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NLP Lectures!

The BERT Mountain!

By Chris McCormick

(Bidirectional Encoder Representations from Transformers)

If “Attention Is All You Need”...

Transformer

(Attention w/o LSTM) ...can we start here,

LSTM + Attention

Encoder-Decoder

instead of here?
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Outline

* Background: NLP, Sequence Modeling.
* LSTM: Awesome but not good enough.

* Transformers: How & Why?
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Document Is Spam?
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Sequence modeling is a problem
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Bag of Words
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* A document is represented as vector of words.
o One dimension per word.
o Vector size is the vocabulary size, e.qg., English may contain 100k words.
o Different weighting schemas can be used, e.q., tf, log(tf), tf-idf, Boolean, etc.

o Sparse vector, e.g., almost all values are zeros.

o 0o 1. 00 0 OOOOOO11O0WOWOOOOS.2 . . . .1 o0 O0onmna

a am I student
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Order matters for NLP tasks!
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* Assumes independence between words:

o The sentences “John likes Mary” has the same representation as "Mary likes John” —

even though the semantic is different).

* May work well for Information Retrieval tasks, but not for NLP tasks!

o Sentiment analysis:

"Ah no, there are good movies on Netflix!” vs. "Ah, there are no good movies on Netflix!”
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Order matters for NLP tasks!
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"Ah no, there are good movies on Netflix!” vs. "Ah, there are no good movie on Netflix!”

* Use N-grams.

o Dimensionality grows exponentially V7.
o 3-grams with English: (10°)3= 101> = 1,000,000,000,000,000 entries.

o Too expensive!
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Bag of
Words

Recurrent Neural Network
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RNN: a new approach
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* How to calculate: f(xq, x5, X3, , Xpn)?

* A for-loop: @

Fori=0toN: T
a1
hit1 = A(h;, x;) é

Return f(x) = hy
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Vanishing & Exploding Gradients N
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* hiy1 = A(hy, x;)

° A(hi,xi) = WX; + Zhl

* hy = A(A(A(ho, X0), X1), X2)

* hy = A(A(C-- A(hg, x0), X1), X2 *** ), Xy —2), XN —1)

c hy = Wxy_1 + ZWxy_p + Z?*Wxyn_3 + -+ ZVN " twx, + ?hi

Multiplying matrix N times!
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Vanishing & Exploding Gradients

* Numbers < 1:
>>> 0.9 **100
2.6561398887587544e-05
>>> 0.9 **200
7.055079108655367e-109

* Numbers > 1:
>>> 1.1 ** 100
13780.61233982238
>>> 1.1 ** 200
189905276.4604649
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The Rise and Fall and Rise and Fall of LSTM
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LSTM to the Rescue!
(2/3)
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LONG SHORT-TERM MEMORY

NeUrAL ComMPUTATION 9(8):1735-1780, 1997

Sepp Hochreiter Jiirgen Schmidhuber
Fakultat fiir Informatik IDSTA
Technische Universitat Miinchen Corso Elvezia 36
80290 Miinchen, Germany 6900 Lugano, Switzerland
hochreit@informatik. tu-muenchen.de juergen@idsia.ch
http://wwwT7.informatik.tu-muenchen de/ ~ hochreit http://www.idsia.ch/ juergen
Abstract

Learning to store information over extended time intervals via recurrent backpropagation
takes a very long time, mostly due to insufficient, decaying error back low. We briefly review
Hochreiter's 1991 analysis of this problem, then address it by introducing a novel, efficient,
gradient-based method called “Long Short-Term Memory” (LSTM). Truncating the gradient
where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000
discrete time steps by enforcing constant error flow through “constant error carrousels” within
special units. Multiplicative gate units learn to open and close access to the constant error
flow. LSTM is local in space and time; its computational complexity per time step and weight
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Long-short Term Memory
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* Keeps a long-term memory.
- o .. — e

* Similar to ResNet but jumping over

@

layers.

Nes h

Layer Pointwize op Copy

Legend: m j_)
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Long-short Term Memory
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LSTM’s limitations

 Difficult to train.

* Very long gradient paths.

o LSTM on 100-word doc has gradients 100-layer network.
* Transfer learning never really worked.

* Needs specific labelled dataset for every task.

W,
:
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Transformers & Muppets
(3/3) N
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The next big thing, for now
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Bag of RNN LSTM Transformer
Words
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Attention Is All You Need

Ashish Vaswani* Noam Shazeer” Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com
Llion Jones* Aidan N. Gomez* ELukasz Kaiser*
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin* *
illia.polosukhin@gmail.com

Abstract

[cs.CL] 6 Dec 2017

The dominant sequence transduction models are based on complex recurrent or
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Encoder-Decoder

Ashish Vaswani et. Attention Is AllYou Need. Output
Probabilities
NIPS 2017.
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Encoder-Decoder

Figure by: Jay Alammar
The Illustrated Transformer

http://jalammar.github.io/illustrated-transformer/

OUTPUT{I am a student]
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http://jalammar.github.io/illustrated-transformer/

An Encoder Block: same structure, different parameters

Figure by: Jay Alammar
The lllustrated Transformer
http://jalammar.github.io/illustrated-transformer/

ENCODER ¢

Self-Attention

[ Feed Forward Neural Network

|\ - )
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http://jalammar.github.io/illustrated-transformer/
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Encoder

Figure by: Jay Alammar B — K\ JJ

The lllustrated Transformer

http://jalammar.github.io/illustrated-transformer/ 4 ¢
ni el [ | | |
A A
ENCODER #1 f \
Feed Forward Feed Forward
Neural Network Neural Network
Note: The FFNN is independent 1 t

for each word. e S
Hence can be parallelized. e 22

Self-Attention
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http://jalammar.github.io/illustrated-transformer/

Encoder-Decoder

Output
. . . Probabilities
Ashish Vaswani et. Attention Is All You Need.
NIPS 2017.
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Encoder

Ashish Vaswani et. Attention Is All You Need. "dd & Norm

NIPS 2017.
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Self-Attention Mechanism

* All-to-all comparison.

o Each layeris O(N?) for sequence of length N - self attention.

* Every output is a weighted sum of every input.

o The weighting is a function to learn.

31
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Relevance scores from each input to output
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query[17] # “making”

key[24] # “difficult”

Relevance[1l7,24]=query[17] * key[24]
# relevance of difficult to making




Attention

* Q: Query (output token)
* K: Key (input token)

* Relevance = Q*K

V:Value (input token)

Out = softmax(relevance)*V
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Scaled Dot-Product Attention
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Attention in “pseudo-code”

def attention(self, X in:List[Tensor]):
# For every token transform previous layer’s out

for 1 in range(self.sequence_lenght):

query[i] = self.Q * X in[i
key [ i ] = Se l'F . K * X_i N : i : Scaled Dot-Product Attention
value[i] = self.V * X_in[i’ —
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def attention(self, X in:List[Tensor]):
# For every token transform previous layer’s out
for 1 in range(self.sequence_lenght):

query[i] = self.Q * X _ in[i]
key[1] = self.K * X in[1i]
value[i] = self.V * X in[i]

# Compute output values, one at a time
for 1 in range(self.sequence_lenght):
this query = query[i]

# how relevance is each input to this output?

for j in rang(self.sequence lenght): Scaled Dot-Product Attention
relevance[j] = this_query * key[7j] A
# normalize relevance score to sum to 1 MatMul
relevance = scaled softmax(relevance) 1 1
. SoftMax
# compute a weighted sum of values 1
out[i] = 0 # out[i] is a vector Mask (opt.)
for j in rang(self.sequence_lenght): S;;e
out[i] += relevance[j] * value[]j] 4
return out MatMul
t 1
Q K V

35
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Multi-Headed Attention

* Clever, important innovation.
o Not that hard.

* Just do that same thing 8 times with different Q,K,V
matrices.
* Let the network learn 8 different semantic meanings of

attention.

o E.g., One grammar, one for vocabulary, one for conjugation, etc.

o Very flexible mechanism for sequence processing.
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Encoder

e | \
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Feed
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}

Nx Add & Norm

Multi-Head
Attention

Positional
Encoding

Input
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Inputs
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Position encoding

* Attention is “bag of words”.
* Input layer: add a word embedding and position embedding.
* Position can be either learned or fixed.

* Fixed allows extrapolating to longer sequences.
Positional @—él—)
Encoding ]

Input
Embedding

T

Inputs
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Position encoding

Figure by: Jay Alammar
The Illustrated Transformer

http://jalammar.github.io/illustrated-transformer/

ENCODER #1

DECODER #1
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http://jalammar.github.io/illustrated-transformer/
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Position encoding

* If we assumed the embedding has a dimensionality of 4, the actual

positional encodings would look like this:

POSITIONAL 1 1 0.84 [XLE 1 091 [XIARPYE 1
ENCODING

- - -

EMBEDDINGS X1 X2 X3

INPUT Je Suis étudiant
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All together!

Decoding time step:@Z 3456

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

INPUT

41

Deakin University CRICOS Provider Code: 00113B

A
DEAKIN

UNIVERSITY

a X
( Linear + Softmax )
4 ) T N
ENCODER DECODER
4 4
) Y
ENCODER DECODER
S : J
RN RN R
LITT] LIT1] LI 1]
Je suis étudiant

Figure by: Jay Alammar
The Illustrated Transformer

http://jalammar.github.io/illustrated-transformer/



http://jalammar.github.io/illustrated-transformer/

All together!

Decoding time step: 1@3 4 56

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

INPUT
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Why Transformers are awesome?

* All-to-all comparisons can be done fully parallel.

o GPUs change the game for compute!
o N? but extra parallel operations can be “free”.

o (RNN/LSTM must be computed in sequence per token).
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Transformer results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

BLEU Training Cost (FLOPs)

Model EN-DE EN-FR EN-DE EN-FR
ByteNet [18] 23.75

Deep-Att + PosUnk [39] 39.2 1.0 -
GNMT + RL [38] 24.6 39.92 1.4 -
ConvS2S [9] 25.16 40.46 1.5-
MoE [32] 26.03 40.56 1.2
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 -
GNMT + RL Ensemble [38] 26.30 41.16 1.1-
ConvS2S Ensemble [9] 26.36 41.29 1.2
Transformer (base model) 273 38.1 3.3.10'8

Transformer (big) 284 41.8

2.3.101°
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Literature & Resources for Transformers
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* Vaswani et al. Attention is all you need. 2017.

* Resources:

O

45

Leo Dirac, LSTM is dead. Long Live Transformers!

https://www.youtube.com/watch?v=S27pHKBEp30&t=1073s

https://nlp.seas.harvard.edu/2018/04/03/attention.html (Excellent explanation of transformer model
with codes.)
Jay Alammar, The illustrated transformer (from which | borrowed many pictures):

http://jalammar.github.io/illustrated-transformer/
Kate Logninova: Attention in NLP, summarizes all sorts of attentions. Can somebody present this and

related literature? https://medium.com/@joealato/attention-in-nlp-734c6fagdg83

LSTM is dead. Long Live Transformers!
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