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Handling Out-of-Distribution Data: A Survey

Lakpa Tamang, Mohamed Reda Bouadjenek, Richard Dazeley, and Sunil Aryal

Abstract—In the field of Machine Learning (ML) and data-driven applications, one of the significant challenge is the change in
data distribution between the training and deployment stages, commonly known as distribution shift. This paper outlines
different mechanisms for handling two main types of distribution shifts: (i) Covariate shift: where the value of features or
covariates change between train and test data, and (ii) Concept/Semantic-shift: where model experiences shift in the
concept learned during training due to emergence of novel classes in the test phase. We sum up our contributions in three
folds. First, we formalize distribution shifts, recite on how the conventional method fails to handle them adequately and urge
for a model that can simultaneously perform better in all types of distribution shifts. Second, we discuss why handling
distribution shifts is important and provide an extensive review of the methods and techniques that have been developed to
detect, measure, and mitigate the effects of these shifts. Third, we discuss the current state of distribution shift handling

mechanisms and propose future research directions in this area.

Overall, we provide a retrospective synopsis of the literature

in the distribution shift, focusing on OOD data that had been overlooked in the existing surveys.

Index Terms—Data Distribution Shift, Out-of-Distribution, Covariate Shift, Concept Shift
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1 INTRODUCTION

XISTING Machine Learning (ML) techniques, partic-
E ularly Deep Neural Networks (DNNs), have shown
unprecedented success across domains, such as com-
puter vision, natural language processing, and recom-
mendation systems [1]. These models tend to exploit
subtle statistical correlations present in the training
distribution, yielding impressive results under the i.i.d
(independently and identically distributed) hypothesis.
However, despite their prowess under controlled ex-
perimental conditions, there is growing empirical ev-
idence highlighting their vulnerabilities to real-world
data distribution shifts. These shifts may often surface
in relation to several confining factors, such as sample
selection biases, non-stationary environments, and other
inherent peculiarities of data generation mechanisms
[2]. As demonstrated by the adversarial examples in [3],
even subtle changes in the data distribution can have
a significant impact on the performance of advanced
classifiers. Therefore, it is imperative to understand and
address these vulnerabilities, especially for systems that
perform safety-critical or high-impact operations such
as medical diagnosis and autonomous vehicles.

The change in data distribution can hamper the

model’s accuracy, making its result unreliable to adapt
to. One of several factors instigating these changes is
the bias introduced by the experimental design due to
the inimitability of the inconsistent testing conditions
during training [4]. In other words, the knowledge
that the model has learned from the training data may
be sampled under conditions different from the ones
it will encounter during actual testing. For graphical
illustration, we refer to Fig. 1 where the large corpus of
similarly and distinctly distributed test data (in feature,
i.e., covariates space or semantic space) are put against
a limited number of instances from the training sample
space. While it is impractical to address all real-world
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test cases, it is crucial that the model be capable of
handling such variations without compromising the
relevance of the deployed model. Moreover, to make
informed decisions about when and how to update the
model, complying to the changes in the distribution
of data that affect the model’s performance is very
important.

Training Data Sample Space Test Data Sample Space

No Shift

Covariate Shift Semantic Shift

Fig. 1: Schematic illustration of data distribution shift
between training and testing data sample spaces. In
general, a model is trained on a limited knowledge of
real-world samples, but it can encounter a whole set of
similar or differently distributed inputs either in feature
or semantic spaces when subjected to testing in the wild.

It is worthy to note that best practices for detecting
shifts in high-dimensional real-world data have not yet
been definitively established [5]. Regardless, numerous
studies have been proposed with the primary objec-
tive of addressing the changes in data distribution by
adapting and generalising to distributionally shifted
samples or rejecting them entirely. In practice, the data
distribution can be shifted in one of two ways: in fea-
ture space (covariate shift) or in label space (semantic or
concept shift). Although numerous review papers have
been released discussing the strategies for effectively
addressing individual shifts, our review is the inaugural
one to recognize these shifts as a collective issue. Rather
than constraining the work into specifics of a single type
of distributional shift [6], [7], we aim to emphasize the
topic into a broader spectrum of research focusing on
how each type of distributional shift is handled to make
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a model reliable in practice. In this paper, we present a
comprehensive survey of the different modelling strate-
gies dealing with data distribution change. Particularly,
we aim to provide a comprehensive and nuanced un-
derstanding of the topic to the researchers by focusing
on the retrospective overview of different methodolo-
gies centralized around handling data distribution shift
problems as a generalized entity. In summary, through
this paper, we offer three distinct contributions to the
academic community in this domain of research:

1) Formalization of Shifts We formalize the preva-
lent types of shift and advocate that modelling
strategies should account for both generaliza-
tion and rejection when subjected to data dis-
tribution shifts. In accordance with this theory,
we link existing topics by examining them in-
dependently to help the research community
understand the practical objective of building
ML models that are robust enough to handle
both types of distribution shifts.

2) Comprehensive Review of Modelling Strate-
gies In light of the presence of other literature
reviews in the same field [6], [7], [8], [9] our
work stands out by providing a comprehen-
sive overview of key discoveries in the field of
related topics, specifically centred around shift
handling objective.

3) Future Research Directions We aim to provide
readers with a deeper understanding of the cur-
rent challenges and opportunities in this topic
while also highlighting potential future research
directions.

2 BACKGROUND
2.1 Data Distribution
Data distribution refers to the arrangement of data

values in a dataset and provides insights into patterns,
characteristics, and relationships within the data [10].
It is crucial to understand data distribution that spans
over a wide range of topics, including statistics, machine
learning, and data analysis, in order to establish one
of many objectives such as discovering trends, iden-
tifying outliers, and making informed decisions. The
distribution of data obtained from a sample is vital in
understanding how to analyze it, as it provides a pa-
rameterized mathematical function that can be used to
calculate the probability for any individual observation

2

from the sample space. In the field of statistics, different
kinds of data distributions exist, such as normal [11],
uniform [12], skewed [13], and bimodal [14], where
each has their unique characteristics associated with
the sample. In Machine learning and Deep Learning,
probability distributions are considered to model real-
world data and make predictions [15], [16]. A proba-
bility distribution [17] is a mathematical function that
describes the likelihood of different outcomes for a
random variable. It allows for the quantification of
uncertainty and the making of predictions based on
past data. These algorithms often involve estimating
probability distributions from sample data and using
them to generalize to new examples.

2.2 Why Data Distribution Changes?

There is an assumption that the distributions specified
by unconditional or conditional models are static, re-
maining unchanged from the time they are learned to
the time they are used [4]. However, if this assumption
is not true and the distributions undergo some kind of
change, then we must account for this change or at least
the possibility of it. This requires examining the reasons
why such a shift may occur. There are several reasons
why an ML model might exhibit a data distribution
shift.

Bias During Sample Selection: The concept of sample
selection bias refers to a fault in the process of collecting
or labelling data that leads to the uneven distribution
of training examples. This results from the fact that
the training examples were obtained through a biased
method, which means they may not accurately reflect
the environment where the classifier will be used. Dur-
ing the sampling process of the training data, the data
points x!¢ may not precisely represent the actual testing
distribution P**(X,Y’). For instance, while generating
a handwritten dataset, one may get rid of an entirely
obscure character, although it may hold true that some
characters are more likely to be written in an unclear
manner.

Deployment Environment Changes: It is often true
that data remains non-stationary to time and space
change [18]. Environments are dynamic in general, and
sometimes the difficulties of matching the learning sce-
nario (with training data) to the real-world use (test
data) are constrained by these changes. Such scenarios
make it challenging to develop an understanding of
the appropriateness of a particular model in the cir-
cumstance of these environmental changes, thus the
prevalence of the shift. For example, a commonly ob-
served issue with ML models trained to predict elec-
tricity demand based on historical data of usage time,
temperature, and humidity is their failure when non-
stationary changes such as climate and the adoption of
renewable energy sources occur.

Change in the Domain: Occasionally, a new sample
might be collected from a different domain to repre-
sent the same category. In this regard, various domains
may use various terms to refer to the same entity. The
changes in the domain are characterized by the fact that
the measurement system or the description technique
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Table 1: List of abbreviations used throughout the paper.

Abbreviations  Full forms

FID Frechet Inception Distance

LPIPS Learned Perceptual Image Patch Similarity

RMSE Root Mean Squared Error

MAE Mean Absolute Error

TPR True Positive Rate

FPR False Positive Rate

TNR True Negative Rate

KID Kernel Inception Distance

ToU Intersection of Union

FDR False Detection Rate

AUC Area Under Curve

NMI Normalized Mutual Index

AP Average Precision

AUROC Area Under Receive& Operating Characteristic
urve

AUPR Area Under Precision Recall Curve

FPR False Positive Rate

OSCR Open Set Classification Rate

BWF Backward Forgetting

FWT Forward Transfer

BWT Backward Transfer

MCR Mean Class Recall

of the feature of a dataset is changed. For example, in a
computer vision scenario, the change in visual concepts
such as illumination conditions, image resolution or
background of z!¢, relative to z!” might contribute to
the domain shift [19].

Existence of Uncategorized Instances: The closed
space assumption of traditional ML algorithms certainly
doesn’t hold true in the open world where unseen situ-
ations can emerge unexpectedly [20]. It is an inherent
fact that the test set may contain some classes that
are not present in the training set [21]. Apparently, the
model may experience a shift in the semantics of the
representation it has learned from the training set as a
result of the appearance of these unseen instances. For
example, if a binary classifier trained with categories of
dog and cat suddenly sees a fox, whilst the covariates of
dog and fox might have some correlation, they represent
entirely different semantics.

3 FORMALIZING DISTRIBUTION SHIFTS

In this section, we will formalize different distribution
shifts by adhering to the official definition of the topic
presented in [2] and building upon it in terms of ad-
dressing the problem. Abbreviations used in the paper
are enlisted in Table. 1.

3.1 Preliminaries and Definitions

Let {(21",41"), (@ ,y5), ..., (xl/,y")} be the labelled
training data sampled from distribution D' (X,Y),
where z!” € X, and y!” € Y represent the i‘" sam-
ple and the associated label, respectively. Similarly, let
{(xle, yte), (xhe, yte), ..., (xl¢, yi€)} be the test data sam-
pled from a test distribution D**(X,Y). Let, P'"(X),
P! (Y) be the marginal distributions and let P (Y| X),
and P*(Y|X) be the conditional distributions for the
training and test data respectively. Based on this, we
define the following:

Definition 1: (No-Shift) The test data is said to be not
shifted (in other words in in-distribution (ID) with the
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training data) when P (X,Y) = P'(X,Y). In this sce-
nario, the statistical properties of the data (both the marginal
and conditional distribution of the input variables) are as-
sumed to be same between the training and testing phases.
ie., P'"(X) = P*(X) and P (Y|X) = P*(Y|X).

If L(f(x),y) is the loss function for some particular
pair of inputs X, and outputs Y, we define following:

Definition 1.1 (True Risk): is mathematically defined as:

Rtrue(f) = E [L(f(X)a Y)} (1)

DPtrue

where pirye is the true distribution over the z, and y
which is unknown.

Definition 1.2 (Empirical Risk): is mathematically defined
as:

Remp(f) = E [L(f(X),Y)] =

1
Pemp n 4
()
where pey,,p is the sampled distribution which consists
of limited number of samples quantitatively smaller
than p4e and can lie in different regions of sample
space of Dipye. Under no-shift condition, which is a
fundamental ground of ii.d hypothesis, it is generally
assumed that the empirical risk minimization (ERM)
[22] leads to consistent generalization. Since Dy, is the
representative of D, the model trained using ERM will
perform similarly on the test data. With large enough
training samples, pemp approximates pir,. well and
empirical risk converges to the true risk i.e., Repp(f) —
Rirue(f). This renders that for any f € F, minimizing
the empirical risk minimization performs similarly to
true risk minimization leading to optimal prediction
performance.

arg min Rep,p(f) ~ argmin Rypye(f) (3)
f f

Conversely, the test data is said to be Out-Of-
Distribution (OOD) when D (X,Y) # D'*(X,Y). In
this scenario, the model trained with ERM will perform
poorly as Ren,(f) does not accurately reflect Ryyye(f),
and Dirye # Pemp. Under the OOD framework, we
define two independent distribution shifts as follows:

Definition 2: (OOD with Covariate Shift) The test data is
in OOD with covariate shift, when it is subjected to change of
distribution in feature space i.e., P'"(X) # P'(X), but, the
conditional distribution of the target given the input remains
unchanged i.e., P'"(Y|X) = P*(Y|X).

As can be seen from Fig. 1, the training data contains
images of dog sitting front of a grass, whereas in the
test space (highlighted in blue) the dog appears to be
wearing a raincoat in front of a dark background. Here,
although the conditional distributions (labels of training
and test) should remain same, the features representing
the respective labels are distinct. In such cases, based
on the inductive biases, the learning algorithm may
abruptly fail to correctly classify the test samples.

Definition 3: (OOD with Semantic Shift) The test data
is said to be in semantic shift with the training data when
their relationship between the input and the target variables
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change i.e., P (Y|X) # P'(Y|X). This type of shift can
occur regardless of whether the margin distributions of the
input variables change i.e., P (X) # P'*(X) or remains
the same P (X) = P*¢(X).

In Fig. 1, although the test samples highlighted in
red share visual similarity to the samples of P (X)
(fox might look like a dog, and a cub might look like
a cat), the conditional distribution of these samples
entirely differ. In this example, the features P'"(X) and
= P'(X) share some similarity, while the semantic
shift might occur due to entirely different features as
well. For instance, a test sample being any non-lookalike
object to any of the training set.

3.2 Real-world Shift Dynamics
In practice, during the production phase, machine learn-
ing models are exposed to test data that does not strictly
adhere to the training distribution. In fact, the test data
can be shifted into one of the two prevalent shifts:
covariate and semantic whose distributions are denoted
as DY, and DY respectively. Therefore, mathematically
we can say:

{D¥., D5} C D(X,Y) 4)

Now that the i.i.d assumption is routinely violated,
ERM does not account for the changes in distribution,
leading to suboptimal generalization and prediction
performance. Intuitively, when a data is drawn from
the sample space of test dataset, then it can experience
either experience no shift or be shifted in covariate space
or semantic space. In the face of distribution shifts, it is
highly important for machine learning models to move
beyond the ERM framework to handle the OOD inputs.
For instance, for a test sample z!¢ drawn from D', the
objective should be minimizing the OOD risk Roop,
which equates to minimizing risk for covariate, R,
and semantic shift, R, simultaneously.

argmin Roop(f) = argmin Reoy (f)+arg min Reepm (f)
f f

f
©)
4 DISTRIBUTION SHIFTS MITIGATION STRATE-
GIES
In this section, we discuss different approaches em-
ployed in the literature to handle different types of
distribution shifts. Specifically, we review the modelling
strategies in two perspectives; the first one being related
to the feature space shift (covariate shift), and the other
one associated with the shift in concepts (semantic shift).
For each category, we review several approaches by
focusing on their corresponding representative works
in terms of types of problem domains such as computer
vision and natural language processing. Moreover, a
global picture of how these approaches are linked to
solving a common problem of data distribution shift is
discussed.

4.1 Review Structure of the Paper

Our study offers a comprehensive survey of existing
methodologies for mitigating data distribution shifts.
The paper is structured to guide readers systematically,
ensuring optimal comprehension. We discuss, compare,
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and report benchmark results for each mitigation strat-
egy presented in the taxonomy illustrated in Fig. 2. Ini-
tially, we provide a systematic comparison of method-
ologies, as depicted in Tables 2a and 2b. This com-
parison is conducted from a fundamental perspective,
evaluating different criteria pertinent to each shift type.
Subsequently, we present schematic diagrams of each
mitigation methodology in Figs. 3 and 4, illustrating the
operational mechanisms of these methods concerning
data-point/sample classification and decision boundary
establishment. Thirdly, we report benchmark results of
methodologies across covariate and semantic shifts in
Figs. 5 and 6. Here, we present a comparative overview
of the highest reported performance metrics (e.g., accu-
racy, AUROC) for each method on the target dataset, as
documented in their respective papers. All values are
drawn directly from the original sources, without re-
evaluation. Furthermore, to enhance practical guidance
for the readers, we also discuss most of these methods
in a separate tables (Tables. 3, and 5) where we point out
their core working strategy, best use case, and potential
limitations. Lastly, through Tables 4, and 6, we provide
a comprehensive report of latest research in several
applied domains, highlighting corresponding shift han-
dling mechanisms, along with their core technological
synopsis.

4.2 Covariate/Feature Shifts
The phenomenon where the distribution of input fea-

tures (or covariates) in the training data diverges from
that in the test data test while the conditional distribu-
tion of the targets given the inputs remains unchanged
is known as distribution shift in the feature space [23].
This shift can be particularly troublesome in real-world
situations where the context or environment in which
models are used changes over time or is not the same as
the one in which they were trained. Neglecting these
changes may result in less than ideal model perfor-
mance or even model failure.

As investigated by [24], the models trained on ERM
often use a cheating way to perform classification, by
learning spurious features from the training data which
holds no stable properties of the sample. Under co-
variate shift, often models are very likely to pick up
these spurious correlation while missing out the robust
features that has causal relationship with the output
labels [25]. This inherent fact often gives rise to poor
generalization on the new data that are sampled with-
out such biases.

4.2.1 Transfer Learning
Transfer learnings are often used from the data suffi-

cient source task to complement the similar but non-
identical target task with limited training samples [88].
The objective of transfer learning technique is to reduce
the amount of new labeled data required in the target
domain, and possibly avoid the cost of collecting an
entire new labeled training data [89]. In the context
of transfer learning, a domain is defined by its feature
space and its marginal probability distribution while a
task is characterized by its label space and an associ-
ated objective predictive function. Transductive transfer
learning [90] explains the phenomenon similar to that of
Domain Adaptation, where there is shift in the domains
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Table 2: Systematic Comparison of Different Types of Shift Mitigation Strategies

Criterion

(a) Covariate Shift

Transfer Learning

Domain Adaptation

Domain Generalization

Distribution Assumption

Data Access
Learning Method

Testing Strategy

Model Selection

P'(X) is different but related to
PtT ( X)

Access to labeled P'*(X)
Pretraining and fine-tuning

Evaluate on fine-tuned target

Best pre-trained model for fine-
tuning

P'*(X) is shifted but has over-
lap with P*"(X)

Access to unlabeled P**(X)
Source training and adaptation

Compare performance before
and after adaptation

Best adaptation method per do-
main pair

P'*(X) is entirely unknown

No access to P**(X)

Contrastive learning, IRM, Fea-
ture disentanglement learning
Measure zero-shot generaliza-
tion

Best generalization across do-
mains

Regularization Level Minimal High (to prevent overfitting to  Very high (for domain-invariant
source domains) learning)
Generalization Capability Poor Moderate Strong
(b) Semantic Shift
Criterion Anomaly Detection OOD Detection OSR CL

Core Objective
Training Data Assumption

Test Data Assumption

Detecting rare, extreme out-
liers

Only ID

Rare anomalies that share

Detect entirely different dis-
tributions

OOD data may be available
for regularization

Samples from entirely differ-

Balance ID classification and
unknown rejections

ID and OOD data

Samples from ID and OOD

Learning with evolving data
over time

ID and new OOD classes
evolved over time

Samples from old ID and

some features with ID ent dataset or domain distributions newly evolved OOD
Data Availability Labeled 1D, unlabeled Labeled ID, unlabeled or Labeled ID and unlabeled Labeled past ID, unlabeled
anomalies uniformly labeled OOD OOD emerging OOD
Training data Testing data
‘Target Dom. XX,
Source Domain No labels XX X2, XXX, X,

. XP (xxxt’ x}:}&(}f‘ X X l{)% X&},{yg*
X ? X {x} X5 At XKy & XXX xhgad xX Xxhaad
}A s Ll ; 2 Dom. 1 XXl A, XX A‘AA‘A 7y &‘AAA‘A
H Target Domain ,* £ .82 Domain Adaptation o XXI‘ Khan x ;l)‘(l‘ pomain % )&X):O‘A t“‘ XEE A xgl{‘

N A X I‘A s xg X‘I*A Generalization A A:‘A‘ . A AMA TRxak
ot Jrster Leaming ;ﬁ- X }ﬁt TR Shaat T TAAs Agags, Classifier j+ , A
- ,lﬂl. "g “ ol Cusiier A& aat Margin

A,

4
A
L Xi ‘A
Classifier Margin 4 s
Source Dom.
4 Class A (Source Domain) ® Class C (Target Domain)
X Class B (Source Domain) M Class D (Target Domain)

AClass A (Source Dom.)
XClass B (Source Dom.)

(a) Transfer Learning

(b) Domain Adaptation

Dom. 2 fi
X Margin

X A‘é‘ A Class A(Dom. 1) X Class B (Dom. 1)
- A Class A (Dom. 2) X Class B (Dom. 2)

AClass A (Target Dom.) X
Dom. % 4 Class A (Dom. 3) X Class B (Dom. 3)

XClass B (Target Dom.)

(c) Domain Generalization
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No Shift| 4 X
Shift |
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Shift 2
Shift 3

(d) OOD Generalization

Fig. 3: Schematic representation of different mitigation approaches for handling Covariate Shift.
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Fig. 4: Schematic representation of different mitigation approaches for handling Covariate Shift.

of training and test sets without the task being changed.
In this kind of setting, it is possible that either the

feature spaces are different or the marginal

distributions of the input data are different [91].

In the past, transfer learning approaches

specific parts of the model to be carried over between
tasks [92], [93], until recently where large cohort of

probability

considered

researches [94], [95] focused on the problem of data
distribution changes, especially relating to the covariate
shift. A study in [96] actually carried out an investi-
gation to answer what knowledge is being transferred
from the source domain to the target domain in the
process of transfer learning. This study offered novel
tools and analysis approach to identify factors that con-
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Fig. 5: Results overview of existing popular benchmarks
in mitigating Covariate Shift. (a) Transfer Learning ac-
curacies on CIFAR-100 datasets, (b) Domain Adaptation
accuracies on OfficeHome dataset, and (c) Domain Gen-
eralization accuracies on PACS and VLCS datasets.

tribute to successful transfer and pinpoint the network
components responsible for it. [97] delved into the con-
text of the Unsupervised Transfer Learning Challenge,
highlighting the benefits of unsupervised pre-training of
representations and demonstrating how it can be lever-
aged in situations where the focus is on generalizing to
the instances that originate from a different distribution
than the training set. Other variants have extended the
fundamental idea of this field into adaptive [98] transfer
learning that deals with learning an accurate model
using tiny amount of new data, and online transfer
learning [99] which makes an assumption of training

data in the new domain arriving sequentially.
A TL algorithm to handle both support and model

shift was studied in [100]. In this algorithm, the shift
handling is performed by transforming both features,
and labels of the input by a location-scale shift allowing
more flexible transformations. In [101], a conditional
shift regression task was studied using deep transfer
learning for machine health monitoring in industrial
application. The authors specifically proposed a hybrid
loss function with achieve two objectives; reducing the
prediction error, and preserving global characteristics
of conditional distribution dominated by target data.
A similar study in TL for regression under conditional
shift was conducted in [102] where they considered a
special case of source and target domains sharing same
margin distributions but non-identical conditional prob-
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ability distributions. The authors proposed a framework
for TL based on fuzzy residual that can learn the target
model in a model agnostic way without neglecting the

properties of the source data.
The literature in the use case of transfer learning

has been substantial, and is not plausible to cover all of
them in detail. Therefore, we guide our readers to other
applied studies that relays specific use case of transfer
learning in reinforcement learning [103], medical image
analysis [104], machinery fault diagnosis [105], senti-
ment analysis [106], intrusion detection systems [107].

4.2.2 Domain Adaptation
The statistical attributes of data from any domain might

undergo transformations over time, or newly acquired
samples could accumulate from diverse sources, leading
to what is known as domain shift. When there is a
misalignment between the distributions of training and
test data, the performance of the trained model is prone
to deteriorate upon application to the test data. Domain
adaptation (DA) represents a specific subset of transfer
learning where labeled data from one or multiple per-
tinent source domains is leveraged to perform tasks in
a distinct target domain [108]. The principal objective
of domain adaptation is to learn a model using labeled
data from the source domain that can generalize well
to the target domain by minimizing the disparities be-
tween the domain distributions [109]. There has been
numerous study in the long line of literature in the
field of supervised DA [110], [111], [112], [113], semi-
supervised DA [114], [115], [116] and unsupervised DA
[45], [117], [118], [119] attempting to solve the non-trivial
task of adapting the source trained model into the target
domain in ML systems. Specifically, in this section we
try to explain the DA techniques specifically curated
for dealing with covariate distribution shift. While our
taxonomy groups methods according to their primary
design focus, e.g.,, DA methods under covariate shift
it is important to acknowledge that many modern DA
variants inherently address aspects of semantic shift as
well. Variants such as open-set DA [120], partial DA
[121], universal DA [122], and class-incremental DA
[123] explicitly account for label space mismatches, in-
cluding scenarios where the target domain contains un-
seen or partially overlapping classes. These approaches
extend beyond the classical covariate shift assumption
(i.e., P(X) changes while P(Y|X) remains fixed) and
instead operate in regimes where the conditional distri-
bution P(Y|X) itself shifts, which is central to semantic
shift. However, these methods typically address seman-
tic shift arising from label space divergence, rather than

deeper semantic reinterpretations of same label.
In [124], researchers have considered a DA study

in handling two types of distribution shift; one be-
ing the distribution of the covariates, and other the
conditional distribution of the target data given cross
domain covariate shift. To handle such shifts, the study
proposed approaches based on kernel mean embedding
of distributions (conditional and marginal), empirically
verifying their theoretical claims with experiments on
real world problems. Another research studied the DA
problem under open set label shift where label distribu-
tion can change unexpectedly as well as novel concepts
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Fig. 6: Results overview of existing popular benchmarks in mitigating Concept Shift. (a) Plot of AUROC vs AUCPR
values of existing AD approaches. (b) AUROC plot of OSR methods against two popular benchmark datasets:
CIFAR-10 and TinyImageNet. (c) Near and Far OOD AUROC plot of popular OOD detection benchmarks. (d)
Accuracy plot of Task-Incremental Learning vs Class-Incremental Learning for popular CL benchmarks.

can appear during deployment [125]. They proposed
learning a target classifier, termed as Positive-Unlabeled
(PU) learning where the learners objective is to estimate
the target label distribution including that of newly
introduced classes as well. With rigorous experiments
across several vision, medical, and language benchmark
datasets, a well-posed problem was offered with signif-
icant improvement in the target domain accuracy. Sim-
ilarly, a large-scale benchmark was introduced in [126]
that consisted of over 500 distribution shift pairs across
language, vision, tabular datasets. These distribution
shifts focused not only on class-conditional shifts but
also the label marginal shifts.

4.2.3 Domain Generalization .
In practical scenarios, it’s infeasible to collect training

data across every conceivable domain. The capacity
of a model to extrapolate from familiar domains to
unfamiliar ones is paramount. Domain generalization
addresses the intricate task of educating a model using
data from one or several source domains so that it can
adeptly generalize to novel, unseen target domains that
share the same label space. Very often in the literature
[127], [44], [128] this technique is used to in conjunction
with out of distribution (OOD) generalization [129].
The only difference being the former employs multi-
ple training datasets from different domain for model
training purpose [130]. Nevertheless, this is achieved
without the luxury of accessing any data from the target
domain during the training phase. While the OOD
generalization is a more generic term, both share the
same objective of generalizing well on unseen domain

by capturing domain-agnostic representations.
In the realm of machine learning, the generaliza-

tion aptitude of a model is frequently contingent upon

the volume and heterogeneity of the training dataset.
When confronted with a constrained dataset, data aug-
mentation emerges as one of the most cost-effective
and straightforward strategies to proliferate samples,
thereby bolstering the model’s generalizability. The pri-
mary aim of data augmentation-driven techniques is to
amplify the variance within the existing training dataset
by employing diverse data manipulation methodolo-
gies. Concurrently, this process also augments the over-
all volume of the dataset. One of the DG study in [131]
aimed to improve the performance estimation of the
model in the presence of distributional shift without
supervision. They used a set of domain-invariant rep-
resentations as a proxy model for an unknown true
target labels where the accuracy of the resulting risk
estimates depended on the target risk of that model. The
study addressed the generalization of range-invariant
representations and showed that the complexity of the
latent representation has a significant impact on target
risk. Empirically, their method facilitated self-tuning of
the DA models while accurately estimating the tar-
get error of a given model under distributional shifts.
Another empirical paper [132] studied the problem of
graph OOD generalization by evaluating eight different
datasets representing different types of distributional
shifts on graphs. These datasets were used to perform a
comprehensive empirical evaluation of popular DG al-
gorithms, graph expansion methods and GNN models.
They came up with an interesting deduction that most
DG algorithms did not improve OOD generalization
performance when confronted with different types of
domain shifts on the graph. Instead they discovered that
the optimal combination of advanced GNN models and
robust graph expansion methods can effectively achieve
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state-of-the-art performance in graph OOD generalisa-

tion problem.
Unlike the straightforward application of principle

of invariance in images, identifying invariant features
within graph data is inherently challenging. A study in
[133] addressed this challenge of applying invariance
principles to graph data under distribution shifts. In
particular, they proposed a causality inspired invariant
graph learning to ensure OOD generalization on graphs.
The authors claim that true OOD generalization can
be achievable if the focus is shifted towards subgraphs
that hold substantial information regarding the causal-
ity behind label assignments. The proposed technique
involved an information-theoretic objective designed to
identify and safeguard these invariant intra-class in-
formation, thereby ensuring that the learned subgraph
representations are resilient to distribution shifts.

4.3 Concept/ Semantic Shifts
[154] defines concept as a function learned by an

algorithm that maps input values to their corresponding
output values, as defined by a set of training examples.
Concept shift, or drift in some literature [155] occurs
when the posterior probabilities of the input and labels
change. Due to the complex and dynamic nature of data
distribution shift that occur over time, the model can
be presented with new concepts (e.g. new categories
of objects) at any time [156]. The introduction of new
concepts can result in the catastrophic failure of a model
due to its reliance on the iid hypothesis for prediction.
Therefore, handling these shifts is essential for maintain-
ing the robustness of ML models. Often in computer
vision, the change of concept is used interchangeably
with change in semantics as it represents the change in
features intrinsic to the object [157], [7].

In this section, we outline various methodologies

and techniques that have been studied as part of ad-
dressing this problem, with either explicit or implicit
association with the concept shift.

4.3.1 Open Set Recognition
Traditional classification methods require the system to

classify all the test instances into one of the trained
classes, disregarding the prevalence of concept shift that
takes places in an open world. Instead a robust ML
system must constrain its classification criteria within
the known paradigm of learned classes whilst rejecting
unseen classes that are irrelevant and meaningless to
what it has learned. Open set recognition holds two
supposition to enhance the robustness of ML systems;
one is to accurately classify samples into known cate-
gories, and the other is to detect and reject unknown
samples [8]. Sometimes also referred as open world
machine learning [158], this approach aims to elimi-
nate the risk of mistakenly categorizing an unknown
instance into one of the known categories. One of the
challenges in formulating OSR method is to optimize
the model for accurately estimating the probability of
all known classes while maintaining precise recognition
of the unknown classes [159]. In this regard, several
approaches have been studied in ML research to address

this concept shift problem.
In general, majority of DNN's penultimate layer are

connected to the Softmax layer which is responsible to
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produce a probability distribution over the total number
of known concepts it is trained on [160], [161]. It was a
common technique for handling samples arising from
unknown concept by assigning a threshold with an
assumption that unknown samples would incur low
probability. However, this type of uncertainty thresh-
olding technique was later found to be simply not
enough to determine what is unknown because of two
reasons. First, the unknown samples are usually known
to hold a really large sample space in an open world
and generalizing to this large subspace was challenging.
Second, the counterfactual, and adversarial images can
really fool the model by producing high confidence
scores regardless of them being unknown. To cope up
with this issues, one of the preliminary study in OSR
proposed OpenMax [63] where the existing deep neural
network (DNN) was modified by introducing a new
layer with the objective of assessing the likelihood of
the input belong to an unknown concept. By applying
distance normalization process based on extreme-value
meta recognition on the activation patterns of DNN’s
penultimate layer, the rejection probability was deter-
mined for unknown images. By doing so the system was
able to effectively reject misleading, unknown, and even
many adversarial images significantly reducing the ob-
vious error of traditional DNN’s in open space. Several
consecutive studies were studied aiming to enhance the
OSR benchmark results. An interesting OSR research
based on sparse representation was studied in [162]
which used class reconstruction errors for classification
task. The proposed framework is grounded on the prin-
ciple of Extreme Value Theory (EVT) and unfolds in
two main stages. The approach initially models the tail
distributions of both matched and non-matched recon-
struction errors by employing EVT, thereby transform-
ing the intricate OSR issue into two separate hypothesis
testing situations. Afterwards, in the second phase, the
method entails calculating the reconstruction errors for
a test sample from each category and the confidence
scores that originate from the two tail distributions are
combined to identify the test sample’s actual identity.

4.3.2 Out-of-Distribution Detection

The emergence of out-of-distribution (OOD) detection
[163] in the field of deep learning is a response to the
common issue of models being overconfident in classi-
fying samples from different semantic distributions in
image classification and text categorization tasks [7].
This methodology relies on a scoring function that
converts the input into an OOD score, signifying the
extent to which the sample is considered differently
distributed from that of training data [164]. Although,
the separation of ID and OOD data remains a non trivial
task, it is arguable that continued research progress in
OOD detection requires insights into the fundamental
cause and mitigation of model overconfidence on OOD
165].

: 111 [166], the researchers introduced GradNorm, a
simple yet effective method that utilizes information
from the gradient space to identify OOD inputs. Grad-
Norm specifically utilized vector norm of gradients,
which are backpropagated from the Kullback-Leibler
divergence between the softmax output and a uniform
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Table 3: List of Popular Covariate Shift Mitigation Papers, including their Core Strategy, Best use case, and
Limitations.

Type

Reference (Year)

Core Strategy

Best use

Limitation

SAM [26] (2020)

uNet. [27] (2022)

Minimizes sharpness and loss jointly

Evolutionary search over modular sub-
nets

Reduces overfitting to source domains

Modular transfer across domains

High compute cost; ignores domain
structure
Costly search; limited to predefined
modules

TL BigT [28] (2020) Transfer of large pre-trained models Strong baseline under covariate shift Requires massive compute and data
resources
Bamboo [29] (2022) Online model selection with boot- Dynamic adaptation under shift Needs access to unlabeled target data
strapped risk streams
Astro [30] (2023) Transformer-based meta-learned ini- Few-shot adaptation under distribu- High model complexity; meta-training
tialization tion shift required
CeiT [31] (2021) Combines CNN token embedding with ~ Visual tasks needing inductive bias Less effective on small data or non-
Vision Transformer visual domains
CDAN [34] (2018)  Aligns joint feature—label distributions Supervised DA with label shift Sensitive to classifier confidence and
via adversarial training adversarial training stability
SWG [35] (2023) Aligns Wasserstein geometry between Unsupervised DA with strong struc- Computationally intensive; limited
domains ture shift scalability
PGA [36] (2024) Promotes geometry alignment using Unsupervised DA with label imbalance Relies on pseudo label quality; sensi-
pseudo labels and self-training tive to noise
DA MMD [37] (2020) Minimizes domain discrepancy via Simple and effective DA baseline Simple and effective DA baseline
MMD loss
GVB [38] (2020) Gradually aligns features via auxiliary DA with class-boundary refinement Requires careful scheduling and tuning
boundary loss
FixBi [39] (2021) Bidirectional self-training with reliable Class-balanced unsupervised DA Sensitive to early pseudo label errors
pseudo labels
SHOT [40] (2020) Source-free DA using feature clustering DA when source data is unavailable Relies on target structure; tuning is
and pseudo labeling tricky
ERM [44] (2020) Minimizes average empirical risk Strong baseline for DG Ignores domain-specific signals and
across source domains variance
IRM [24] (2019) Learns invariant predictors across do- DG with strong causal assumptions Hard to optimize; often underperforms
mains in practice
DANN [45] (2015)  Adversarial feature alignment via do- Early DA and DG benchmark May confuse domain-invariant and
main classifier task-relevant features
DG  MixUp [47] (2017)  Interpolates inputs and labels for regu- Improves generalization and robust- May underperform on complex or
larization ness structured shifts
SWAD [48] (2021)  Averages weights from flat minima for DG under training instability Assumes flatness correlates with gen-
stable generalization eralization
Table 4: List of Applied Research Papers Dealing with Covariate Shift Problem
Type Reference (Year) Applied Area Core Technology Dataset Type Used Metrics
Sohn et al. [134] (2023) Image Synthesis Generative ~ vision  transformers, Vision data FID, LPIPS
Prompt tuning
Qian et al. [135] (2023) Machine Fault Diagnosis Conditional alignment, I-Softmax loss ~ Vibration data Accuracy
TL Zhu et al. [136] (2023) Machine Fault Diagnosis Bayesian semi-supervised TL, MC Vibration data RMSE, MAE
dropout
Bierbrauer et al. [137] (2023) Intrusion Detection 1D CNN, Random Forest Network traffic TPR, FPR, TNR
Zhou et al. [138] (2024) Intelligent Transport Federated TL, Siamese NN, Spatio- Positioning data RMSE, MAE, MAPE
temporal clustering
Xiao et al. [139] (2024) Heterogeneous Labels Random Walk, LSTM, Meta-learning Image data Transfer Accuracy
Li et al. [140] (2024) Image Classification Variational NN, Conditional alignment Synthetic, Multi-domain ~ Adaptation Accuracy
Hoyer et al. [141] (2023) Visual Recognition Unsupervised DA, Masked image Segmented images Accuracy, IoU
modeling
Truong et al. [142] (2023) Scene Understanding Conditional ~ structure net, Self- Vision data Accuracy
attention
DA Kim et al. [143] (2023) Text-to-Image CLIP, Diffusion, Pose filtering Text-image, 3D data KID
Wang et al. [144] (2023) Text Understanding Conditional alignment, Optimal trans- Multi-domain image data Accuracy
port
Chen et al. [145] (2023) Semantic Segmentation ~ Dual-path translation, ClassMix Landscape images Accuracy, IoU
Hao et al. [146] (2023) Video-Text Retrieval Dual alignment, Cross-modal embed- Video-text pairs Median ranking
ding
Ge et al. [147] (2023) Image Classification CLIP, Prompt learning, Domain em- Text-image pair Accuracy
bedding
Wang et al. [148] (2023) Image Classification Sharpness-aware gradient matching Image data Accuracy (ID/OOD)
Segu et al. [149] (2023) Image Classification Batch norm variants, Latent space Image data Generalization Accuracy
learning
Chen et al. [150] (2023) Image Recognition Federated learning, Adaptive normal- Image data Generalization Accuracy
ization
DG  Yuetal [151] (2023) Node Classification Label-invariant augmentation, GNN Synthetic graph data Generalization Accuracy

Zhang et al. [152] (2023)
Wang et al. [153] (2023)

Image Classification
Data Mining

Bilevel optimization, Adapter layers

Conditional independence test, Causal
selection

Image data
Synthetic, Medical image

Generalization Accuracy
RMSE, Avg. error
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probability distribution. The key assumption underly-
ing this approach is that the magnitude of gradients is
generally greater for ID data than for OOD data. This
characteristic makes the gradient magnitude a useful
metric for detecting OOD inputs. In another study in
[167] the researchers put forward continuously adaptive
out-of-distribution (CAOOD) detection framework that
was developed with the intention of creating a model
that could rapidly adapt to new distributions, espe-
cially when there are insufficient ID samples available
during deployment. Specifically, the authors devised a
meta out-of-distribution learning (MOL) strategy which
involved creating a ‘learning-to-adapt’ diagram that
facilitates the initial learning of an effectively initial-
ized OOD detection model during the training phase.
During the testing phase, MOL aimed to maintain the
OOD detection’s efficiency across varying distributions
by allowing for swift adaptation to new distributions

through minimal adjustments.
One of the core difficulties in OOD detection is

that OOD inputs can be extremely diverse, and with-
out any assumptions, detecting anything that’s not ID
is provably impossible. In other words, if we place
no restrictions on what the OOD data could be, no
finite training procedure can guarantee detection of
every possible OOD input. Intuitively, an algorithm
that works well for one type of unseen data can al-
ways be fooled by another type, unless we have some
prior knowledge or constraints. Therefore, theoretical
analyses of OOD detection [168], [169], [170] introduce
explicit assumptions or models of the data to make the
problem tractable. A common assumption is that the
ID and OOD distributions are sufficiently distinct in
some feature space (for example, they may have disjoint
support or minimal overlap). If OOD examples can
occupy the same feature regions as ID ones, then no
detector can perfectly separate them, and therefore any
decision rule will make errors when ID and OOD data

overlap.
Many recent OOD works [171], [172], [173] follow

the idea of adopting auxiliary dataset to regularize the
model for improving distinctness between ID and OOD
data. These techniques are based on the assumption
that the auxiliary datasets represent real OOD data,
and, utilizing them as a known priori while training
along with ID data can actually aid in generalizing to
detect unseen distributions. The benchmark OOD study
in using auxiliary OOD data is Outlier Exposure [73]. In
this paper, authors used a set of outliers that are disjoint
from the real OOD test set are used to train the model
s to discover signals and learning effective heuristics to
detected whether the input belongs to either ID or OOD.
While most of these studies follow random sampling
of the outliers, other works have considered mining
outliers through adversarial training [174], posterior
sampling [175], or using leveragin wild mixture data
of ID and OOD [176].

4.3.3 Anomaly/Novelty Detection
It becomes crucial that a machine learning system be

able to distinguish between known and unknown object
information during testing, since it is not plausible to
train on all potential objects the system is likely to
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encounter in the real world. In other words, it is crucial
that the robust ML systems must have the ability to
identify a set of unlabeled instances that significantly
differ from the training dataset. Anomaly and novelty
detection, often used in tandem throughout the litera-
ture, deal with this problem of recognizing anomalous
and novel concepts in the system [177]. Very subtle
difference persists among them, as in the former tries
to exclusively find negative samples or pecularities,
while the latter focuses on discovering novel concepts
that needs to be incorporated into the decision model.
Nevertheless, both are concerned over finding the OOD-
ness in data where the training samples experiences
an abrupt change in concept. It is also to be noted
that for any classification system, particularly in data
streams, two phenomenon can co-exists: concept evolu-
tion, which refers to the emergence of new classes, and
concept drift, where the known concept can change over
time [178].

In paper [179], the authors acknowledged that nov-
elty class in general is either often missing in train-
ing, sampled inadequately, or poorly defined, thereby
making one-class classifiers a suitable solution for such
difficulties. Despite this issue, they proposed an end-
to-end architecture specifically for one-class classifi-
cation, inspired by the success of GANs in training
deep models under unsupervised and semi-supervised
frameworks. The architecture consisted of two deep
networks that are trained together but in opposition,
with one network functioning as the novelty detector
while the other reinforcing the inlier samples and dis-
torting the outliers. The core idea behind this approach
was that the separability between the enhanced inliers
and the distorted outliers is substantially greater than
when making decisions based on the original samples.
Another study [180] aimed to tackle the ND challenges,
one of which involved recognizing deviations from a
typical model of regularity. This task is made difficult
by the unpredictable and often undetectable nature of
new concepts during training. To address this challenge,
the authors created a comprehensive framework that
combined a deep AE with a parametric density esti-
mator to learn the underlying probability distribution
of latent representations in an autoregressive manner.
By optimizing a maximum likelihood objective along
with normal sample reconstruction, their approach ef-
fectively regularized the task by minimizing the differ-
ential entropy of the latent vectors.

A prominent technique for self-supervised represen-
tation learning is to semantically contrast similar and
dissimilar sample pairs [181]. Considering this, studies
such as [182], [183], [184], [76] have utilized contrastive
learning (CL) framework for realizing AD task. One of
the impressive works by [182] exploited task agnostic
way of using CL in an AD problem where the agreement
between differently augmented views of the same image
is maximized while repelling with the others in the
same batch. By doing so, this method was able to ob-
tain effective representation of each data sample while
robustly clustering each class without the necessity of
human supervision or labelling. A following work in
[183], introduced a task-specific variant of CL, termed
masked contrastive learning (MCL). Specifically, they
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unveiled an inference method called self-ensemble in-
ference, designed to enhance performance by exploiting
the skills acquired through auxiliary self-supervision
tasks. The primary insight of their research was that
forming dense clusters, without the necessity for fine-
tuning yet preserving individual representations leads
to the development of more meaningful visual repre-
sentations. This approach deviated from the traditional
‘pre-train then tune’ paradigm practiced by [182] and
led to effective identification of anomalous data. This
study outstood among CL based methods because of
its idea of generating a mask that properly adjusted the
repelling ratio while taking into account the class labels
present in the batch.

4.3.4 Continual Learning

Despite the fact that human learning has developed to
excel in environments that are constantly changing and
evolving, current machine learning systems are only
able to perform effectively when presented with well-
balanced and homogeneous data. When faced with data
that is otherwise, these models often struggle and not
only experience a significant decline in performance
but also exhibit a catastrophic forgetting phenomenon
on previously learned tasks [185]. A study in [186]
has termed these phenomenon as interferences that are
explicitly caused by the changes in the data distribution
or in the learning criterion. Continual learning (CoL),
also referred to as lifelong learning [187] or incremental
learning [188] share the mutual goal of developing ML
algorithms that do not stop learning, but instead keep
model parameters updated to accumulate knowledge
over time [189]. Modern dynamic data sources can be
affected by shifts that can happen over time, (concept
drift) where the property of some or all classes might
abruptly change. Therefore this calls for the demand of
CoL models that can effectively adapt to concept drift
scenarios in any data stream mining tasks.

A study in [190] has set down requirements for
CoL such that; a learning method that continually im-
proves should not experience catastrophic forgetting,
meaning it should maintain its ability to perform well
on previously learned tasks. Additionally, it should be
capable of learning new tasks while leveraging knowl-
edge gained from earlier tasks, demonstrating positive
forward transfer for faster learning and improved final
performance. The method should also be scalable, able
to be trained on a large number of tasks. Further-
more, it should allow for positive backward transfer,
meaning that learning a new task can lead to immedi-
ate improved performance on previous tasks that are
similar or relevant. Lastly, the method should be able
to learn without requiring task labels and ideally be
applicable in the absence of clear task boundaries. CoL
has traditionally navigated data-constrained scenarios
within a supervised framework, where batches of la-
beled samples were sequentially introduced to the net-
work, enabling it to incrementally assimilate new infor-
mation while retaining previously acquired knowledge.
The research in [191] proposed a method for unsuper-
vised CoL associating unsupervised domain adaptation
(UDA) and CoL paradigms. This study addressed the
challenge posed by a gradually evolving target domain,
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segmented into multiple sequential batches, necessitat-
ing the model to continuously adapt to the progres-
sively changing data stream without supervision. To
address this challenge, they introduced a source-free ap-
proach utilizing episodic memory replay coupled with
buffer management. Furthermore, a contrastive loss
component was integrated to enhance the alignment
between the buffer samples and the ongoing flow of
batches, aiming to refine the model’s adaptability and
retention capabilities in the face of evolving datasets.

A CoL system is expected to maintain both plasticity,
the acquisition of new knowledge, and stability, the
preservation of old knowledge. Catastrophic forgetting
represents a failure in stability, where new experiences
overshadow previous ones. The authors of [79] uti-
lized replay of past experiences motivated from the
approach in neuroscience to mitigate such forgetting.
In this work, the authors introduced, a replay-based
method designed to significantly diminish catastrophic
forgetting within multi-task reinforcement learning en-
vironments. The proposed method incorporated off-
policy learning and behavioral cloning from replay
to strengthen stability, while also employing on-policy
learning to ensure the maintenance of plasticity. The
paper demonstrated significant performance in mitigat-
ing forgetting while referring that the method to be
extremely less sophisticated with no requirements of
knowledge of tasks being learned. Interestingly, a study
was proposed in [192] with counterarguments that ex-
perience replay leads to significant overlap between the
representations of newly added and previous classes,
resulting in highly disruptive parameter updates. This
study proposed insights to reduce the abrupt change
in data representations that occurs when unobserved
classes emerge in the data stream. Based on empiri-
cal analysis, a new method was proposed to address
this problem by protecting the learned representations
from drastic adaptations required to accommodate new
classes. They showed that using an asymmetric update
rule, which encourages new classes to adapt to older
ones, is more effective, particularly at task boundaries
where significant forgetting typically occurs.

5 CLOSELY RELATED TOPICS
5.1 Runtime Monitoring
Critical software systems based on ML, such as au-

tonomous vehicles, may exhibit abnormal behavior sud-
denly, severely, and unpredictably while in operation
[220]. Ensuring the safety of these systems is extremely
challenging during the design phase. Runtime monitor-
ing is a technique that focuses on monitoring the safety
of operation by following the current input and raising
an alarm when the safety might be violated, rather than
checking the correctness of all inputs universally [221].
Such techniques aim to identify unsafe predictions for
a given ML model and discard them before they can
lead to any catastrophic repercussions. This is usually
accomplished by identifying the inputs that are different
from the training data [222], [223].

5.2 Open World Recognition
Open World Recognition (OWR) [224], [225] posits

that newly discovered categories ought to be continu-
ously identified and subsequently incorporated into the
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Table 5: List of Popular Semantic Shift Mitigation Papers, including their Core Strategy, Best use case, and

Limitations.

Reference (Year) Core Strategy

Type

Best use Limitation

DeepSAD [53] (2019) Learns compact representation for nor-

mal data via semi-supervised loss

PReNet [55] (2023) Progressive refinement of prediction

via contrastive pretext tasks

SVM [56] (2003) Maximizes margin between classes for

robust separation

REPEN [57] (2018) Learns distance-aware embeddings for

anomaly ranking

XGBOD [60] (2018) Boosted ensemble of unsupervised de-

tectors and selected features

ND with few labeled anomalies Struggles with complex or overlapping

classes

Fine-grained AD in semantic space Requires careful task design and tun-
ing
Classical baseline for AD Struggles with high-dimensional or

nonlinear data

Unsupervised outlier detection in high
dimensions

Hybrid AD with tabular data

Requires sampling strategy; less effec-
tive on structured semantics

Requires good base detectors; less gen-
eralizable

OpenMax [63] (2016) Calibrates softmax scores using ex-

treme value theory

G-OpenMax [64] (2017) Enhances OpenMax by generating un-

knowns with GAN

Introduces prototype-based unknown
classifiers with soft likelihood

PROSPER [65] (2021)

Assumes well-structured class distri-
butions

OSR with known-unknown separation

Detecting unknowns in controlled vi-
sual domains

Large-scale OSR

Requires high-quality generative mod-
els

Sensitive to prototype quality and fea-
ture overlap

OSR C2AE [66] (2021) Combines class-conditioned autoen- Open-set detection with reconstruction Struggles with visually similar un-
coders with discriminative embedding  cues known classes
ARPL [68] (2021) Learns reciprocal points and margin- Open-set robustness with semantic Sensitive to margin settings; adversar-
based embedding with adversarial structure ial overhead
training
CSSR [70] (2022) Reconstructs semantic features via Open-set recognition with class-aware Requires reliable class prototypes; com-
class-specific decoders reconstruction plex training
PixMix [71] (2022) Augments data by mixing with unre- OOD detection under severe distribu- May hurt ID performance; lacks se-
lated images tion shifts mantic control
LogitNorm [72] (2022)  Normalizes logits to calibrate softmax OOD detection with pretrained classi- May degrade accuracy if misconfig-
scores fiers ured
OE [73] (2018) Trains model with auxiliary outlier Improves OOD detection during train- Depends on quality and diversity of
data ing outliers
OOD-D MCD [74] (2024) Uses ensemble of classifiers with OOD detection with uncertainty esti- Computationally heavier; sensitive to
divergence-based OOD scoring mation ensemble diversity
RotPred [75] (2019) Uses self-supervised rotation predic- OOD detection with limited labeled Less effective on non-visual or abstract
tion as an auxiliary task data inputs
MixOE [77] (2023) Mixes ID and OOD samples for con- Fine-grained OOD detection during Requires labeled OOD or curated out-
trastive supervision training liers
AugMix [78] (2019) Applies diverse and stochastic aug- Robust OOD detection and improved May not capture semantic anomalies
mentations with consistency loss generalization
ER [79] (2019) Stores and replays past samples during Simple and effective continual learning Memory overhead; prone to sampling
training bias
iCaRL [80] (2017) Combines rehearsal with nearest- Class-incremental learning Requires exemplar storage; suffers
mean-of-exemplars classification from imbalance
CVT [81] (2022) Online distillation with continual vi- Continual learning in vision tasks Requires careful update strategy;
sion transformer adaptation compute-heavy
CoL SCoMMER [82] (2023)  Sparse memory retrieval with modular Lifelong learning with minimal forget- Complex memory management; tun-

experts

DualNet [83] (2021) Maintains plastic and stable branches

for dual-memory learning

BiMeCO [84] (2023) Bilateral memory consolidation with

contrastive objectives

ting ing expert modules
Stability—plasticity trade-off in contin-

ual learning

Increased model size and training com-
plexity

Sensitive to memory balancing and
contrastive tuning

Continual learning with domain shifts

recognition process for practical applications. In fact,
the system must be capable of recognizing objects and
assigning them to existing classes, as well as labeling
items as unknowns depending on how these objects are
distribution-shifted from the learned data. If there are
novel instances unknown to the trained model, then
they must be gathered and labeled, for example, by
humans. Once there is a sufficient quantity of labeled
unknowns for class learning, the system must incremen-
tally learn and expand the multi-class classifier, thus
rendering each new class “known” to the system. Open
World recognition extends beyond mere robustness to
unidentified classes and instead aims to create a scalable
system that can adapt and learn in an open world
amidst the challenging distribution shift phenomenon.

5.3 Zero-shot Learning
Zero-shot Learning (ZSL) [226] refers to a method of

training a model to classify objects from unseen classes

by leveraging knowledge from seen classes through the
use of semantic information. Usually, this information
is provided in the form of high-dimensional vectors
that encompass the names of both the seen and un-
seen classes. The technique of ZSL essentially bridges
the gap between the two types of classes by utilizing
semantic information. This approach to learning can be
compared to how a human recognizes a new object
by assessing the likelihood of its descriptions aligning
with previously acquired knowledge. A primal example
of this is recognizing a zebra as a horse with black
and white stripes, in regards that one has previously
encountered horses. We can find several studies of ZSL
in the literature for generalized zero shot learning [227],
and [228], zero shot domain generalization [229]. We
guide our readers attention to comprehensive survey
papers in ZSL in [230], and [231].
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Table 6: List of Applied Research Papers Dealing with Covariate Shift Problem

Type Reference (Year) Applied Area Core Technology Dataset Type Used Metrics
Bashari et al. [193] (2024)  Intrusion Detection  Conformal inference, RF, SVMs Synthetic, Network traffic Power, FDR, Variance
Zhu et al. [194] (2023) Spam Detection Margin theory, Multi-class novelty de- Remote Sensing AUC, Error
tection, SVM
Liu et al. [195] (2023) Industrial Defect Pyramid deformation, Diversity-based Industrial, Surveillance video AUC
detection
AD/ND Xu et al. [196] (2023) Cyber Intrusion SMOTE, Multi-class classification Network traffic Accuracy, NMI, F1
Chen et al. [197] (2023) Video Anomaly Feature amplification, Magnitude con- Video data AUC, AP
trastive loss
Xie et al. [198] (2023) Industrial Anomaly  Few-shot, Graph representation Industrial images AUROC
Wang et al. [199] (2023) LLM Adversarial + OOD robustness, Zero- Product reviews Adversarial/OOD robustness
shot
Graham et al. [200] (2023) Image Recon. Diffusion models, Denoising Autoen- Medical images AUC
coders
Wau et al. [201] (2023) Node Classification =~ GNNs, Energy Function Image data AUROC, AUPR, FPR, ID-Acc
OOD-D Zhang et al. [77] (2023) Image Classification Mixup, Outlier Exposure Image data Accuracy, TNR95
Wilson et al. [202] (2023) ~ Image Classif. Hyperdimensional computing, Gram Image data AUROC, FPRY5, Detection error, F1
detectors
Song et al. [203] (2023) Text Understanding ~ Text clustering, Neuron activation Text data User rating
Li et al. [204] (2023) Image Classification Vision Transformer, One-class finetun- Image data AUROC
ing
Mereau et al. [205] (2024)  Text Classification Max softmax, Mahalanobis KL, Rank- Movie reviews AUROC, AUPR
weighted depth
Liu et al. [206] (2023) Text Recognition Label-to-prototype, Zero-shot Chinese text images Open-set accuracy
Liu et al. [207] (2023) Image Classification Gaussian prototypes, Bayesian infer- Image data AUROC, Precision, Recall
ence
Sun et al. [208] (2023) Image Recognition  Hierarchical Attention, LSTM Image data Accuracy, AUROC, OSCR
Yang et al. [209] Image Classification Model attribution, Sample augmenta- Facial images AUC, OSCR
tion
OSR Zhang et al. [210] (2023)  Action Recognition = Reconstruction, Discriminative  Video data Accuracy (open/closed set)
features
Li et al. [211] (2023) Text-to-Image Diffusion, Zero-shot gen. Image-text pair FID, AP
Li et al. [212] (2023) Object Detection Language-guided query, Modality fu- Image-text pair Accuracy, AP
sion
Soltani et al. [213] (2023)  Intrusion Detection — Deep clustering, SVMs Network traffic Accuracy, Misclass. error
Smith et al. [214] (2023) Image Classification ~Rehearsal-free, Param. regularization =~ Image data Accuracy, Forgetting
Villa et al. [215] (2023) Video Classification ~Multi-modal classifier, Prompting Action data Accuracy, BWF
Raz. et al. [216] Language Model Progressive prompting, Embedding Online reviews SuperGLUE, FWT, BWT
reparam.
CoL Yuan et al. [217] (2023) Driving Action P2P federated learning, IoV Driver video Objective, Generalizability

Yang et al. [218] (2023)
Zhu et al. [219] (2023)

Image Classification

Semantic Segment.

Bayesian GMMs, Incremental learning
MDP, Memory sampling, Graph struct.

Image data
Image data

MCR
Accuracy, loU

6 DiscussiON
6.1 Distribution Shift in Large Language Models
(LLMs)

Large Language Models (LLMs) are susceptible to
vulnerabilities resulting from distribution shifts. An
LLM trained on a specific corpus may exhibit reduced
performance when there are alterations in the input
language [232], domain [233], or task distribution. Such
shifts can significantly impair accuracy and increase
perplexity, thereby compromising real-world reliability.
In the event of a covariate shift, an LLM may en-
counter difficulties with unfamiliar vocabulary, styles,
or structures, leading to misinterpretations. Empirical
studies have demonstrated that even large pre-trained
models exhibit a notable decline in performance when
evaluated on OOD data. For example, in the WILDS
benchmark [234] of real-world shifts, models trained on
one domain consistently exhibited substantially lower

OOD accuracy compared to ID accuracy.
Covariate shifts primarily affect the recall of knowl-

edge and alignment to input, where the model may fail
to recognize entities or idioms it has not previously en-
countered (e.g., a medical term abbreviation), or it may
incorrectly parse syntax when faced with code or XML
in the input. In generation tasks, covariate shifts can
lead to incoherence or irrelevant continuations. Notably,
LLMs demonstrate some resilience to mild covariate

shifts due to their extensive training data; however, un-
der severe shifts, such as transitioning to a different lan-
guage or a highly specialized jargon, performance can
degrade abruptly. This is particularly evident in zero-
shot settings where the model has not been conditioned
on that style [235]. Additionally, concept drift may occur
if language usage patterns change such that the model’s
learned correlations no longer hold (e.g., a word previ-
ously indicating negative sentiment is adopted as slang
for something positive). Unlike covariate shifts, concept
shifts typically alter the decision boundary or genera-
tion mapping and may necessitate relearning the task
function, such as through fine-tuning on new examples
[236]. Given the inevitability of distribution drift in real-
world data, a variety of strategies have been developed
to maintain or improve LLM performance under shift
conditions [237]. Such strategies encompass retraining
or fine-tuning the model with new data, implementing
on-the-fly adjustments such as prompting or retrieval,
and assessing uncertainty.

6.2 Practical Applications: Impact of Distribution
Shift

Distribution shifts can profoundly affect a model’s per-

formance in practical applications, leading to substan-

tial decrease in the accuracy of downstream tasks. This

decline can have serious implications for the decision-
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making processes in critical systems such as medical
diagnosis, autonomous driving, fault detection, intru-
sion detection, and adversarial defenses. For example, a
medical imaging model trained on data from one hospi-
tal may not perform well on scans from another due to
one of main reasons including the differences in data
acquisition device, patient demographics, or imaging
protocols. This phenomenon, known as domain shift,
can often lead to misdiagnoses or even serious health
consequences of the patient. Likewise, autonomous ve-
hicle models trained in sunny conditions may struggle
in rain or snow, as their perception systems rely on
visual patterns that change with environmental condi-
tions [238].

In consumer applications such as recommendation
systems and spam detection, distribution shifts can re-
sult in user dissatisfaction or exploitation. For instance,
changes in user behavior over time, such as trends
or seasonal interests, can render previously effective
recommendation algorithms obsolete, necessitating con-
stant updates [239]. In adversarial contexts such as spam
or fraud detection, attackers may deliberately induce
concept drift, a type of distribution shift to evade de-
tection by exploiting model vulnerabilities [240]. Even
in seemingly stable applications like language models
or image classifiers, OOD inputs or subtle distribution
shifts can lead to high-confidence but incorrect outputs.
A prime example of this can be a chatbot trained on
standard internet data may produce inappropriate or
biased responses when encountering unfamiliar slang,
dialects, or cultural contexts. This is particularly con-
cerning in open-world settings, where inputs may come
from unpredictable or evolving sources. Overall, distri-
bution shifts undermine the generalization capabilities
of machine learning models and reveal the fragility of
systems that are not robust to changes in data distribu-
tion. They also complicate model evaluation, as perfor-
mance metrics on held-out test sets may not accurately
reflect real-world reliability.

6.3 Challenges
The distinction between covariate and semantic shifts,

while useful for theoretical delineation, may be overly
simplistic when addressing practical ML challenges,
where these shifts often occur simultaneously and
are intertwined. The current categorization - TL, DA,
DG/OOD-G for covariate shifts, and OSR, OOD de-
tection, AD/ND, and CoL for semantic shifts - has
undoubtedly revolutionized our understanding and ca-
pability to tackle each type of shift. Yet, this segre-
gation does not reflect the complexity of real-world
applications, where shifts do not present themselves in
isolation. For instance, an autonomous driving system
may face varying weather conditions (covariate shift)
while also encountering new road signs or alterations
(semantic shift). Addressing these shifts independently
may not be sufficient or efficient for robust performance.
While a holistic approach can enhance the algorithm’s
practical ability to learn from intricate, multifaceted
shifts, improving generalization and robustness across
diverse situations. In discussing individual methods,
we also put forth recently emerging studies that aim
to bridge the gap between these two types of shifts,
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demonstrating the feasibility and efficacy of comprehen-
sive strategies [241], [242], [243], [157]. These pioneering
works indicate that ML algorithms can be designed to
be inherently adaptive, and detecting while pursuing
to handle both covariate and semantic shifts under one
cohesive framework.

7 FUTURE RESEARCH DIRECTIONS
Developing ML models that can effectively handle data

distribution shifts necessitates coordinated efforts across
numerous research areas. In order to drive the de-
velopment of mechanisms to handle the distribution
shifts we bring forward several potential future research
directions.

Strong Foundation and Benchmarks: Since the mod-
elling of a unified framework capable of addressing
both covariate and semantic shifts simultaneously is of
paramount importance, one prospect is to strengthen
the current theoretical foundations, which involves
formulating comprehensive definitions, metrics, and
benchmarks.

Minimal Trade-off: It is crucial to accomplish a bal-
anced effectiveness in the outcomes of the unified
framework for addressing both shifts. Thus, future re-
search should concentrate on developing well-crafted
techniques that can achieve effective adaptation and
detection without compromising one for the other in
a variety of data shift scenarios.

Unified Shift Datasets: Furthermore, innovation in al-
gorithms that can automatically adapt to different types
of shifts [244], [245] is crucial, aimed at enhancing model
adaptability and robustness with minimal human in-
tervention. Equally important is the establishment of
benchmark datasets and evaluation protocols that re-
flect real-world scenarios involving combined distri-
bution shifts, facilitating more accurate assessments of
model performance.

Interdisciplinary Approach: An interdisciplinary ap-
proach, incorporating insights from fields such as
causality [246], cognitive science [247], and collabora-
tion with domain experts, can be vital to forge direction
in implementing novel frameworks to effectively de-
velop solution to tackle data distribution shift problem.

8 CONCLUSION

In conclusion, this review paper has highlighted the
significant obstacles posed by covariate and semantic
shifts in ML and emphasized the methodologies in-
herent in handling these shifts independently. Also, by
advocating for an integrated approach, we propose for a
paradigm shift towards developing methodologies that
cover the entire spectrum of distribution shifts within
a single framework. This paper aims to address the
current research scenario to the readers and also spark
further investigation and innovation paving the way for
more efficient, and effective ML applications robust to
data distribution shifts.
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