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ABSTRACT

We explore in this paper automatic biological sequence type classi-
fication for records in biological sequence databases. The sequence
type attribute provides important information about the nature of
a sequence represented in a record, and is often used in search
to filter out irrelevant sequences. However, the sequence type at-
tribute is generally a non-mandatory free-text field, and thus it is
subject to many errors including typos, mis-assignment, and non-
assignment. In GenBank, this problem concerns roughly 18% of
records, an alarming number that should worry the biocuration
community.

To address this problem of automatic sequence type classifica-
tion, we propose the use of literature associated to sequence records
as an external source of knowledge that can be leveraged for the
classification task. We define a set of literature-based features and
train a machine learning algorithm to classify a record into one
of six primary sequence types. The main intuition behind using
the literature for this task is that sequences appear to be discussed
differently in scientific articles, depending on their type. The ex-
periments we have conducted on the PubMed Central collection
show that the literature is indeed an effective way to address this
problem of sequence type classification. Our classification method
reached an accuracy of 92.7%, and substantially outperformed two
baseline approaches used for comparison.
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1 INTRODUCTION

Bioinformatics sequence databases such as GenBank or UniProt
contain large numbers of nucleic acid sequences and protein se-
quences. In the context of uncurated databases, records are pri-
marily defined, uploaded, and annotated exclusively by the submit-
ters themselves without any particular quality control mechanism.
Given this large amount of data and the nature of the submission
process, the records suffer from a large range of data quality issues
[8] including errors, discrepancies, redundancies, ambiguities, and
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Figure 1: Sequence type statistics.

incompleteness. These quality issues can seriously hamper the ef-
ficacy of data mining, and machine learning algorithms.

The published scientific literature has been recently considered
as a source of evidence to help biocurators to detect faulty and sus-
picious records that are inconsistent with the literature [1, 2]. In
this work, we expand on this approach to explore the use of the
literature as the basis of a classifier to help biocurators in iden-
tifying and assigning correct sequence types. Indeed, a sequence
type may be assigned to each record in a biological sequence data-
base to provide information about the nature of the sequence rep-
resented in that record, and can be used in search to filter out irrel-
evant sequences (e.g., search for genome of . . . , search for coding
sequences related to gene . . . , etc.). However, in GenBank the se-
quence type attribute is a non-mandatory free-text field, and thus
it is subject to many errors including typos, mis-assignment, and
non-assignment. Moreover, as there is no clear nomenclature for
the sequence type attribute, it is hard to extract the sequence type
from the free text field. Focusing on GenBank, we consider in this
paper six sequence types for classification: (i) complete genome,
(ii) complete sequence, (iii) complete coding sequence (cds), (iv)
mRNA sequence, (v) partial cds, and (vi) partial sequence.

To get an overview of the current quality of the sequence type
attribute in GenBank, we refer to Figure 1. The figure shows both
the overall proportion of sequence per type (top figure) and the dis-
tribution of sequence length per type using box-plots (bottom fig-
ure) for the GenBank dataset discussed in Section 4. There are four
notable trends here: (i) First, based on the top figure, roughly 18%
of records have unknown type, which from a data quality point of
view can be considered as a serious problem as many records will
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not be able to be retrieved or filtered by type. Here, the sequence
type may have been written with spelling errors or other such
small mistakes (see record with accession number AP0130681), or
may have been omitted entirely (see record with accession number
AP0116152). (ii) Second, given the sequence length distribution, it
is clear that complete genomes/sequences tend to have longer se-
quence length than partial sequences. (iii) Third, looking at the se-
quence length distribution for sequences with unknown type, we
notice that this quality issue appears to affect all sequences regard-
less of length. (iv) Fourth, given a sequence length, it is not abso-
lutely possible to guess the sequence type. For example, viroids,
which are considered as the smallest infectious pathogens have a
complete genome of 249 bp.3

Given these observations, we propose in this paper an automatic
method for sequence type classification. Our approach is primarily
grounded in analysis of the literature, based on a previous study
that shows the role of literature consistency in flagging possibly
erroneous records in GenBank [2]. The intuition is that different
sequence types are discussed differently in articles. Using the list
of published research articles associated with each biological se-
quence record with known sequence type, and a set of features
that capture different aspects of those articles, we train a machine
learning algorithm that will classify a GenBank record into one
of the six sequence types defined above, based on its associated
literature. To the best of our knowledge, this work is the first at-
tempt that proposes to recognise biological sequence types using
the published literature.

2 BACKGROUND AND PRELIMINARIES

Here, we first describe the structure of a sequence record in Gen-
Bank and then specifically define the problem we study.

2.1 GenBank sequence record structure

The format of a sequence record can be regarded as having three
parts: the header, which contains the information that applies to
the whole record; the features, which are the annotations on the se-
quence; and the sequence itself. The header section is composed of
several fields: (i) LOCUS field: contains a number of different data
elements, including locus name, sequence length, molecule type,
and modification date; (ii) DEFINITION field: a brief description of
sequence or sequence’s function, where usually the sequence type
is given in a free text entry; (iii) ACCESSION field: a unique identi-
fier for the record; (iv) SOURCE field: gives information about the
sequence’s organism; (v) REFERENCE field: lists a set of publica-
tions by the authors of the sequence that discuss the data reported
in the record.

It is clear that the header part represents a rich source of in-
formation. Hence, based on the fact that articles discuss the data
reported in the records, and that the record definition provides a
summary of the major information reported in that record, we will
primarily focus on the match between record definitions and the
associated literature, in order to predict the record sequence.

1https://www.ncbi.nlm.nih.gov/nuccore/AP013068
2https://www.ncbi.nlm.nih.gov/nuccore/AP011615
3https://www.ncbi.nlm.nih.gov/nuccore/KC581915

2.2 Research problem statement

We define the problem we study in this paper as follows:
Given (i) a collection of documents which represents the do-

main literature knowledge D =< d1,d2, ...,dn >; (ii) a set of an-
notated records R =< (r1,y1), (r2,y2), ..., (rm ,ym) >, where ym ∈
{complete genome, complete sequence, complete cds,mRNA sequence,
partial cds, partial sequence}; and (iii) the set of documents associ-
ated to each record DR =< DR1 ,DR2 , ...,DRm >, the problem we
study is: for a new record r and its set of associated documentsDR ,
we aim to predict the sequence type y of r .

3 LEARNING SEQUENCE TYPE

Our objective is to classify a record according to one of the six
sequence types defined in the previous section. For that purpose,
we define and use a set of literature-based features that estimate
how a sequence record is discussed in the literature. We consider
three literature-based feature types for each sequence record r .

First, for each sequence record r , we consider a set of features
based on the similarity of its definition and its associated set of doc-
umentsDR . These similarity measures are [10]: matching, overlap,
Jaccard, Dice, cosine, mutual information (MI), and Okapi BM25
[11]. We also used various IR similarity ranking functions includ-
ing the sum of TF-IDF scores (SumTFIDF), the Lucene vector-space
model score (LuceneVSM),4 the BM25 score [11], language model
scores based on (i) the Jelinek-Mercer smoothing (LMJelinekMercer)
[13] and on (ii) a Bayesian smoothing usingDirichlet priors (LMDirich-
let) [13], and an information-based score (IBSimilarity) [4]. These
similarities are computed separately for each of four different doc-
ument fields {title, abstract, body, all document}.

Second, for each r , we consider a set of frequency based features
that estimate howwell r is discussed into its associated set of docu-
ments DR . These frequency-based features include term frequency
(TF), inverse document frequency (IDF), and the TF-IDF score. Note
that these scores are derived from term level statistics. Hence, for
a sequence record r , we calculate aggregated values using the sum,
standard deviation, minimum, maximum, arithmetic mean, geo-
metric mean, harmonic mean, and coefficient of variation of the
IDFs of constituent terms, again considering separately the four
different fields of a document.

Third, we also consider a set of information retrieval-based fea-
tures, specifically those related to query quality prediction. In this
case, we consider a record definition as a query, and its associ-
ated documents are considered as the set of relevant documents.
Here, we consider: query clarity [6], simplified clarity score [7],
similarity of collection–query score [14], inverse collection term
frequency features [9], and query scope [7]. These information
retrieval-based are, as for the other features, computed while con-
sidering separately the four document fields.

Therefore, in total, we consider 171 literature-based features
that characterize how a record is discussed in the literature, and in
particular in its associated documents. The features that we have
described above are explained in more detail elsewhere [1].

Given as input a set of literature-based features for each record r ,
our goal is to combine these inputs to produce a value y indicating

4https://lucene.apache.org/core/6_1_0/core/org/apache/lucene/search/similarities/
TFIDFSimilarity.html
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the sequence type of that record. To accomplish this, we used the
Support Vector Machines (SVM) classification algorithm [5], one
of the most widely-used and effective classification algorithms.

Each record r is represented by its vector of k quality indica-
tors xr = [xr 1, xr 2, ...,xrk ] and its associated label ym ∈ {complete
genome, complete sequence, complete cds, mRNA sequence, partial
cds, partial sequence}. We used the SVM implementation available
in the LibSVM package [3]. Both Linear and Radial Basis Function
kernels were considered in our experiments. The regularization pa-
rameter C (the trade-off between training error and margin) and
the gamma parameter of the radial basis function kernel were se-
lected froma searchwithin the discrete sets {10−5, 10−3, ..., 1013, 1015}
and {10−15, 10−13, ..., 101, 103} respectively, using 10-fold cross val-
idation. Although the differences were not substantial, experiments
with the best radial basis function kernel parameters performed
slightly better than the best linear kernel parameters for the major-
ity of the validation experiments. Thus, all presented results were
obtained using an radial basis function kernel, with C set to 1015

and gamma set to 10−11.

4 DATA DESCRIPTION

Articles: We used the PubMed Central Open Access collection5

(OA), which is a free full-text archive of biomedical and life sci-
ences journal literature at the U.S. National Institutes of Health’s
National Library ofMedicine. The release of PMCOAwe used con-
tains roughly 1.13 million articles, which are provided in an XML
format with specific fields corresponding to each section or sub-
section in the article. We used the Lucene IR System6 to index the
collection, with the default settings for stemming and English stop-
word removal. We defined a list of biomedical keywords, which
should not be stemmed or considered as stop-words, such as the
protein names “THE” and “Is”. Each section of an article (title, ab-
stract, body) is indexed separately, so that different sections can be
used and queried separately to compute the quality features.

Sequences:We work with the GenBank nucleotide database, but
limit the sequence database records we work with to those that are
cited by the PMC OA article collection. Specifically, we used a reg-
ular expression to extract GenBank accession numbers mentioned
in the PMC OA articles, thereby identifying literature that refers
to at least one GenBank identifier. This resulted in a list of 733,779
putative accession numbers. Of these, 494,142 were valid GenBank
nucleotide records that we were able to download using the e-
utilities API ([12]).7 Among the valid records, only 162,913 records
also cite the corresponding articles (as determined by matching
their titles). This process gave us a list of 162,913 pairs of record
accession numbers and PMC article identifiers, which cite each
other. Note that for the 331,229 records that we have put aside,
each record cites an article; however, we do not have access to
all articles through PMC OA. In order to avoid overfitting for the
model where records that belong to the same articles learn from
each other, we have decided to randomly choose only one record

5http://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/ The version used was down-
loaded on October 2015.
6http://lucene.apache.org/
7The sequences were downloaded on October 2015.

Table 1: Detailed accuracy by class.

Class TP Rate FP Rate Precision Recall F-Measure

(i) 0.967 0.005 0.970 0.967 0.969

(ii) 0.800 0.007 0.881 0.800 0.839

(iii) 0.919 0.032 0.913 0.919 0.916

(iv) 0.896 0.003 0.923 0.896 0.910

(v) 0.936 0.035 0.925 0.936 0.930

(vi) 0.945 0.014 0.934 0.945 0.939

Avg. 0.927 0.023 0.927 0.927 0.927

per article to train the model. Hence, we reduced the set of record
we use in our experiments to 15,133 records.

Labels: As stated previously, the sequence type of a record is of-
ten given in the definition field as a free text entry. For example,
the definition of the record with accession number KC581915 is:
“Coleus blumei viroid 1 isolate BJ-1-1, complete genome”. Hence, we
used a simple string matching mechanism to split a record defi-
nition into two parts: (1) the sequence type that is used to label
the dataset, and (2) the remainder of the record definition. The se-
quence type information is removed from the definition text that
is used to compute the features in order to simulate the scenario
of missing or erroneous sequence type in the record.

After processing, among the 15,133 records, we have (i) 2,069
complete genome, (ii) 961 complete sequence, (iii) 4,097 complete
cds, (iv) 589 mRNA sequence, (v) 4,765 partial cds, and (vi) 2,652
partial sequence. The dataset we built can therefore be considered
to be fairly balanced.

5 EMPIRICAL EVALUATION

We now report and discuss the main results of the experimental
evaluation, considering both the effectiveness of the method and
our interpretation of which features are valuable in classification.

5.1 Performance Analysis

Table 1 shows the accuracy of our classifier broken down by the
six classes in the data. The last row of the table shows the overall
accuracy. The overall accuracy of 92.7% shows the effectiveness of
the literature-based features we have described to discriminate be-
tween sequence types. We note that the best accuracy (96.9%) is ob-
tainedwhen classifying complete genomes, suggesting that these se-
quences are discussed in a particular way in the literature. Indeed,
a specific research article is usually devoted to the description of
each complete genome. The results obtained at this stage confirm
our initial assumption that sequences are discussed differently in
the literature based on their types.

In order to show the effectiveness of the method we described,
we provide a comparison with two baseline methods:

• SVM Record-based Features (RBF): SVM classifier trained
with only record-based features, derived from the records
themselves, including the record popularity, organism pop-
ularity, number of coding regions, definition length, etc.

• RandomTree: RandomTree classifier trained using sequence
length only.
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Table 2: Performance comparison.

Algorithm Features

SVM LBF Literature

SVM RBF Record

RandomTree Seq. length

Precision Recall F-Measure

0.927 0.927 0.927

0.502 0.561 0.506

0.469 0.496 0.473

The comparison results are presented in Table 2, where we refer
to our approach as SVM Literature-Based Features (LBF). The re-
sults show that our approach outperforms the two baselines, with
an improvement of roughly 83% over the best baseline. Moreover,
the results show that the literature-based features are highly effec-
tive for detecting sequence types, compared to other features like
sequence length and record internal features. We can conclude that
the literature is an effective source of evidence to help biocurators
to automatically determine the appropriate record sequence type.

5.2 Feature Analysis

We now analyze the informativeness of our defined features in Sec-
tion 3 and consider their effect on learning targeted classifiers. We
useMutual Information (MI) as our primarymetric for feature eval-
uation, where higher values for MI indicate more informative fea-
tures for the given topic.

We provide the mean Mutual Information values for each fea-
ture across different topics in Figure 2. The last column in Figure
2 shows the Mutual Information over all classes. We observe that
across all classes, query quality features are the most informative
features. Looking at the overall MI values, the order of feature
types frommost to least informative is the following: query quality
features, frequency features, and similarity features.

The informativeness of such query quality features indicates
that they are more sophisticated and more elaborated than the
other feature types. The results indicate that an information re-
trieval approach that considers a record definition as a query and
the set of documents related to that record as the set of relevant
documents for the query is a meaningful approach for modelling
the sequence type classification task.

Finally, we have identified the top 5 most informative features
as: inverse document frequency, inverse collection term frequency
score, similarity of collection–query score, query scope score, and
clarity score. Also, comparing art sections, features were more in-
formative while computed over titles, followed by abstracts and
then article bodies. This suggests that short sections are more in-
formative than long sections; they are probably less noisy.

6 CONCLUSION

We have proposed in this paper a new method to automatically
classify sequence types for biological sequence records, by using
features derived from the published literature associated to those
sequence records. The evaluation we have carried out shows that
the literature is a better source of information to address the prob-
lem of sequence classification, than information derived from the
records themselves, including the sequence length. Hence, themain
outcome of this paper is that we have shown that the literature is
a meaningful source of evidence for this task. The classification of

Similarity
 Features

Frequency
 Features

Query
 Quality
 Features

Co
mp
le
te

 g
en
om
e

Co
mp
le
te

 s
eq
ue
nc
e

Co
mp
le
te

 c
ds mR

NA

 s
eq
ue
nc
e

Pa
rt
ia
l

 c
ds

Pa
rt
ia
l

 s
eq
ue
nc
e Al

l

0.0697686 0.00381865 0.0186162 0.0113452 0.0190921 0.0308079 0.112008

0.0492749 0.0122558 0.0248424 0.0136111 0.0277856 0.0425413 0.137092

0.082998 0.0232368 0.0447708 0.0187126 0.0587062 0.0974759 0.253333

Figure 2: Mutual Information values for each class per fea-
ture type, and overall.

sequence records in this way can help biocurators to detect and
correct errors, and will specifically result in higher reliability of
sequence type information in sequence databases.

Future work includes exploring the use of literature to address
other biocuration issues such as duplicate detection. We also plan
to consider the validity of the approach for new records that may
have less associated literature, as comparedwith recordswith abun-
dant referring literature.
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