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ABSTRACT
This paper presentsMarine-tree, a large-scale hierarchical annotated
dataset for marine organism classification. Marine-tree contains
more than 160k annotated images divided into 60 classes organised
in a hierarchy-tree structure using an adapted CATAMI (Collabora-
tive and Automated Tools for the Analysis of Marine Imagery and
video) classification scheme. Images were meticulously collected
by scuba divers using the RLS (Reef Life Survey) methodology and
later annotated by experts in the field. We also propose a hierarchi-
cal loss function that can be applied to any multi-level hierarchical
classification model, which takes into account the parent-child rela-
tionship between predictions and uses it to penalize inconsistent
predictions. Experimental results demonstrate that Marine-tree and
the proposed hierarchical loss function are a good contribution for
both research in underwater imagery and hierarchical classification.

CCS CONCEPTS
• Computing methodologies→ Supervised learning by clas-
sification.

KEYWORDS
Hierarchical Image Classification, CNNs, Deep Learning, Marine
Image Classification.
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1 INTRODUCTION
Classifying underwater life is a paramount task for marine scien-
tists [1, 2]. It is of vital importance to understand the associated
anthropogenic effects on marine habitats if we want to preserve
the natural ecosystem as well as to protect it from potential threats
[3]. To ensure systematic and integrated ecological monitoring,
marine biologists require to periodically obtain images and videos
from different locations of subtidal and intertidal reef communities
[4]. These images are normally obtained using Baited Remote Un-
derwater Videos (BRUVs), Unmanned Aerial Vehicles (UAVs) [5],
Remotely Operated Vehicle (ROVs) or scuba diver-derived photog-
raphy. Thanks to these technological advancements, it is possible
to obtain a large amount of images at high resolution and higher
volumes. Nevertheless, for these images to be useful, it is neces-
sary to label each organism on the image. This poses challenges
that need to be addressed: (i) the annotation process is tedious and
time-consuming [6], (ii) only experts in the field can label these
images correctly due to the complex taxonomic structure of marine
organisms, and (iii) the speed of labelling is often below the speed
of obtaining new images resulting in a backlog of processing. This
often results in a sub-sample of images being processed and a bot-
tleneck between data capture and information delivery to inform
the state of the marine environment.

In order to support marine researchers, some authors have pro-
posed to automate this labelling process with Machine Learning al-
gorithms, specifically, using Convolutional Neural Nets (CNNs) [7–
9]. However, CNNs need to be trained with large amounts of data
to achieve reliable results. This is an obstacle because most avail-
able marine datasets have a reduced number of images and classes,
which often don’t reflect the complex marine environment, thus
limiting the data available for training. Additionally, marine im-
ages are impacted by light attenuation and quality of the water
column impacting illumination with high variability making im-
agery challenging for automated classification approaches. These
images result in poor quality due to weather conditions, tide and
selective absorption of light [10, 11].

The aim of this paper is to present a novel marine dataset for
marine Multi-level Hierarchical Classification (MLHC) of benthic
substrate and invertebrates, which we callMarine-tree annotated up
to a five-level of hierarchy as shown in Figure 1. Marine-tree due to
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(a) Examples of images in Marine-tree.

Biota Cnidaria Corals Black & 
Octocorals

Soft corals & 
Gorgonias

(b) A snapshot of one root-to-leaf branch.

Figure 1: Examples of Marine-tree images.

its properties such as flexibility and variety is an important contri-
bution to existing marine image datasets. Additionally, we propose
a hierarchical loss function and evaluate its performance when
applied with state-the-art MLHC methods. The key contributions
of this work are: (i) a publicly available marine dataset (Marine-tree)
containing more than 160K images labelled up to five levels of hier-
archy divided in two according to climate (Temperate and Tropical),
(ii) a benchmark evaluation of Marine-tree using state-of-the-art
MLHC methods, and (iii) a hierarchical loss function that enforces
consistency of predictions.

2 DATASET
In this section, we provide a detailed description of the Marine-tree
dataset1.

2.1 Source
Marine-tree dataset was generated from images provided by the
School of Life and Environmental Science (LES) at Deakin Univer-
sity, Warnambool. Images were obtained through Reef Life Survey
(RLS) 2, which has become a common approach for monitoring
subtidal reef communities. The RLS program has surveyed more
than 3,300 sites around the world by a combination of scientists
and trained citizens. RLS divers use the underwater visual census
(UVC) technique to record the structure and abundance of the fish
and invertebrate communities along a 50 meter (𝑚) transect line
laid along a depth contour of reef. To capture habitat data, series
of digital photoquadrats are collected at 2.5𝑚 intervals along the
same transect. Photoquadrats are taken from approximately 50 𝑐𝑚
above the seabed (usually sufficient to encompass an area of ap-
proximately 0.3𝑚×0.3𝑚). A flash with a diffuser, or a strobe, is used
to improve the colour spectrum of the photograph unless there is
sufficient ambient light (at very shallow depths) or suspended par-
ticulate matter causes too much back scatter. Raw images are RGB
and have a resolution of around 3, 000 × 4, 000 pixels. These photo-
quadrats (PQs) are later annotated with points classified using an
adapted CATAMI classification scheme [12]. This classification pro-
vides annotations for morphologically distinct algae, corals, sessile
invertebrates, and substratum types to be produced and stored for
later analysis. Figure 2 is a world map representing the distribution
of the locations where images were captured.

1Dataset: https://github.com/tboone91/Marine-tree
2Website: https://reeflifesurvey.com/

Figure 2: Location of RLS campaigns: Red dots represent
approximate location which belongs to the countries in blue.

2.2 Annotation process
Images were catalogued and uploaded to the online annotation
platform Squidle+ 3. Points were overlaid on the images in the
user interface and then annotated by scientific experts according
to the class of benthos that each point intersects. Exemplar images
for each class in the classification scheme are viewable in Squi-
dle+ to reference during the annotation process. As the underwater
conditions and the quality of the camera used to capture the pho-
toquadrat is not controlled, image quality varies. Brightness and
contrast can be adjusted manually during the annotation process
in the user interface of the annotation platform to aid classification
of the points, however changes are not saved to the image file. Ad-
ditionally, images sometimes contain a type of occlusion such as
the survey transect line, in which case the point is moved so that it
no longer overlays the occlusion. If the point cannot be assigned a
class, due to poor image quality, it is discarded.

Figure 3: An example of two RLS diver photoquadrats used
to build the dataset. The images are divided in a 5x5 grid in
the cropping process and the cells with annotations are kept.

2.3 Dataset construction & analysis
After gathering the images, the first step was to crop each object
around its annotation provided in the RLS datasheet. Each image
would provide a maximum of 25 crops (most images had around 6
annotations). We constructed a grid of 5 × 5 as shown in Figure 3.
We saved the crops that were annotated and appended the coor-
dinates on the image filename. We eliminated crops that were too
blurry, were not annotated up to level three or had too much debris
resulting in a total of 161,180 cropped images. Figure 1a shows
examples of cropped images.

The next step was to assign the annotation labels following the
CATAMI classification scheme. Crops that were not labelled until
level three, were discarded. Figure 1b shows the maximum levels of
hierarchy depth that can be assigned to a single image, and Figure

3Website: https://squidle.org/
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Figure 4: Marine-tree dataset classification scheme5.

4 shows the taxonomy of Marine-tree 4. As mentioned before, the
total number of images were divided in two subsets according to
the climate they belong (Tropical or Temperate). Some species were
more abundant in, or restricted to one climate only. Temperate
is approximately double the size of Tropical. The cropped image
size depends on the size of the original image but they are around
600x400 pixels. In our experiments, we need to consider a generic
taxonomic that is complete to all levels. This led us to apply padding,
where if an image is labelled only at the third level, we propagate
this label in the fourth and fifth level. Table 1 shows statistics of
Marine-tree.

Table 1: Number of images and classes per level and partition.
Temperate Tropical Combined

Hierarchy level 118,637 Images 42,548 Images 161,185 Images
Classes

ℓ1 2 2 2
ℓ2 10 9 10
ℓ3 37 34 38
ℓ4 44 38 46
ℓ5 50 52 60

4In this paper we make use of the word taxonomy as a general term knowing that
Figure 4 represents a custom classification scheme.
5https://github.com/tboone91/Marine-tree/blob/main/taxonomy_tree.pdf

Table 2: An overview of annotated marine image datasets.

Dataset name Environment Recording type Classes Images Labeling Hiera.?
F4K - Species [17] Reef Stationary 23 27,350 Masks N
J-EDI [18] Deep sea ROV - 1,500,000 Image level N
HabCam [19] Shelf Sea Towing - 2,500,000 Bounding box N
Croatian Fish Dataset [20] Deep Sea Various 12 794 Bounding box N
QUT Fish Dataset [21] Controlled Various 468 3,960 Bounding Box N
BENTHOZ-2015 [14] Reef AUV 148 9,974 Points Y
Tasmania CPC [15] Reef AUV 19 1258 Points Y
Moorea LB [16] Reef Photoquadrat 9 2,055 Points N
Brackish Dataset [22] Brackish strait Stationary 6 14,518 Bounding box N
Marine-tree Combined Various Photoquadrat 60 161,185 Image level Y
Marine-tree Tropical Various Photoquadrat 52 42,548 Image level Y
Marine-tree Temperate Various Photoquadrat 50 118,637 Image level Y

2.4 Comparison with other datasets
Classification of benthic organisms is of critical importance for the
preservation and monitoring of marine habitats. Corals are vital
for protecting coastal areas and many species rely on them as a
source of food or protection [13]. Several marine datasets have been
created for fish classification but only a few for benthic organisms,
in which we can find BENTHOZ-2015 [14], Tasmania Coral Point
Count [15] and The Moorea Labeled Corals [16]. One important
characteristic about BENTHOZ-2015 and Tasmania Coral Point
Count is that they’re labelled hierarchically but their downside is
that they contain a very limited number of images. Table 2 summa-
rizes the aforementioned marine datasets along with our proposed
Marine-tree dataset (combined, tropical, and temperate).

3 EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of several MLHC
models on Marine-tree.

3.1 Experimental setup
Hierarchical Baselinesi pero Models: To benchmark Marine-
tree, we have implemented seven state-of-the-art MLHC models:
(1) 𝑛-nets: 𝑛 independent networks for each hierarchy level; (2)
𝑛-outs: a single network with 𝑛 output layers; (3) B-CNN: Branch-
CNN [23]; (4) B-CNN_v2: a variant of B-CNN, which takes the
ReLu activation of every branch output and uses them as the input
of the next Fully-Connected layer; (5) Bi-CNN: Bilinear-CNN
described in [24]; (6) MLPH: Multi-linear Pooling with Hierarchy
described in [25]; (7) Flat classifier: flat classification approach
that consists of completely ignoring the class hierarchy, typically
predicting only classes at the leaf nodes and use this prediction to
infer lower levels.
Hierarchical Loss: It is important for an MLHC model to ensure
consistency between predictions across all hierarchical levels. One
way to achieve this is by penalizing inconsistent predictions during
training. We propose to accomplish this by adding a penalty term
to the multi-class cross entropy loss function as follows:

1
𝑚

𝑚∑︁
𝑗=1

𝑛∑︁
𝑖=1

L(𝑦 ( 𝑗)
ℓ𝑖

, 𝑦
( 𝑗)
ℓ𝑖

) − _ log(𝑦 ( 𝑗)
ℓ𝑖

𝑦
( 𝑗)
ℓ𝑖

) (1)

where L(•, •) denotes the cross-entropy function, 𝑦 ( 𝑗)
ℓ𝑖

and 𝑦
( 𝑗)
ℓ𝑖

are respectively the prediction and ground truth for for training
example 𝑗 and level ℓ𝑖 in the taxonomy, 𝑦 ( 𝑗)

ℓ𝑖
is the predicted prob-

ability value for the true parent of the predicted 𝑦
( 𝑗)
ℓ𝑖

, and _ is a
hyperparameter to tune. We note that the penalty term of the loss
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Table 3: Performance comparison of the used MLHC models
on Marine-tree dataset.

Tropical
Network HP HR HF1 Acc@ℓ1 Acc@ℓ2 Acc@ℓ3 Acc@ℓ4 Acc@ℓ5 Cons. EM
𝑛-nets 0.5538 0.6514 0.5915 0.8473 0.6474 0.5000 0.4514 0.4197 0.5294 0.2803
𝑛-outs 0.5534 0.5935 0.5693 0.8427 0.6457 0.4770 0.4376 0.4120 0.7568 0.3561
B-CNN[23] 0.5549 0.6424 0.5897 0.8155 0.67042 0.5129 0.4329 0.4131 0.5018 0.2605
B-CNN_v2 0.4858 0.5148 0.4975 0.8224 0.6191 0.4074 0.3451 0.2973 0.7683 0.2697
Bi-CNN 0.5471 0.5936 0.5652 0.8434 0.6474 0.4730 0.4283 0.3977 0.73497 0.3347
MLPH [25] 0.5995 0.6165 0.6066 0.8533 0.6807 0.5336 0.4892 0.4553 0.8813 0.4208
Flat classifier 0.5568 0.5568 0.5568 0.8071 0.6420 0.4781 0.4425 0.4143 1 0.4143

Temperate
𝑛-nets 0.6899 0.7522 0.7148 0.9217 0.8511 0.6329 0.5683 0.5689 0.6592 0.4653
𝑛-outs 0.6940 0.7157 0.7028 0.9192 0.8468 0.6204 0.5579 0.5560 0.8573 0.5238
B-CNN[23] 0.6939 0.7389 0.7121 0.9138 0.8544 0.6325 0.5569 0.5646 0.7182 0.4833
B-CNN_v2 0.6494 0.6627 0.6550 0.9172 0.8463 0.5488 0.4808 0.4812 0.8722 0.4629
Bi-CNN 0.6879 0.7160 0.6990 0.9143 0.8426 0.6130 0.5557 0.5525 0.8277 0.5179
MLPH [25] 0.721 0.7300 0.7249 0.9285 0.8612 0.6433 0.5918 0.5909 0.9279 0.5722
Flat classifier 0.7086 0.7086 0.7086 0.9190 0.8459 0.6289 0.5749 0.5745 1 0.5745

Combined
𝑛-nets 0.6425 0.711 0.6697 0.8968 0.7978 0.5811 0.5233 0.5129 0.6329 0.4121
𝑛-outs 0.6590 0.6986 0.6748 0.9046 0.8064 0.5831 0.5328 0.5259 0.7759 0.4682
B-CNN [23] 0.6453 0.7029 0.6685 0.8841 0.7934 0.5813 0.5111 0.5141 0.6422 0.4107
B-CNN_v2 0.5896 0.6037 0.5956 0.8975 0.7654 0.4916 0.42398 0.4100 0.8545 0.3962
Bi-CNN 0.6549 0.7029 0.6739 0.8944 0.8005 0.5831 0.5303 0.5248 0.7331 0.4530
MLPH [25] 0.6729 0.6867 0.6787 0.9033 0.8025 0.5948 0.5436 0.5366 0.8972 0.5116
Flat classifier 0.6617 0.6617 0.6617 0.8956 0.7915 0.5735 0.5260 0.5217 1 0.5217

Table 4: Performance of hierarchical baseline models using
proposed loss on Marine-tree (Combined).

Combined
Network HP HR HF1 Acc@ℓ1 Acc@ℓ2 Acc@ℓ3 Acc@ℓ4 Acc@ℓ5 Cons. EM
𝑛-nets_HL 0.6797 0.7446 0.7053 0.9082 0.8102 0.6174 0.5769 0.5670 0.6665 0.4657
𝑛-outs_HL 0.6497 0.6666 0.6566 0.8932 0.7887 0.5648 0.5142 0.5065 0.8846 0.4808
MLPH_HL 0.6887 0.6979 0.6927 0.9090 0.8146 0.6143 0.5641 0.5552 0.9238 0.5369
B-CNN_v2_HL 0.5941 0.6080 0.6000 0.8946 0.7844 0.4865 0.4253 0.4129 0.8713 0.3977

function aims to maximize both 𝑦 ( 𝑗)
ℓ𝑖

and 𝑦 ( 𝑗)
ℓ𝑖

to guarantee consis-
tent predictions while not being applied for ℓ1 – first level of the
taxonomy.
Evaluation metrics: We report the performance of the analyzed
MLHC models using Hierarchical metrics [26, 27], Accuracy per
level, Consistency (average of consistent predictions w.r.t. taxon-
omy), and Exact Match (average of predictions that are both correct
and consistent).
Implementation details6: The MLHC models were implemented
using either VGG16 or VGG19 [28] (according to original imple-
mentation) pretrained on the ImageNet dataset [29]. We used an
image size of 64x64 pixels while fine-tuning the pre-trained models.
All models were implemented using Tensorflow/Keras [30] and
performed on a Linux Ubuntu 18.04.1 LTS Dual Intel(R) Xeon(R)
Silver 4114 CPU @2.20GHz with a GPU NVIDIA Tesla V100. We
used a 12% stratified seeded split for the validation and test from
the training set, a batch size of 128, and Adam optimizer [31] with
a learning rate of 1e-4.

3.2 Results
Performance: Table 3 shows performance of the above MLHC
models using Hierarchical Precision (HP), Hierarchical Recall (HR),
Hierarchical F1-Score (HF1), Accuracy per level (ℓ1 to ℓ5), Consis-
tency (Cons.) and Exact Match (EM) forMarine-tree (Combined) and
its subsets. To assess the effectiveness of the hierarchical loss (HL)
described in Equation 1, we performed experiments on Marine-tree
Combined dataset for 𝑛-nets, 𝑛-outs, MLPH, and B-CNN_v2. The
obtained results are described in Table 4.

6Code repository: https://github.com/tboone91/Marine-tree
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Figure 5: Scatter plots of Exact Match vs Consistency on
Marine-tree (Combined).

Discussion: In light of our experimental results, we make the
following key remarks: (1) The Flat classifier and MLPH show the
best performance in terms of Consistency and Exact Match but
MLPH reports higher HF1 and higher accuracy on the last level;
(2) For Tropical, MLPH reports high Consistency but Exact Match
remains low (≈ 40%). This is due to the architecture being unable
to get higher accuracy for the last levels; (3) Overall, 𝑛-nets and
BCNN are the models that perform the poorest. 𝑛-nets is the only
model that doesn’t share weights with other levels; (4) B-CNN_v2
performs better than BCNN for all subsets. (5) Regarding the loss
function, 𝑛-outs increases Consistency by 10% but the accuracy is
slightly lower. 𝑛-nets, MLPH, and B-CNN_v2 report improvement
in all metrics, and 𝑛-nets is the model that benefited the most from
this loss function.

Finally, Figure 5 shows a plot of Exact Match vs. Consistency.
Ideally, in MLHC, we are looking for a model with both high Consis-
tency and high Exact Match. We observe that while our hierarchy
allows improvement both in terms of accuracy and consistency,
there remain a lot of margin in terms of improvement in particular
to design a top-down divide-and-conquer strategy to constraint
predictions.

4 CONCLUSIONS & FUTUREWORK
In this work, we described a large-scale dataset for marine clas-
sification. Additionally, a benchmark evaluation of the dataset is
performed using several MLHC models. Also, we presented a novel
loss function that tackles the problem of inconsistency between
predictions that would penalize inconsistent predictions. Our re-
sults show that our proposed hierarchical loss function improve the
performance, specially Consistency and Hierarchical F1-Score in
comparison with the baselines. Results demonstrate that there is a
room to develop new effective and efficient algorithms to improve
MLHC. Future work involve testing the method described in [32]
on the marine-tree dataset and investigating MLHC for clustering
in Information Retrieval [33, 34].
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