 𝑗 ∈ ℓ𝑖+1.
Problem definition: The multi-level hierarchical classification
problemwe study in this paper is then defined as learning amapping
function 𝑓 : X → Y, which assigns to each feature vector x(𝑖) a
prediction vector y(𝑖) = {𝑦 [ℓ1 ] , 𝑦 [ℓ2 ] , · · · , 𝑦 [ℓ𝑛 ] } such that 𝑦 [ℓ𝑖 ] ∈ ℓ𝑖
is the class that 𝑓 assigns for each level ℓ𝑖 .

2.2 Proposed Mask-MLHC output layer
Figure 2 shows an overview of the architecture of our Mask-based
Output Layer for MLHC. As mentioned previously, the proposed
output layer uses a masking mechanism to enforce that predictions
comply with the hierarchy structure; thus, it embeds all matrices
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𝑀 [ℓ𝑖 ,ℓ𝑖+1 ] , 𝑖 ∈ {1, · · · , 𝑛} that encode the taxonomy. First, the layer
computes an embedding for every level of the taxonomy as follows:

z[ℓ𝑖 ] =𝑊 [ℓ𝑖 ] × a + 𝑏 [ℓ𝑖 ] (1)
where a is the embedding of the input, and𝑊 [ℓ𝑖 ] , 𝑏 [ℓ𝑖 ] are parame-
ters learnt during training that are associated with every level ℓ𝑖 of
the taxonomy. Because the layer implements a top-down strategy,
the prediction at ℓ1 is obtained using a simple temperature softmax
on its embedding as follows: ŷ[ℓ1 ] = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥𝜏 (z[ℓ1 ] ), where 𝜏 is
the temperature parameter that has to be tuned. Next, for each
remaining level, a mask is first computed to enforce that the predic-
tion complies with the taxonomy (i.e., ŷ[ℓ𝑖+1 ] ≺ ŷ[ℓ𝑖 ] ) by projecting
predictions of the upper level as follows:

m[ℓ𝑖+1 ] = ŷ[ℓ𝑖 ] ×𝑀 [ℓ𝑖 ,ℓ𝑖+1 ] (2)
Then, each mask is applied using a simple Hadamard product

on the embedding to enforce that ŷ[ℓ𝑖+1 ] ≺ ŷ[ℓ𝑖 ] :

ŷ[ℓ𝑖+1 ] = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥𝜏 (z[ℓ𝑖+1 ] ◦m[ℓ𝑖+1 ] ) (3)

Masks and predictions in Equations 2 and 3 respectively are
computed sequentially from 𝑖 = 2 to 𝑛. The model is trained by
minimizing the following objective function:

1
𝑚

𝑚∑
𝑗=1

𝑛∑
𝑖=1

[
𝜋 [ℓ𝑖 ] × L(𝑦 ( 𝑗) [ℓ𝑖 ] , 𝑦 ( 𝑗) [ℓ𝑖 ] )

]
(4)

where L(•, •) denotes the cross-entropy function and 𝜋 [ℓ𝑖 ] are
hyperparameters that need to be tuned to calibrate the relative
importance of the objectives. The loss function takes all levels’ loss
into account to make sure the structure prior can play a role of
internal guide to the whole model and make it easier to flow the
gradients back to all layers.

3 EXPERIMENTAL EVALUATION
In this section, we first describe the experimental setup we have
used in our evaluation before discussing the obtained results.

3.1 Experimental setup
Datasets: Our experiments are performed on three different image
datasets: CIFAR-100 [26], Stanford Cars [28], and Caltech-UCSD
Birds-200-2011 (CUB-200-2011) [27]. Hyperparameters are tuned
on validation sets obtained by splitting the test sets. The CIFAR-100
is a 2-level hierarchy dataset to which we have added a third level
at the top: “Object” and “Bio Organism”. For the Stanford Cars and
CUB-200-2011 we have used the hierarchy structure provided by
[21]. Detailed statistics of the datasets are provided in Table 1.
Baseline models: Our mask-based output layer for MLHC (Mask-
MLHC) is combined with the following baseline models:

(1) 𝑛-nets: 𝑛 independent networks for each hierarchy level.
(2) 𝑛-outs: a single network with 𝑛 output layers.
(3) B-CNN: Branch-CNN described in [22].
(4) B-CNN_v2: a variant of B-CNN, which takes the ReLu acti-

vation of every branch output and uses them as the input of
the next Fully-Connected layer.

(5) Bi-CNN: Bilinear-CNN described in [30].
(6) MLPH:Multi-linear PoolingwithHierarchy described in [21].

Table 1: Description of datasets.

Dataset CIFAR-100 Stanford Cars CUB-200-2011
Statistics
Training set 50,000 8,144 5,944
Validation set 5,000 4,020 3,000
Test set 5,000 4,021 2,071
#classes 100 196 200
Taxonomy
#classes ℓ1 2 13 39
#classes ℓ2 20 113 123
#classes ℓ3 100 196 200

In addition, we use a flat classification approach as a baseline
for comparison. We recall that it consists of completely ignoring
the class hierarchy, typically predicting only classes at the leaf
nodes. It provides an indirect solution to the problem of hierarchical
classification, because, when a leaf class is assigned to an example,
one can consider that all its ancestor classes are also implicitly
assigned to that instance.
Metrics: Commonly used measures of Precision, Recall, F1-Score,
and Accuracy are not appropriate for Hierarchical Classification,
because they do not take into account the relations that exist be-
tween classes. Hence, we report our results using the following
hierarchical metrics: (i) Hierarchical F1-Score [1], which is a variant
of F1-Score that uses the hierarchy, (ii) Exact Match, which mea-
sures the percentage of predictions that match exactly the ground
truth for all levels of the hierarchy, and (iii) Consistency, which
estimates the proportion of test examples that are consistent with
the hierarchy structure, regardless the ground truth. Finally, we
also use (vi) Accuracy@ℓ3 to estimate the impact of our top-down
mask-based output layer on the last level of the taxonomy.
Implementation details 1: All models used in our experiments
are based on the VGG19 [31] backbone neural network pretrained
on ImageNet [32]. For CIFAR-100 we used an image size of 32x32
and for the other datasets an image size of 64x64. Finally, a batch
size of 128 was used and Adam Optimizer [33] with a learning
rate of 1e-4 that uses a decay factor on plateau of 0.1. For the loss
function we used an equal weights for all 𝜋 [ℓ𝑖 ] .

3.2 Results
Performance: Figure 3 shows the effect of our mask-based output
layer on each model described above, and the performance obtained
by the flat classifier as a baseline. From the obtained results we
make the following key observations:

(1) Our mask-based output layer allows to improve all models
for almost all metrics and almost all datasets.

(2) Almost all methods outperform the flat classifier baseline,
which indicate that although it is an intuitive approach, it
does not provide good performance, thus the need to develop
specific MLHC methods.

(3) B-CNN is the model for which we notice the highest im-
provement for all metrics and all datasets.

(4) On the CUB-200-2011 and Stanford Cars datasets our out-
put layer allowed the highest improvement of the models
analyzed compared to the flat classifier Baseline.

1Code repository: https://github.com/rbouadjenek/Mask-MLHC
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(a) CIFAR-100.
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(b) Stanford Cars.
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(c) CUB-200-2011.

Figure 3: Performance comparison.

(5) Stanford Cars is the dataset that benefited the most from our
mask-based output layer.

(6) Our mask-based output layer provides a huge improvement
in terms of consistency, thus providing more reliable predic-
tions compared to all other methods (except the flat classifier,
which provides always consistent predictions as it uses di-
rectly the taxonomy for inferring ancestors).

In conclusion, we observe that our mask-based output layer of-
fers a good trade-off between performance metrics and consistency,
hence, combining both validity and reliability for MLHC. Also, we
observe that there is a clear discrepancy between the results ob-
tained on CIFAR-100 dataset and on the CUB-200-2011 dataset,
which we analyse in the next section.
Task complexity analysis:We analyse the discrepancy observed
between the results obtained on the CIFAR-100 dataset on one
side and on the Stanford Cars/CUB-200-2011 datasets on the other
side, which we explain by the complexity of the task. Hence, we
compare 𝑛-nets with our masked-based output layer against the
flat classifier baseline on the CUB-200-2011 dataset, while varying
the complexity of the task by varying the number of classes in ℓ1.

The obtained results are shown in Figure 4, from which we
observe that for a hard task (> 20 classes for ℓ1), our method sub-
stantially outperforms the flat classifier, whereas for an easy task
(< 10 classes for ℓ1), the flat classifier substantially outperforms our
method. Hence, we simply conclude that for complex tasks such as
the Stanford Cars classification or the CUB-2010-2011 classification,
our method allows a substantial improvement, whereas for a simple
task such as the CIFAR-100 classification problem, a flat classifier
is enough to achieve high MLHC performance.
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Figure 4: Task complexity analysis.

4 CONCLUSION AND FUTUREWORK
We introduced in this paper a new mask-based output layer for
multi-level hierarchical classification, which embeds the taxonomy
structure and that can be combined with any model. Our proposed
output layer implements a top-down divide-and-conquer strategy
through a masking mechanism to enforce that predictions comply
with the embedded hierarchy structure. Focusing on image classi-
fication, we presented a thorough experimental evaluation of the
performance of our method on three different datasets, including
CIFAR-100, Caltech BIRDS-200-2011, and Stanford Cars, each with
a three-level hierarchical structure. Experiments on these datasets
show that our proposed mask-based output layer allows to improve
several multi-level hierarchical classification models on various
performance metrics. Future work includes testing our method on
deeper hierarchical datasets [34], investigating a new loss function
specifically designed for MLHC, combining a bottom-up approach,
exploring the attention mechanism for improving the mask mecha-
nism, and investigating MLHC for clustering in IR [35, 36], medical
images [37, 38], and other health related applications [39, 40].
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