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* Intuition and introduction to Variational AutoEncoders (VAE)
» KL Divergence and its significance

* Working details of Variational AutoEncoder

* Derivation of Loss function for Variational AutoEncoder

* Optimization and Reparametrization Trick
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Stacked AutoEncoders for image reconstruction
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Ideally, they are Reconstructed

-_-—*

identical ¥ = x Input

Input [¢ = = = = = —

Bottleneck!

=N
X
=

Z

N\

A compressed low dimensional
representation of the input

Cost function:
n

1 - ;
£O,0) = Y (x® = fy (g4 (x®))’

4 =0
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Denoising AutoEncoders for image reconstruction

v
Original Noisy Ideally, they are _ _ _ _ | Reconstructed

Input x input £ identical ¥ = x Input

Bottleneck!

=N
X
=

Z

N\

A compressed low dimensional
representation of the input

l

Cost function:

n

1 - ;
£O,0) = Y (x® = fy (g4 (£O)))’

5 =0
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Variational AutoEncoders

_____ Ideally, they are — — — 5 Reconstructed
identical ¥ = x Input

Probabilistic Encoder

Mean qg(z]x) Sampled latent
I- vector

X - p— — 7 —

Std. dev -
z=u+oQ@e A

e~N(0,I) A compressed low dimensional
representation of the input

Cost function:
L(®, d) = —Ezq,zi20|108(po (x12))] + Dgilag (z1x) Il pg(2)]

6
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Pre-requisite to understand VAE

* Probability

o p(x): defines the probability of a random variable x

o p(x|y): defines the probability of a random variable x given that y ahs
happened. Also called conditional probability

o E[x]

o KL Divergence

Deakin University CRICOS Provider Code: 00113B



Joint probability Likelihood

| probability Prior probability
. |
Posterior Y Iﬂ y.
babili [ (0 ) 2 (x1830 (0
ey :'I;;(';[;;)': _p0.0)_p19Jp(60) 5
| | = messssstm=sss ayes'
S l p(x) p(x) Theorem

* Theorem of Total Probability

o Let 8,0, - 8, be a set of mutually exclusive events (i.e., §; N 6; = 0) and x is the union of N

mutually exclusive events, then:

p() = ) p(xl 0)p(0:)
=0

* By substitution we get:

p(O,x) _ p(x|60)p(6)
p(x) op(x]6)p(6))

p(Bx) =
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Expectation of a random variable x

 The expected value of a random variable x is a weighted average of the

possible values that x can take. It is defined as:

n

Elx] = ) % plx = x) = Ey[x]

—0

9
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 The Kullback-Leibler divergence (KL) is a measure of how one probability distribution is different
from the second

* Given two discrete probability distributions p and q define, the KL divergence is defined as

Dk (p Il @) = 2 p(x)log ( qg;)

* Example

@ uniform distribution wit p=1/3 @
6

0.4

03 0.4
0.2
01 0.2 .
0 0
0 1 2

Do ([ | )_11 (033) 11 (O.33)_|_1l (0.33)
k([P Il g o8\o3g) T 3108 3108

= 0.09637

11
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* Properties:

o Dgr(pllg)or D, (qlip) =0
o Dki(p Il q) # Dk (q lp) =0 (Not symmetric)

* Suppose we have two multivariate normal distributions defined as:
p(x) = N(x; 41, 21)

q(x) = N (x; pz, Z2)
o Where u; and u, are the means and X; and X, are the covariance matrices

o And the multivariate density is defined as:

N 15) = ————exp(— = (x — WTE-1(x — W)
T J@eokE 2

o If the two distributions have the same dimension k, then:

1 22 —1 Ty—1
Dii(p Il g) = > 1082—1 —k+tr(Z2720) + (g — 1) 25 (uz — pq)

12
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* Proof:

o We know:

Dk (p Il q) = Zp(x)log (zﬁxi) 1

o We also know that:

p(O) = ———— exp(— = (x — u)TEF (x — o)
V @m)k|z4] 2

o If we take the logarithm, we get:

k 1 1
log(p(x)) = — 5 log(2m) — Slogl%y | — = (x — py)" 27 Yoe—p) [ 2

o Similarly:
k 1 1 ———
log(q(x)) = — 5108(27@ — 5108|22| — E(x — Up) 25 (x — uy) 3

13
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* Equation @ can rewritten as:

Di(p 1 @) = z p(x) (log(p(x)) —log(q(x)) )
* Substituting @ and @ in @ results in:

k 1 1
D@ Il @) = ) p(x) (=5 Yf2m) — Sloglsal — 5 (xr — )25 (x = o)

+k1
2

1 1 S
(2m) + 5108|22| + > (x — 1) 237 (x — 1)

Deakin University CRICOS Provider Code: 00113B



* Which can be simplified to:

PP
Dk (p Il q) = zP(X) ( 10g| | + = (x — .Uz)Tzz1 (x — pp) = —(x — M1)TZ1_1(X — [1)

|24]

* Now, let’s C0n51der part by part:

1 1
> () (5 (= )35 (x - ua) = By |5 (= w757 (- )]

Deakin University CRICOS Provider Code: 00113B



* Let’s rewrite again: Scalar

— * Trace and

—

1 : .
Ep |5 (x - )T (o — py) expectation trick

o If x is a scalar, then

1
IEp [tr (E (x — ,111)T21_1 (x — M1)>] @ E[x] = E[tr(x)] @
o tr(4B) = tr(BA)

1
Ep o (-G —wos)| @ o tr(ABC) = tr(BCA) (C)
/—T— 1C(Zmriance matrix = tr(CAB) @
tr (Bl — G - w)l15310) @ o tr(ABC) # tr(ACB)

o E[tr(x)] = tr(E[x]) (E)

1 -1
tr (21 521 )

k
tr(l) = >
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AR zp(x) ( 0g 1221+

* Now, let’s Con51der part by part:

1
D () (5 (= )35 (x - uo)

Deakin University CRICOS Provider Code: 00113B

+- O —p)'E (= pp) -5 (x — ) "2 (x = pg)

1
=|E, [E (x — .111)T21_1 (x — #1)]

N
k
2



1
Dk (p Il q) = zP(X) ( log— :le = (x — .Uz)Tzz_1 (x — pp)|— E(x — M1)TZ1_1(X — 111))

* Now, let’s Con51der the second part:

Deakin University CRICOS Provider Code: 00113B
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Z p(x) (% (e — 1) 23t (x — uz))
1
> P00 (510 = 1) + (1 = 11" 37 (G = ) + Gy = )]

> 060 (5100 = )" + (s = )" 1E (G — ) + s — 1))

1
z p(x) (E [Ge = )25 + (o — 1) 27 [ = ) + (y — 1)1) If A is a symmetric

/ matrix, then xTAy = yTAx

(o — )25 (g — p2) + (g — )25 (x — u1)|+ (1 — )27 (ug — #2)])
YV

1
> 200 (5100 = 1571 e = ) #2008 — )72 Mo — ) (s — )57 s — )] )

1
> P60 (516 = )27 e = ) +

1 1
E, li (¢ = pa) 237 0o = ) + O = )" 257 (g = 1) + 5 (1 = 12)" 237 (g — ﬂz)]

19
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1 1
Ep [E (= )27 (0 = o) + Ge = i) 237 (o — i) + 5 (i = 12) " 237 (g = .Uz)]

« Expanding, we get

E, E (x — Ii1)T22_1(x — #1)]

_|_

Epl(x — )" 25 (ug — p2)]

+ |IEp |5 (1 — 12) 23 Gy — 112))|

A4

tr

Y125
2

Similar to
previous
derivative

Deakin University CRICOS Provider Code: 00113B

vV

+ 0

Proof on next
slide

vV

1 Ty—1
E(I/ﬁ — Us) X, (1q — uz)

E[constant]= constant




*p[(x — .U1)T22_1(H1 — )] = ( *p[x] — M1)T22_1(.U1 — Uz)

= (g — .U1)T22_1(M1 — Uy)

PROVED!
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In summary

D1 0= D P ( log 1221+ (e — ) 23" (= ) = 5 (x = )2 - u1)> 1

1 k
z p(x) (5 (e — ) E7 (x = M1)> = @

1 1 1
D> () (5 (= )57 (x = m) = (2 7Y + 5 (1 — 1) "3 (g — 1) @
* Substituting @ and @ in @ we obtain:

|2, | _ _
Dk (p Il @) = [108 |Zi| —k +tr(Z; 130D + (uy — u)7E; Yup — 1)

22
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Stacked AutoEncoders for image reconstruction

Ideally, they are
identical ¥ = x

DEAKIN

UNIVERSITY

Reconstructed
Input

Cost function:

24

Deakin University CRICOS Provider Code: 00113B

A compressed low dimensional
representation of the input

n

1 - ;
£O,0) = Y (x® = fy (g4 (x®))’

i=0
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Latent variables

* We model the system as a collection of random variables

o The edge “—” draw from z to x is the conditional distribution p(x|z)

p(z|x)

—

25
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What are the latent variables?

* Latent variables z correspond to real features or characteristics of the

object

Smile: 0.6
Skintone: 0.8
Gender: 0.9
Beard: 0.7
Orientation: 0.003

g Hair: 0.45

26
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What are the latent variables?
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UNIVERSITY

* In the above example, we trained autoencoder on a large dataset of

faces with encoding dimension of 6

o An ideal autoencoder will learn the descriptive attributes of faces such as skin

color, smile, etc... in order to describe an observation in some compressed form.
* In the above example, we have described the input image in terms of

latent variables using single value to describe each attribute.

o For instance, what single value will assign for photo of Monalisa?

Deakin University CRICOS Provider Code: 00113B
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The goal of a VAE

* The goal of a VAE is to find a distribution g4 (z|x) of some latent

variables, which we can sample from z~q4(z|x), to generate new

samples ¥ from pg (x|z)

Deakin University CRICOS Provider Code: 00113B
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AutoEncoders vs. VAE

» Using VAE, we define latent attributes in probabilistic terms

AE VAE
Smile (discrete) Smile (probabilistic)
o AA
0 1 0 1
— A
0 1 0 1

29
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What are the latent variables in VAE?
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+ With this approach, we now represent each latent attribute for a given input as a probability
distribution. When decoding, we will randomly sample from each latent state distribution to

generate a vector as input for the decoder

- Q I
Smile:
0 1
Skintone:
Probabilistic 0 1 Probabilisti
Gender: TODabIISHC
CLNCOACT
0 1
Beard:
Orientation:

i

30
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What are the latent variables in VAE?
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» If we design our encoder model to produce a statistical distribution of potential values, we can
randomly select from that distribution and input those values into our decoder model. This means
that values that are located close together in latent space will result in similar reconstructions.

gmile: 0.5
f 5 Skintone: 0.6
/Smﬂe: Gender: 0.9

rd: Probabilistic Decoder pgy(x|2)
0 1\ \\@ Beard:0.05

Orientation: 0.91

Skintone: _L >Hair:0.45 )

~

1 Smile: 0.48

Skintone: 0.61
ugGender: 0.92 ege 4o
Beard:0.04
Orientation: 0.92
Beard° Hair:0.45
o

0 ./- 5 1
/
: E -~ N
O . . ) 0 1 Smile: 0.9
rientation: / Skintone: 0.59
\ 0 1/ Gender: 0.88 12 p2
Beard:0.76
Orientation: 0.53

Hair:
Hair:0.88
o

Gender:

Similar images!

31
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VAE example

32
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Variational AutoEncoders

_____ Ideally, they are — — — 5 Reconstructed
identical ¥ = x Input

Probabilistic Encoder

Mean qg(z]x) Sampled latent
I- vector

X - p— — 7 —

Std. dev -
z=u+oQ@e A

e~N(0,I) A compressed low dimensional
representation of the input

Cost function:
L(®, d) = —Ezq,zi20|108(po (x12))] + Dgilag (z1x) Il pg(2)]

33
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loss function
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The goal of a VAE
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* The goal of a VAE is to find a distribution g4 (z|x) of some latent

variables, which we can sample from z~q4(z|x), to generate new

samples ¥ from pg (x|z)

qp(z]x),

- [po(xlz)

\
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The problem of Approximate Inference

 Evaluating this equation is difficult because p(x) cannot be solved

Deakin

A
DEAKIN

Let x be a set of observed variables and let z be the set of latent variables with joint

distribution p(z, x). Then, the inference problem is to compute the conditional

distribution of the latent variables given the observations, i.e., p(z|x). We can write

1t as:

p(x|z)p(2) @ qp(z]x),

p(z|x) = 500

- [po(xlz)

\
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Reason:
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p0) = | p2dz = [[[ pelpEdz

Z
 The integral is not available in closed form or is intractable (i.e., requires

exponential time to compute) due to multiple integrals involved for the latent
variable vector z

 Alternative?

o The alternative is to approximate p(z|x) by another distribution q(z|x) which is defined in such a

way that it has tractable solution. This is done using Variational Inference (VI).
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Variational Inference (VI)

* The main idea of Variational Inference (VI) is to pose the inference problem as an optimization

problem.

 How?
o By modeling p(z|x) using q(z|x) where q(z|x) has a simple distribution such as Gaussian.

o Let’s calculate KL divergence between p(z|x) and q(z|x):

Di1(94(z1x) |l pg(z]x)) = Z q¢(z|x)log (ZZZ:S)

= Ez~qy(z1x) |108 (pZ(Z|x)>]

= Ez-qg(zix) :log (q¢ (ZIx)) — log(pe (ZIx))]

38
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Variational Inference (VI)

* Substituting @ in results in:

D1 (49 (21) 1| P9 (213)) = By, 21 [108 (a9 (21)) — log

Do (9; LZ()f)e (Z))]

= Ez~qyzi%) :log (qu(zlx)) — log(pe (x12)) — log(pe (2)) + log(py (x))]

* Since the expectation is over z and pg (x) does not involve z, it can be moved out

Dyt (45 (21%) 1l po (21%)) — 10g(p (X)) = Ezeq(zix) |l0g (45 (212) ) — log(ps (x2)) — log(ps ()|

39
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Variational Inference (VI)

* Rearranging the equation, we obtain: z:2~qp(z|x)

Dic1 (46 (z1%) Il po(21x)) — log(pe (x)) = —E,[log(ps(x|2))] + E, [log (44 (zIx)) — log(pe (2))|

L(6, ¢) = —E,[log(pe (x|2))] + Dxr[q¢ (zIx) Il pe (2)]
* This is the VAE loss function, where the first term represents the reconstruction likelihood, and the
second term ensures that our learned distributions q is similar to the prior distribution p

* Also, we have:

L8, ) = D1 (qep(z|x) Il pa(z|x)) — log(pe(x))

40
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V AE loss function

L6, d) =

Dk1|qs (z|x) | po(2)]

—IEZ~Q¢(Z|x) [108(199 (le))]
t

Reconstruction term

t
Regularizer term

* So, our target is to find optimal 6, ¢ such that

Deakin University CRICOS Provider Code: 00113B

0%, ¢* = argmin L(0, )

0,¢
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Intuition about the loss function

L(O,¢) =Ez q,zx) [log(pg (x12)) ||+ Dir|ge (z]x) 1l pa(2)]
;

t

Reconstruction term Regularizer term

deviates from N (0,1) = pg(2)

I I
1 pe(xlz) = N(ug(2),2g(2)) 4o (z]x) pg(2)

Encoder ! |
I I

¢ (le) ! SO’ We take lOg of ! Latent variable space

Z - Gaussian we get a square ;
Probabilistic . error between the data . KL divergence ensures that the
i sample x and mean of the | pdf of latent variables g4 (z|x)
I Gaussian distribution I does not collapse with zero
¥~ x ; ! variance but penalizes if

| |
I I

Deakin University CRICOS Provider Code: 00113B



VAE loss function: reconstruction term 1/2

* We assume that the probabilistic decoder is is modeled as a Gaussian for

regression (multivariate Bernoulli for classification):

po(x|2) = N (ue(2),20(2))
 Furthermore, we assume that the components of the Gaussian are independent.

Hence, we have;

DEAKIN

UNIVERSITY

k k 2
B B PN 1 (i — (@)
Pe(x|Z) = N(HQ(Z);ZO(Z)) = L)[N(.ul(z)» O-l(Z)) = gmexp< 20'i2

Deakin University CRICOS Provider Code: 00113B
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VAE loss function: reconstruction term 2/2

 Taking the logarithm, we get:

T 1 (x; — 1:(2))
log(pe(x]2)) = logl_[ mexp T g2
i=0 i ‘

i=0 1=0
k
1 2 1 2
oc—Z—(xl Ili(Z)) =—E(x—u9(z))
i=0

44
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Intuition about the loss function

N(0,1)

L(O,¢) =Ez q,zx) [log(pg (x12)) ||+ Dxr|q4 (z1%) 1 Po (Z)T
; F

Reconstruction term Regularizer term

deviates from N (0,1) = pg(2)

I I
1 pe(xlz) = N(ug(2),2g(2)) 4o (z]x) pg(2)

Encoder ! |
I I

¢ (le) ! SO’ We take lOg of ! Latent variable space

Z - Gaussian we get a square ;
Probabilistic . error between the data . KL divergence ensures that the
i sample x and mean of the | pdf of latent variables g4 (z|x)
I Gaussian distribution I does not collapse with zero
¥~ x ; ! variance but penalizes if

| |
I I
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VAE loss function: regularizer term
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DKL [C[¢ (Zl.X') | Po (Z)] Regularizer term
* Here, py(2) is the latent variable distribution

o The easy choice is V'(0,1)
- We want q4 (z|x) to be as close as possible to py(z) = N (0,1) so that

we can sample it easily

* Having to pg(z) = NV (0,1) adds another benefit

o The KL divergence has a closed form!

Deakin University CRICOS Provider Code: 00113B
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V AE loss function: regularizer term

* We have previously proved that:

2]

1
Dk (p Il q) = > 10g|2—1| —k+tr(E72) + (uz — u)TE (e — 1)

* Given the previous assumption that py(z) = N (0,1), we get:
Dii|d¢(z1%) | po(2)| = Dir|ag (e (), e (x)) I N(0,1)]

=~ [—log(|Z4(0)]) = k + tr(Z¢ (1)) + g ()T ey ()]
o Here k is the dimension of the Gaussian

o tr (Z¢(x)) is the trace function, which is the sum of diagonal matrix of Z4(x)

o The determinant |4 (x)| of a diagonal matrix is product of it's diagonal
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V AE loss function: regularizer term

 Hence, we have:

1
DKL[q¢(u¢(x), Z¢(x)) | N(O,l)] =3 [—log(|2¢(x)|) —k + tr(2¢(x)) + u¢(x)Tu¢(x)]
_ %[—log (1_[ qu(x)) _ z 1+ z Ty (x) + Z o (x)2]
_ % [_ Z log(Z4 (%)) — Z 14+ z 5 (x) + Z e (x)ﬂ

1
_ EZ[—log()tqb(x)) — 1+ 24 (x) + pg (0)?]
k
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V AE loss function

* So, the final loss function of VAE becomes:

L£(8,9) = Ez-qyzix) E (x — ko)’ | - %Z |1+ 10g (34 (x)) — e (0)? — 2 ()]
k

L
=103 (e mee) 3 4 |1 +10g(2900)) — 9 ()2 = 29 (0]
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Monte Carlo Estimate: A Simple Example

* Monte Carlo estimate provides an approximation of the
expectation through random sampling and averaging

- Example: Approximating the mean of a biased coin
o Let X denote a binomial random variable that equals 1 when a Coif =

flip results in heads, and 0 when it lands on tails

1+0+1+1+-40 1
o E[X] = =1ytx,

n



V AE loss function
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¢ So, the final loss function of VAE becomes:

£(6,9) = Eyqyzi) E (x - 1o @)’| - %Z |1+ 10g (24(0)) = 1p(0)? — 2 (1))
k

L
=%;%(x_ﬂ9(z[l 2 %z 1+log Z¢(x)) ¢(x)2—2¢(x)]

o Where z!!l~q,(z|x) (Monte Carlo Estimate)

o Most of the time the Monte Carlo Estimate consists into a single draw (the number of samples drawn is a
hyperparameter of the VAE model and can vary depending on the complexity of the data and the desired

accuracy)

51
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L = data fidelity + KL Divergence(Regularizer) * Without regularization, network cheats
by learning narrow distribution:

encourage distribution to describe the
input (similar to autoencoder)
q ¢( z|x)

_ With small variance, this distribution is
Prior representing a single value
pe(z) = N (0,1 i t * Other issues include overfitting, poor
latent space structure, and lack of
T diversity in generated samples

—

« Without regularization, data fidelity

Pri term, the encoder maps any input to
rior - .
— 701 qe(z|x) a normal distribution and the
po(2) = ’ network does not learn anything (we
are not learning any characteristics
0 of the input)

* Attraction between the two
) distribution is due to the KL div
Prior . : . .

» Sufficient variance is ensured using

pe(z) = N(0,1 99 () the KL div

* Promotes a smooth and well-

Deakin University CRICOS Provider Code: 00113B 0 Structured latent Space




Optimization and

Reparametrization
Trick
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Optimization of the loss function VAE

* So, our target is to find optimal 6, ¢ such that
0%, d* = argmin L(6, ¢)
0,9

L£(8,d) = —E,[log(pe(x12))] + Dkir|qe (z|x) Il pa(2)]

= Di1 (44 (21%) Il po (2]%)) — log(pe (x))
* In variational Bayesian method, this loss function is known as the variational lower bound or “evidence lower

bound (ELBO)”.

 This “lower bound” part comes from the fact that KL divergence is always non-negative and thus £(86, ¢) is the

lower bound of the log-likelihood of the data, i.e., log(pg (x)).

log(ps () = —L(6, ) + Dxy (44 (zIx) 1l po(zIx))
log(pe (x)) = —L(8, $)

54

Deakin University CRICOS Provider Code: 00113B



Evidence lower bound (ELBO)

DEAKIN

UNIVERSITY

 Hence, we have

log(pe(x)) = —L(8, $)
* Therefore, minimizing the loss is equivalent to maximizing the lower bound
of the probability of generating real data samples.
- Computing the exact log-likelihood of the data is often intractable due to the
integration over all possible latent space values. Instead, by using
variational inference techniques, we can derive a lower bound on the log-

likelihood that is computationally feasible to optimize.
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Optimizing the VAE loss function

* Recall the loss function of VAE:

1
ar%,rgin L(O,p) = ar%’rqr)lin —Ez~qyz10) [log(pg (xlz))] + EZR:[Zd’(x) + U (%)% — 10g(2¢(x)) — 1]

* Identify 8%, ¢* using the gradient descent algorithm:

Repeat until convergence {
V 0=0—aVgL(6,p) # When calculating this derivative, ¢ 1is constant
x ¢ =0¢—aVyLl(6,p) # When calculating this derivative,0 is constant

} # Problem occurs with this derivative that we
# solve using reparameterization tricRk
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Optimizing the VAE loss function (Vg L(0, ¢))

1 =(
VoL(8,d) = Vg —Ez~q¢<2|x)[log(pe(xlz))] +% e }

k
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) _ 4 v

1
VpL(6, ) =V, —Ez~q4(z1%) llog(pg (x|2)) |1+ EZ[Z(p(x) + g (x)* — log(2¢(x)) — 1]
K

* The derivative V4 L(6, ¢) is harder to estimate because ¢ appears in the

distribution with respect to which the expectation is taken

VoEq,zi0)[f (D] # Eq, 210 Vof ()]
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* If rewrite this expectation in such a way the ¢ appears inside the

expectation, then we can push the gradient inside the expectation:

E;~q4zi0lf (2)] = Ecano,1) [f (94 (e, )]

o Such that z = g4 (€, x), any linear transformation with e~N'(0,1)

o In our case, gg(€,x) = ug(x) + EG)Z(p(x)% =z~N (/,t¢ (2), Z¢(z))
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Reparameterization trick

* Instead of sampling z~q4(z|x), we sample from e~N'(0,1) and then we apply the

1
linear transformation using z = ug(x) + €Oy (x)2

X
Reparametrized form

Backprop ﬁ 0

Original form

Backpropﬁ 0

q(b Z1X
1 Sample 4
zZ=Up+ €OLy? < e~ (0,1) af/aZ

f /0¢;

= X=X _—
Deterministic
Deakin University CRICOS Provider Code: 00113B nOde

Backpropagation possible
(no stochastic node)

(o)
(e}

Stochastic
node




Optimizing the VAE loss function (V4,L(6, ¢))

* Where 9o (€,%) =
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1
Vo L(6,d) =V, {_Ez~q¢(zlx) [log(pe (x|2))] + EZ[%(?C) + p1g (x)% = log(Zg (1)) — 1]}
%

1
=V {—IEENN(OJ) llog (pg (x|g¢, (€, z)))] + EZW (x) + 1y (x)% — Iog(2¢ (x)) — 1]}
K

= —Ec-no) |Volog (pa (|94 (6. 2)))] + Vo {%Z [25G0) + 1y (002 — log (24 () - 1]}
k

Monte-carlo estimate of expectation

S
= —%Z Velog (pg(x|g¢(e,z))) -
=1

M¢(X) + EG)ZCP (X)% =z~N (,U¢(Z),Z¢(Z))



V AE loss function
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L
1 1 2 1
= — — — L] —— _ 2
£(6,¢) lel g (e =m0 =3 ), [1 4108 (20 ) =g " 24 )
o Where Z[l]~q¢ (z|]x) (Monte Carlo Estimate)

o Most of the time the Monte Carlo Estimate consists into a single draw (the number of samples
drawn is a hyperparameter of the VAE model and can vary depending on the complexity of

the data and the desired accuracy)



Demo:

https:/ /keras.io/examples/ generative/vae/
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Questions?

Slides available on:



https://rbouadjenek.github.io/teaching.html

