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Abstract
Recommendation systems are now an integral part of our daily
lives. We rely on them for tasks such as discovering new movies,
finding friends on social media, and connecting job seekers with
relevant opportunities. Given their vital role, we must ensure these
recommendations are free from societal stereotypes. Therefore,
evaluating and addressing such biases in recommendation systems
is crucial. Previous work evaluating the fairness of recommended
items fails to capture certain nuances as they mainly focus on com-
paring performance metrics for different sensitive groups. In this
paper, we introduce a set of comprehensive metrics for quantifying
gender bias in recommendations. Specifically, we show the impor-
tance of evaluating fairness on a more granular level, which can be
achieved using our metrics to capture gender bias using categories
of recommended items like genres for movies. Furthermore, we
show that employing a category-aware fairness metric as a regu-
larization term along with the main recommendation loss during
training can help effectively minimize bias in the models’ output.
We experiment on three real-world datasets, using five baseline
models alongside two popular fairness-aware models, to show the
effectiveness of our metrics in evaluating gender bias. Our metrics
help provide an enhanced insight into bias in recommended items
compared to previousmetrics. Additionally, our results demonstrate
how incorporating our regularization term significantly improves
the fairness in recommendations for different categories without
substantial degradation in overall recommendation performance.

CCS Concepts
• Computing methodologies→ Artificial intelligence; • Infor-
mation systems→ Personalization; Recommender systems.
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1 Introduction
Recommender Systems (RS) personalize item selections for users,
providing suggestions based on individual preferences and behav-
iors. These systems have an important impact on our decision-
making, as they are widely employed across diverse platforms like
e-commerce, social media, streaming services, and news outlets,
shaping the content and products we encounter. For several online
platforms, recommendation systems help create an engaging expe-
rience for users by diversifying and personalizing the content and
interactions. This would help users avoid information overload and
help them focus on options that reflect their past behaviors. Amid
the promise held by RS, however, there are concerns about potential
bias in these systems. For example, research has shown that, on
certain recommender systems, simply changing the gender in a job
search—while keeping qualifications constant—can significantly
influence access to high-paying positions [11, 33].

RS algorithms are traditionally evaluated using measures like
RMSE (Root Mean Squared Error), NDCG (Normalized Discounted
Cumulative Gain), precision, and diversity [61]. If only these met-
rics are considered, then the recommended items are deemed good
when they align with user preferences. These metrics can help
evaluate the performance of the RS, but in recent years there is
a growing emphasis on evaluating and ensuring fairness as well
[1, 2, 16, 23, 43, 53]. For instance, the authors in [13] introduce a
fairness evaluation metric that can be sensitive to different fair-
ness notions like user-centric or item-centric. Although substantial
work has been done in this field in recent years, there is a notable
gap in research specifically focused on robust ways to quantify
consumer bias accurately. Most of the metrics used are deficient
in the following ways: (i) they over-simplify the concept of fair-
ness, (ii) they fail to consider the ranking of recommended items,
and (iii) they rely exclusively on a single type of fairness metric.
A popular approach to evaluating consumer-side fairness in rec-
ommendation systems involves an adaptation of equal opportunity
(refer to Section: 2.2), which aims to balance performance metrics
(such as recall) or utility scores across different groups, such as
male vs. female users [43, 51, 52, 54, 63, 75]. However, while this
approach is quite straightforward, it may overlook disparities in
recommendations across different item categories. To assess these
disparities in recommendations, we refer to Figure 1, where we
present, for various recommendation algorithms, an analysis of
the proportion of action and romance movies among the top 10
recommendations for male and female user groups, along with
the corresponding Precision@10 values for each group. There are
three notable observations here: (i) across all models, there is a no-
ticeable disparity in the proportion of romance and action movies
recommended, as romance movies tend to be recommended more
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Figure 1: Comparison of action and romance movie recom-
mendations among male and female users across four rec-
ommendation algorithms, along with corresponding Preci-
sion@10 values. The graphs highlight disparities in genre
recommendations by gender, with romance movies being
more frequently suggested to female users and actionmovies
to male users, despite similar Precision@10 metrics.

frequently to female users, while action movies are more often
recommended to male users; (ii) precision@10 values for both male
and female users are similar across all models, suggesting that the
models appear to perform equally well for both genders based on
this metric; and (iii) different models exhibit varying levels of bias.
These observations suggest that simply comparing performance
metrics across sensitive attributes is insufficient to assess fairness
in recommendation systems. More granular metrics are necessary
to accurately quantify bias and ensure fair recommendations across
different user groups. To further emphasize the significance of
granular evaluation, we provide a brief overview here with a more
detailed example provided in Section 3.1. Bias can arise in recom-
mender systems due to stereotypical interactions in the dataset
used to train them, which leads to biased recommendations based
on sensitive attributes of the users. This bias can trap users in filter
bubbles, with a focus on stereotypical categories or narrowly de-
fined preferences. Providing more of a certain type of content can
have unintended consequences; for instance, if a young male user
is predominantly recommended action movies, where violence is
glorified and shown in a consequence-free way, then it could con-
tribute to adverse effects, including the desensitization of violence.
This is just one example, but the stakes are much higher for more
sensitive domains like news, job recommendations, etc., where
there can be catastrophic consequences if similar biases manifest
in them.

In this paper, our focus is to overcome the limitations of current
fairness assessment metrics by designing a set of evaluation mea-
sures to help us quantify gender bias in recommendation models.

Specifically, our aim is to ensure that they are diverse so as to cap-
ture nuances of the bias that might not be immediately obvious
but are significant. We propose to do this by incorporating item
categories and rank (when relevant). Next, we utilize one of these
metrics as part of the loss function to optimize, which results in an
effective increase of fairness for recommendations made to users
for each category. This not only shows that our metrics are effec-
tive in addressing fairness concerns but also proves their utility
for quantifying bias. Additionally, we use our metrics to evaluate a
variety of recommendation models, including fairness-aware ones,
using three real-world datasets. The contribution of this paper can
be summarized as follows:

• We introduce a set of metrics that considers both categories
and rankings of the recommendations made, in turn providing
a more nuanced evaluation.

• We evaluate different recommendation algorithms to check for
gender bias using the proposed set of metrics.

• We employ an in-processing technique to ensure the recom-
mended items are fair, not only in a general sense but in a
category-aware sense.

2 Related work
We categorize and discuss the related work existing in this field in
the subsections below.

2.1 Gender Fairness in RS
Gender bias in recommendation systems can exist as systematic
discrepancies in the algorithms when recommending items to users
of different genders. The challenges of gender bias can have a wide-
ranging set of implications, including imbalanced representations of
items for different genders, stereotypical recommendations (male-
dominated occupations recommended to males more than females),
and limitations in user personalization (being recommended items
that are not related to users’ preferences just because they are male
or female). Research on evaluating and addressing gender bias in
recommendation systems is an ongoing process. Melchiorre et al.
[52] investigate the impact of a common de-biasing strategy called
resampling on RS algorithms. This strategy marginally decreases
gender bias, with a slight decrease in performance. The authors
in [27, 74, 79] introduce ways to re-rank items to offer a balanced
solution that caters to group fairness (for gender and other sensitive
attributes) and user preferences. Historical data that can contain
stereotypical movie preferences can intensify certain biases fur-
ther when used to train traditional recommendation models. For
instance, male users display a bias towards action movies, which is
amplified by recommendation algorithms like UserKNN [64]. The
authors in [3] introduce a framework that fairly predicts the quality
of TedTalk speeches by using causal models and counterfactuals to
mitigate gender and racial bias. Adversarial fairness where the rec-
ommender system is trained to not only make accurate predictions
but also make it difficult for the adversary to guess the sensitive
attribute, has also been employed to make such systems more fair
[48, 56]. Recent advancements in this field, have led to the devel-
opment of fairness-aware recommendation models, with special
emphasis on gender bias [5, 68, 73, 76, 80, 81].
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2.2 Evaluating Gender Bias
For evaluating gender bias, the most common fairness definitions
employed are the concepts of Demographic Parity and Equal Oppor-
tunity, which are both related to group fairness. Fairness in this con-
text, pertains to equitable treatment across different groups (which
can be measured in classification and recommendation tasks). For
group fairness, the idea is to ensure that the predicted outcomes
𝑌 of a model should not be dependent on sensitive attributes like
gender 𝑆 . For demographic parity, the proportions of each sensi-
tive group (like male and female) receiving positive predictions
should be equal. For binary classification, demographic parity can
be formalized as:

𝑃 (𝑌 = 1|𝑆 = 1) = 𝑃 (𝑌 = 1|𝑆 = 0)

Essentially what this implies is that the positive outcome should be
the same for both genders, where 0 may represent male and 1 may
represent female or vice versa. Equal Opportunity, on the other
hand, holds when the model has equal true positive rates across
different demographic groups [30]. This concept can be formalized
as:

𝑃 (𝑌 = 1|𝑆 = 1, 𝑌 = 1) = 𝑃 (𝑌 = 1|𝑆 = 0, 𝑌 = 1)
where 𝑌 represents the true outcome.

Besides these two methods to quantify fairness, some additional
concepts (as discussed in [40]) used include Equalized Odds [30],
Balance for Negative Class [65], Balance for Positive Class [65],
Intersectional Fairness [26], Equal Calibration [10] and Causal-
based notions [3, 42].

2.3 Evaluating Consumer-Side Fairness
In recommendation systems, fairness can be seen as a multi-sided
concept and categorized into three groups: consumers (C-fairness)
[13, 15, 25, 27, 29, 52, 66, 71] which is related to the impact of rec-
ommendations of the system on protected classes of user, provider
(P-fairness) which focuses on ensuring fairness for providers/sellers
on a platform and both (CP-fairness) [8]. Our work focuses on the
consumer-side fairness concept because we want to ensure that
recommendations made by models are not biased against a certain
gender. Prior research has shown how recommendations can differ
in an unfair way based on sensitive attributes of users like gender,
age, race, etc. [28, 38, 67]. Evaluating bias in these systems, before
deploying is thus essential to stop the reinforcement of stereotypes
and limiting diverse content. When quantifying consumer side bias
in recommendation systems, the most common approach is to adopt
the concept of equality of opportunity and focus on the differences
in metrics such as recall, precision and/or NDCG [21, 43, 52]. Other
papers also employ causal-based fairness notions [46, 68] and de-
mographic parity [5, 18, 24]. Unlike these metrics, which assume
fairness implies equality, [13] suggests how, for instance, paid users
should be provided better recommendations when compared to free
users. They design a set of metrics that can take this disparity into
account and then measure fairness accordingly. Another interest-
ing way to measure unfairness is the concept of envy-free fairness,
which is achieved when no one user prefers another user’s rec-
ommendations way more significantly than their own [14]. While
these metrics can identify consumer-side bias to an extent, they
come with some limitations.

Limitations of current metrics used to quantify consumer-side
bias in recommendation systems include: (i) over-simplifying the
meaning of fairness in RS, which employs various techniques like
collaborative and content-based filtering and hybrid methods. Sim-
ple notions can fail to capture disparities that exist across different
types of items, for example, genres, when considering movie rec-
ommendations. Some metrics that can fall prey to this oversimpli-
fication issue include [13, 14, 19–21, 34, 43, 52, 69, 70, 77]; (ii) not
utilizing ranks when evaluating recommendation quality can yield
considerable issues. This is due to the fact that recommendations
are displayed one after another, so the items on higher ranks must
be more relevant to keep the user satisfied. Thus, capturing the qual-
ity of recommendations using the ranks reflects a more complete
way of evaluating models. Some metrics that can fall prey to this
issue include [13, 14, 69, 70, 77]. It is important to state however,
that even considering rank can give rise to positional bias, which
refers to the tendency of users to favor the items that appear on top
of a ranked list. Evaluating till a certain position like Recall@k can
lead to a skewed sense of assessment of how the recommendation
model performs. Additionally, metrics like MAP (Mean Average
Precision), which normally treats relevance as a binary value (0:
not relevant and 1: relevant) can also fail to capture the nuanced
relevance that can come from items having multiple categories. So,
using more than one metric (both with and without using ranks) to
quantify bias is essential; (iii) relying only on one type of fairness
metric can obscure underlying biases and give a false impression
of fairness in recommendation systems.

Hence, using multiple metrics can help uncover hidden biases.
Additionally, a model that is fair according to one metric can fail to
hold other fairness metrics and risk overlooking subtle unfairness
issues.

We want to highlight some of the works that have taken into
account different classes when evaluating recommendations [24,
36, 37, 47, 58, 60, 62, 72]. For instance, [47] groups users on certain
attributes and items by category, then measures preference ratio,
which is the fraction of liked items by a group across categories.
Next, they measure the bias disparity by taking the preference and
recommended ratios’ relative differences. This is close to our work
but still doesn’t account for the ranks of items and we evaluate the
direct comparison of the recommendations for males and females.
Additionally, [62] introduce calibrated recommendations, ensur-
ing the recommended items align with user preferences without
overemphasizing particular categories. The work by [24] uses a
measure Skew@k to evaluate proportions of candidates based on
sensitive attributes, and [36] uses a fairness metric called Attention
Weighted Ranked Fairness (AWRF) [58] to ensure there is balance in
exposure in different groups of providers. While both these works
ensure group fairness, our work is more concentrated on evaluating
the distribution of content categories for different groups. Unlike
the work by [36] that focuses on provider-side fairness, we focus
on consumer-side fairness.

3 Proposed Evaluation Metrics
3.1 Motivating Fairness Concern
Our example is a typical offline setting recommendation system,
which is trained using historical user and movie interactions. For
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our scenario, let us assumewe have𝑢1, a male user who haswatched
numerous action and sci-fi movies, with some romance movies. We
also have 𝑢2, a female user who has watched a lot of drama movies
but also a few action movies. Let us say we decide to calculate
overall precision for each user group (male and female) and then
compare them to ensure the model’s fairness.

3.1.1 Potential Issue. Machine learning systems tend to learn and
amplify bias from the training data [4, 12, 17, 40, 49]. Recommender
systems are no different, as they can pick up on stereotypical user-
item interactions and make biased recommendations based on sen-
sitive attributes of users [52, 64]. Biased recommendations can have
a broad impact on users if the models recommend content just
because it aligns with certain stereotypes, for instance, males like
action movies, and females like romance movies.

This imbalance in recommendation can lead to a situation in
which users are only exposed to items that align with part of their
preferences and stereotypical norms. This would potentially fil-
ter out diverse content and prevent users from discovering new
movies. As time passes, 𝑢1 might stop getting romance movies
recommended to them, even though they enjoy them. For 𝑢2, a sim-
ilar case could arise for action movies. Essentially, this imbalance
can trap the users in a bubble of recommendations with only their
established preferences and gender-stereotypical genres. Addition-
ally, if a user’s established preferences are already aligned with
gender stereotypes, then the bias in recommendation will intensify
further giving rise to a filter bubble, with very redundant movie
recommendations.

3.1.2 Falling short when quantifying gender bias. Moreover, as men-
tioned earlier, using some performance metrics for both genders
and comparing them to evaluate fairness is not a great idea. The
two groups can have similar scores, even if the model is making
biased recommendations by choosing to neglect certain categories
for certain users. Our proposed metrics address this issue by break-
ing down the recommendations by category to get a more nuanced
sense of fairness.

The key takeaway here is the importance of learning fair user
and item representations, as well as evaluating fairness in the out-
put. Even if a model is trained only on user-item-rating interactions
with no explicit mention of sensitive attributes, the model can still
infer this private information due to the correlation between their
behavior and their sensitive attributes [6, 9, 22]. So, we have to
take precautionary measures when training the model itself, so it is
unable to learn these correlations. We also wanna discuss how it is
important to ensure personalization, including gender-specific pref-
erences to enhance user satisfaction, but such preferences should
be balanced against any risk of reinforcing stereotypes.

Please note in our study we focus on binary genders, acknowl-
edging there are many other gender identities not represented here.

3.2 Notation
We present all metrics for fairness assessment using the following
mathematical notation:

• 𝑢𝑖 : A single user, where 𝑖 indexes the users.
• 𝑣 𝑗 : A single item, where 𝑗 indexes the items.
• U andV: The set of users and items, respectively.

• U𝑚 and U𝑓 : The set of male and female users, respectively.
• 𝑐: An item category, such as Action, Sci-Fi, Romance, etc.
• 𝐶: A category matrix where 𝐶 𝑗,𝑐 = 1 if category 𝑐 is associ-
ated with item 𝑣 𝑗 , and 𝐶 𝑗,𝑐 = 0 otherwise.

• 𝐶𝑣𝑗 : The list of categories associated with item 𝑣 𝑗 .
• 𝑇𝑜𝑝𝐾𝑢𝑖 : The set of top 𝐾 recommended items for user 𝑢𝑖 .
• C: Represents the set of categories for items.

To assess fairness, we adapt and extend Information Retrieval
metrics, introducing both non-ranking and ranking-based metrics,
which are detailed in the following subsections.

3.3 Non-ranking-based metrics
The first set of metrics we propose evaluates the fairness of a rec-
ommender system without considering the ranking of movies.

3.3.1 Category Coverage (CC). This metric estimates the propor-
tion of recommended items associated with category 𝑐 relative to
all categories for all users 𝑢𝑖 . This essentially captures the category-
specific performance of the recommended items. It is defined as
follows:

𝐶𝐶 (𝑐,U) = 1
|U|

∑︁
𝑢𝑖 ∈U

1
|𝑇𝑜𝑝𝐾𝑢𝑖 |

∑︁
𝑣𝑗 ∈𝑇𝑜𝑝𝐾𝑢𝑖

𝐶 𝑗,𝑐

|𝐶𝑣𝑗 |
(1)

3.3.2 Relative Category Representation (RCR). This metric esti-
mates the proportion of category 𝑐 in recommended items relative
to the proportions of all categories available from the whole dataset.
This helps provide insights on category-specific items and is defined
as follows:

𝑅𝐶𝑅(𝑐,U) = 1
|U|

∑︁
𝑢𝑖 ∈U

∑
𝑣𝑗 ∈𝑇𝑜𝑝𝐾𝑢𝑖

𝐶 𝑗,𝑐

|𝐶𝑣𝑗
|∑

𝑣𝑘 ∈V
𝐶𝑘,𝑐

|𝐶𝑣𝑘
|

(2)

These two metrics help us quantify how relevant a category is
for items recommended to a given set of users. For instance, 𝐶𝐶
would help us quantify the diversity of items recommended by
reflecting the overall distribution of recommended content when
computed for different 𝑐 . Whereas, 𝑅𝐶𝑅 (calculated for different
𝑐) would measure if the recommendations suppress or amplify
certain categories by comparing them to the actual distribution
of available content. Both 𝐶𝐶 and 𝑅𝐶𝑅 provide a more nuanced
understanding of how the recommendation system performs but
don’t take into account the position of the recommended items.
For recommendation systems, where in most cases items surface
one after another, it is vital that the items on the top of the menu
are the most relevant. Hence, to ensure that ranking order is also
considered for evaluating recommended items, in the next section
we introduce rank-based metrics.

3.4 Rank-based Metrics
We now introduce our metrics that utilize ranking to provide a
comprehensive assessment of fairness.

3.4.1 Category Mean Average Precision (CMAP). For a given set of
users, this metric estimates the proportion of recommended items
associated with category 𝑐 by incorporating the rank of the items. A
category-specific average precision score is computed for each user,
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followed by averaging these scores across all users. This metric is
defined as follows:

𝐶𝑀𝐴𝑃 (𝑐,U) = 1
|U|

∑︁
𝑢𝑖 ∈U

∑ |𝑇𝑜𝑝𝐾𝑢𝑖 |
𝑗=1 𝑃 ( 𝑗) · 𝐶 𝑗,𝑐

|𝐶𝑣𝑗
|∑

𝑣𝑗 ∈V
𝐶 𝑗,𝑐

|𝐶𝑣𝑗
|

(3)

where 𝑃 ( 𝑗) = 1
𝑗

∑𝑗

𝑘=1
𝐶𝑘,𝑐

|𝐶𝑣𝑘
| .

3.4.2 Category Discounted Cumulative Gain (CDCG). The score
for this metric is discounted based on the position of the item in
the recommended list. While similar to the previous metric, CDCG
uses a logarithmic discount factor, which is higher for items that
appear lower down in the list. It is defined as follows:

𝐶𝐷𝐶𝐺 (𝑐,U) = 1
|U|

∑︁
𝑢𝑖 ∈U

1
|𝑇𝑜𝑝𝐾𝑢𝑖 |

|𝑇𝑜𝑝𝐾𝑢𝑖 |∑︁
𝑗=1

𝐶 𝑗,𝑐

|𝐶𝑣𝑗
|

log( 𝑗 + 1) (4)

3.4.3 CategoryMean Reciprocal Rank (CMRR). This metric is based
on MRR, which is essentially the mean reciprocal of the rank of the
first relevant item. We adapt it for assessing fairness and we define
it as follows:

𝐶𝑀𝑅𝑅(𝑐,U) = 1
|U|

∑︁
𝑢𝑖 ∈U

1
|𝑇𝑜𝑝𝐾𝑢𝑖 |

|𝑇𝑜𝑝𝐾𝑢𝑖 |∑︁
𝑗=1

𝐶 𝑗,𝑐

|𝐶𝑣𝑗
|

𝑗
(5)

3.4.4 Category RPrecision (CRP). This metric uses the category-
specific precision but only for the top ⌊𝑅𝑐 ⌋ results, where 𝑅𝑐 repre-
sents the proportion of category 𝑐 when considering all items in
V (i.e., 𝑅𝑐 =

∑ |V |
𝑗=1

𝐶 𝑗,𝑐

|𝐶𝑣𝑗
| , note that item 𝑣 𝑗 can belong to multiple

categories like movie genres). This metric is defined as follows:

𝐶𝑅𝑃 (𝑐,U) = 1
|U|

∑︁
𝑢𝑖 ∈U

∑ |𝑇𝑜𝑝 ⌊𝑅𝑐 ⌋𝑢𝑖 |
𝑗=1

𝐶 𝑗,𝑐

|𝐶𝑣𝑗
|

⌊𝑅𝑐 ⌋
(6)

All four of the ranking-based metrics, take into consideration
the proportions of categories and use rank as a discounting factor.
The discounting factor is different for each of them and has distinct
nuances. For instance, 𝐶𝑅𝑃 would only evaluate recommendations
till a certain rank ⌊𝑅𝑐 ⌋ to measure if the model is providing a pro-
portional amount of recommendations for 𝑐 relative to its presence
in the dataset. Another metric like 𝐶𝐷𝐶𝐺 for example would cap-
ture something different, which is the relevance of 𝑐 by giving more
weight to items (falling under category 𝑐) appearing higher in the
list.

3.5 Group Fairness (Gender)
Gender Balance Score (GBS) for a given category 𝑐 , is the absolute
difference of category distribution values for U𝑚 and U𝑓 based
on any of the category-aware metrics discussed above. This metric
is an adaptation of demographic parity as mentioned in Section
2.2. We want to make sure that the category distributions of the
recommended items for the groups, of males and females are similar.
For each metric M, defined above, we want to ensure that the
difference of values calculated for the groups male and female

summed up for all categories are close to 0. This can be formalized
as:

△M𝑐 = |M(𝑐,U𝑚) −M(𝑐,U𝑓 ) | (7)

𝐺𝐵𝑆 (M) =
∑︁
𝑐∈C

△M𝑐 ≈ 0 (8)

4 Genre Aware Regularization For Gender
Fairness

Now that we have introduced our set of metrics for capturing a
nuanced sense of fairness for recommended items, we aim to learn
fair representations that are category-aware for users of differ-
ent genders. To promote fairness in recommendation models we
employ an in-processing regularization technique inspired by the
approach first proposed by [78]. We propose to incorporate Cate-
gory Coverage (Section 3.3.1) into the loss function alongside the
primary recommendation loss, encouraging the model to optimize
for category-aware fairness. We want to emphasize that while we
select 𝐶𝐶 as an example here, optimizing on any of the other met-
rics (as long as the implementation is differentiable) is possible. We
incorporate this fairness regularizer into the loss function of each
baseline model—MF, VAE-CF, and NeuMF.

Specifically, to discourage the model from learning any biased
representations, we incorporate the following regularizer:

L𝐹𝑎𝑖𝑟𝐺𝑒𝑛𝑟𝑒𝐺𝑒𝑛𝑑𝑒𝑟 = 𝐺𝐵𝑆 (𝐶𝐶) =
∑︁
𝑐∈C

|𝐶𝐶 (𝑐,U𝑚) −𝐶𝐶 (𝑐,U𝑓 ) |

(9)
The goal is to minimize the difference in category distribution of
the items being recommended to the users of each sensitive group.
The new loss function for MF, VAE-CF and NeuCF models can be
written as:

L = 𝛼L𝐹𝑎𝑖𝑟𝐺𝑒𝑛𝑟𝑒𝐺𝑒𝑛𝑑𝑒𝑟 + (1 − 𝛼 )L𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛 (10)

where 𝛼 is used to calibrate the trade-off between the model loss
and the fairness term. L𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛 represents the respective
recommendation loss term of each model. By tuning this hyperpa-
rameter, we ensure that fairness does not overly compromise the
recommender’s ability to respect users’ personal preferences (even
if there are natural differences across liked categories for users of
different genders). In order to modulate the gender loss value and
to ensure it is able to make a significant contribution to the loss
function, we pass it through a sigmoid function, centering at 0.5
and scaling it by 0.1. Additionally, the maximum batch loss value
of the actual recommendation loss is used to scale the gender loss
up to ensure both losses are on the same scale. In the next section
we show how using this fairness regularization helps the models
minimize bias in recommendations provided to users of different
genders for different categories.

5 Experiments
In the sub-sections below, we outline our experimental setup.

5.1 Datasets
Our experiments are performed on three recommendation datasets
summarized in Table 1. The data is split into training, validation,
and test sets with a 70:10:20 ratio following user-based split scheme.
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Table 1: Description of datasets.

Dataset Users Item Interactions Categories for Items
ML 100K [31] 943 1,349 99,287 18
ML 1M [31] 6,040 3,416 999,611 18
Yelp [50] 1,316 1,272 97,991 21

It’s important to highlight that items can fall under multiple cat-
egories. For clarity and ease of understanding, we focus on four
representative categories—Action, Romance, Sci-Fi, and Drama from
the MovieLens datasets and Coffee, Tea & Desserts, Arts & Enter-
tainment, Travel & Transportation and Asian from the yelp dataset
— when visualizing our metric values; however all categories are
included in our experiments.

5.2 Evaluating Performance
For measuring the performance of recommendations made, we
use HitRatio@k calculated for each user and then averaged. Ad-
ditionally, we use a ranking-based metric NDCG@k (Normalized
Discounted Cumulative Gain) which gives higher relevance to items
appearing higher in the ranked list. This too, is calculated for each
user using their top 𝑘 recommendations and then averaged. We
calculate these values for 𝑘 = 50.

5.3 Base Recommendation Models
For analyzing which models manifest gender bias we evaluate sev-
eral recommendation approaches. When selecting these models,
we include a variety of algorithms, ranging from traditional ones
to more modern ones including Matrix Factorization, UserKNN,
ItemKNN, NeuMF and VAE-CF (more detailed information on these
and the fairness-aware models can be found in Section A.2).

Additionally, we include a regularization-based fairness-aware
model BeyondParity [77] and a counterfactually fair recommen-
dation model SM-GBiasedMF [44]. To weigh the fairness-aware
loss for SM-GBiasedMF, we use 𝜆 = 20 for all experiments since
this value seems to work well as mentioned in [44]. To make a fair
comparison, we use BeyondParity’s𝑈𝑣𝑎𝑙 (refer to Equation 11) as a
regularization term in the same setting as shown in Equation 10,
with the same value of alpha we use for our MF model. We use
an early stopping strategy for the three models being compared,
monitoring NDCG@20 with a delta of 0.0005 and patience of 10
epochs with a maximum number of iterations of 50 and 100 for the
100K and 1M datasets, respectively.

We utilize the Cornac framework [57], with customizations to
meet our requirements, including the implementations of differ-
entiable ways to obtain top k category distribution for calculating
our gender loss term for different models. When calculating our
regularization term, we generate a top 𝑘 recommendation list of
size 𝑘 = 50. Additionally, all our results for all metrics for GBS
(except CRP) use the top 50 recommended items. For GBS(CRP) we
use top ⌊𝑅𝑔⌋ as explained for Equation 6.

6 Analysis of the proposed metrics
In this section, we discuss the results we obtained from our experi-
ments through a comprehensive analysis.

Model Hit
Ratio↑ NDCG↑ CC↓ RCR↓ CMAP↓ CDCG↓ CMRR↓ CRP↓

ML 100k Dataset
UserKNN 0.4931 0.0321 0.0283 0.0340 0.0029 0.0063 0.0017 0.0178
ItemKNN 0.4698 0.0347 0.0675 0.0749 0.0095 0.0181 0.0070 0.0567

MF Original 0.9003 0.1979 0.0288 0.0321 0.0043 0.0089 0.0055 0.0276
Fair 0.8950 0.1794 0.0228 0.0312 0.0037 0.0085 0.0060 0.0234

VAE-CF Original 0.8749 0.1643 0.0187 0.0210 0.0030 0.0052 0.0026 0.0137
Fair 0.8759 0.1575 0.0140 0.0186 0.0026 0.0047 0.0037 0.0128

NEU-MF Original 0.9470 0.2402 0.1723 0.1452 0.0268 0.0502 0.0220 0.1411
Fair 0.9194 0.2305 0.0333 0.0405 0.0056 0.0093 0.0059 0.0342

ML 1M Dataset
UserKNN 0.3997 0.0179 0.0204 0.0110 0.0008 0.0043 0.0008 0.0174
ItemKNN 0.3565 0.0383 0.0881 0.0351 0.0051 0.0224 0.0082 0.0650

MF Original 0.8485 0.1522 0.1775 0.0486 0.0097 0.0495 0.0204 0.1440
Fair 0.8055 0.1158 0.1160 0.0314 0.0067 0.0344 0.0162 0.0760

VAE-CF Original 0.8315 0.1473 0.2551 0.0708 0.0154 0.0706 0.0282 0.1900
Fair 0.8280 0.1423 0.2229 0.0637 0.0132 0.0631 0.0263 0.1502

NEU-MF Original 0.9108 0.1336 0.3096 0.0998 0.0246 0.0835 0.0316 0.2180
Fair 0.8333 0.1359 0.1503 0.0415 0.0086 0.0436 0.0191 0.0959

Yelp Dataset
UserKNN 0.4886 0.0312 0.0068 0.0252 0.0068 0.0026 0.0022 0.0129
ItemKNN 0.5030 0.0344 0.0242 0.0513 0.0060 0.0065 0.0035 0.0219

MF Original 0.8587 0.1209 0.0358 0.0342 0.0055 0.0088 0.0036 0.0296
Fair 0.7500 0.0773 0.0159 0.0312 0.0019 0.0042 0.0019 0.0130

VAE-CF Original 0.8131 0.0985 0.0045 0.0041 0.0003 0.0007 0.0003 0.0018
Fair 0.8032 0.0961 0.0021 0.0019 0.0002 0.0004 0.0001 0.0011

NEU-MF Original 0.9347 0.1794 0.0592 0.0850 0.0134 0.0152 0.0057 0.0651
Fair 0.8533 0.1124 0.0309 0.0401 0.0054 0.0079 0.0028 0.0394

Table 2: Performance and Bias Evaluation values (GBSs) for
5 baseline models, along with the fair models.

6.1 Baselines Comparison
6.1.1 Bias Evaluation. We report our results in Figures 2, 3, and
Table 2. For the KNN-based models, ItemKNN seems more bias-
prone. This can be due to the nature of the model of calculating
similarity between items based on the interactions by the users.
For instance, in the ML-100k dataset, the average rating for ro-
mance movies is higher for female users than for males. This kind
of imbalance can reinforce category-related gender bias when items
are recommended. Among the three other baselines, the MF-based
models can be considered more biased. For the MF model, explicit
embeddings are used to store user and item representations, which
are likely to capture correlations of user behavior (e.g., liking cer-
tain genres) and their sensitive attributes. For VAE-CF, variational
autoencoders are used to learn probabilistic latent representations
of users, which are still sensitive to capturing biased representa-
tions but not as much as NeuMF. NeuMF captures both linear and
non-linear relationships between users and items through Gen-
eralized Matrix Factorization (GMF) and Multi-Layer Perceptrons
(MLP). So, NeuMF can capture biases in the data, especially the
intricate patterns about user preferences, which can reflect social
stereotypes. The MF model itself is not as complex as NeuMF, so
our results of NeuMF being more biased than MF is reasonable.
For the two smaller datasets, VAE-CF doesn’t manifest high values
for bias, which can be due to the model not being able to fully
capture representations of gendered preferences because of the
lower number of interactions available. Comparatively, for the 1M
dataset, the model can learn the stereotypical patterns available
in the dataset more effectively and reinforce these biases in the
latent representations. In general, all models manifest more gender
bias for the larger dataset than the smaller ones. For all baseline
models, the Gender Balance Scores are 0 0, which highlights the
fact that they are producing recommendations in a discriminative
way where they choose certain genres to be relevant for certain
groups of users. From Table 2, GBSs are higher for 𝐶𝐶 or 𝑅𝐶𝑅 (ref
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Figure 2: Comparison of Bias values for six of our metrics for all three dataset.

to Equations: 1 and 2). These two are classification-based metrics
and do not consider ranks, so there is no discounting done in the
value of any item that appears lower in the list but is still relevant
(category-wise). GBS(CMRR) has the lowest values for almost all
models since it has a strong discounting factor for items that appear
lower in rank.

The bias reduction after using the fairness aware loss term is
displayed in Figure 3. We can see a notable improvement in the
bias scores, especially for the NeuMF model. The regularizer term
is most effective for reducing bias in the NeuMF model, with an
average decrease across all six metrics of 77%, 53%, and 50% for
ML100K, ML1M, and Yelp datasets, respectively. The impact of the
fairness regularizer is less pronounced for the VAE-CF model. We
believe this is due to the model’s nature of learning probabilistic
latent factors for users and items that don’t amplify gender bias
like the MF models which use embeddings to learn user and item
interactions. As a result, the regularizer has less impact on the
model’s learning process.

6.1.2 Performance Evaluation. The performance drop for VAE-CF
and NeuMF is less than that of theMFmodel, however, it all depends
on the selection of 𝛼 (more on this in Section A.1). For all models,
when choosing 𝛼 we ensure there is substantial bias reduction
without too significant of a drop in performance. In some cases the
fair models outperform the original models, this although seems
counter-intuitive, but is presumably due to the fairness term acting
as a regularization term which can help reduce over-fitting in the
model to some extent (as noted in [35, 39]).

6.2 Fairness-Aware Baselines
We can observe the results for our MF fair model when compared
with two other fairness-aware models in Table 3 and Figure 4. We
chose to use our MF fair model since the other two fairness-aware
models use MF as their foundational models. Our model has outper-
formed the other models in terms of bias scores across the majority
of the comparisons. While our models don’t excel in terms of per-
formance, they still offer a better balance between performance and
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Figure 3: Reduction in bias scores after using our fairness-
aware regularizer. Since all datasets provide similar out-
comes, we present the results for only the ML 100K dataset.

Model NDCG↑ HitRatio↑ CC↓ RCR↓ CMAP↓ CDCG↓ CMRR↓ CRP↓
ML 100K Dataset

MF𝑎=0.5 0.1794 0.8950 0.0228 0.0312 0.0037 0.0085 0.0060 0.0234
SM-GBiasedMF 0.1230 0.8537 0.03785 0.0378 0.0059 0.0114 0.0053 0.0286
BeyondParity 0.0790 0.6384 0.0528 0.0752 0.0093 0.0147 0.0068 0.0480

ML 1M Dataset
MF𝑎=0.6 0.1158 0.8055 0.1160 0.0314 0.0067 0.0344 0.0162 0.0760

SM-GBiasedMF 0.0846 0.8075 0.2590 0.0726 0.0152 0.0656 0.0211 0.2058
BeyondParity 0.0829 0.6495 0.1307 0.0539 0.0079 0.0369 0.0154 0.0838

Yelp Dataset
MF𝑎=0.3 0.0773 0.7500 0.0159 0.0312 0.0019 0.0042 0.0019 0.0130

SM-GBiasedMF 0.9157 0.1343 0.0515 0.0789 0.0132 0.0140 0.0055 0.0587
BeyondParity 0.0358 0.4901 0.0112 0.0342 0.0066 0.0033 0.0027 0.0241

Table 3: Performance and Bias Evaluation Metric values for
fairness-aware models.

bias scores when compared with the other fairness-aware baselines.
It is important to highlight that BeyondParity uses plain MSE loss,
while the other two use BPR loss with negative sampling, which
explains the exceptionally low-performance values. While we em-
phasize the significance of comparing the aggregated differences
for each metric M for all the categories, we also want to highlight
the importance of evaluating bias values separately. For instance,
although GBS(CMRR) of SM-GBiasedMF is lower for the ML100K
dataset when compared to ours, there is still significant bias for
movies recommended that belong to the genres like Romance and
Sci-Fi as observed in Figure 4. This strengthens our idea of having
a set of metrics to quantify bias in a nuanced way since the model
seems "fair" when considering overall scores for all categories, but
closer inspection reveals how it is biased against certain categories.
It is worth mentioning that SM-GBiasedMF is more biased than the
plain MF model for the Yelp dataset. Our theory is that since this
model needs more epochs to satisfy the early stopping criterion (as
mentioned before), it likely over-fits the dataset, in turn amplifying
the biases present in it.
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Figure 4: Bias score for the fairness-aware models over four
stereotypical genres for the ML 100K dataset.

7 Discussion and Conclusion
In this paper, we identify the underlying issues of current metrics
for evaluating consumer-side bias in recommendation systems. To
better quantify bias, specifically gender bias, in such models, we
propose a set of metrics. These metrics help capture a nuanced
sense of fairness on recommended items by considering categories
of the items. Next, we demonstrate how introducing one of our
metrics as a fairness loss term along with the recommendation loss
helped minimize the unfairness manifested in models in terms of
different categories of items recommended with minimal perfor-
mance loss. Experiments on three real-world datasets using a vari-
ety of recommendation models, including fairness-aware models,
show the effectiveness of our metrics in capturing bias. Addition-
ally, after incorporating our loss term, the bias in the models was
significantly reduced, with a favorable balance between fairness
and accuracy. Our loss function is very flexible which allows for
context-sensitive fairness. In domains such as job recommendation
and housing, where fairness is vital, the functions can prioritize
fairness. Conversely, for areas like movie recommendations it can
balance personalization and fairness (ensuring user preferences are
respected). Our work aims to spread awareness about how simple
metrics that are currently utilized to evaluate bias might be giving
researchers a false sense of fairness, and a more refined approach
like ours is required to address this issue. Our metrics are very ver-
satile and can be easily adapted to measure provider-side fairness
by utilizing proportions of item brands, for example, and can help
quantify popularity bias in recommendations. Extending on this,
the metrics can be used for measuring CP-fairness since we can
measure bias from both the consumer side and provider side, by
taking differences in values for different item providers for different
demographic groups. Plus we plan to extend our metrics to consider
sensitive attributes which are multi-valued, by using a pairwise
difference scheme.
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A Appendix
A.1 Abalation Study
In this section, we discuss the influence of the hyper-parameter 𝛼
on recommendation performance and fairness. As mentioned in
Section 4, 𝛼 can be used to control the strength of the fairness aware
loss. Theoretically as 𝛼 increases we would expect a decrease in
performance since the recommendation losswould have a decreased
weight. We use 𝛼 values from 0 to 0.6 with increments of 0.1 for
all three models. We did not include values above 0.6, because
it does not make sense to overpower the recommendation loss
since that is our main task. To verify the expected behavior of
alpha on recommendation loss and bias we plot the metric we
optimize on: GBS(CC) or△𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 and theNDCGvalues.
As shown in Figure 5, there is a general trend of the performance
metric and the bias score dropping as 𝛼 increases. There are some
fluctuations, where the bias increases for the first few values of
alpha. Our intuition for this is that the fairness loss might not be
enough to decrease the bias when 𝛼 is small. It can essentially end
up disturbing the loss function itself, without explicitly decreasing
bias. But as the value increases the bias scores drop lower which
is expected. There is a slight increase in NDCG value for certain
models, as mentioned in Section 6.1.2, this can be the result of the
fairness loss term acting as a regularization term that essentially
prevents over-fitting in the model. We choose 𝛼 values by ensuring
there is a decrease in bias, without significant loss in performance.
For the ML 100K dataset, we choose 0.4, 0.3, and 0.2 respectively for
MF, VAE-CF, and NeuMF models. For the ML 1M dataset, we choose
0.6,0.2, and 0.4 for MF, VAE-CF, and NeuMF models respectively.
Lastly, for the Yelp dataset, we choose 0.3 for all models.
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Figure 5: Impact of 𝛼 on recommendation performance wrt
NDCG@50 and the bias measure which is the difference of
Category Coverage values for male and female. The experi-
ments are performed for all three datasets

A.2 Details about Baseline Models
This subsection delves into details about the models we worked on
for our experiments.
• MF [41]: A classical Matrix Factorization algorithm where users
and items are represented as latent vectors with global bias.
In our implementation, we use BPR [55] loss with negative
sampling to enhance the performance of the model.

• UserKNN [7]: This is a neighborhood-based method based on
users, and items are recommended by discovering similar users
based on the cosine similarity of their historical interactions.

• ItemKNN [59]: Another neighborhood-based method that com-
putes the similarity between items instead.

• NeuMF [32]: NeuMF is a deep-learning based extension to MF,
which combines the linearity of traditional MF models and the
non-linearity of DNNs (Deep Neural Networks).

• VAE-CF [45]: This non-linear probabilistic model is based on
the auto-encoder architecture and learns compressed informa-
tion about data. The encoder helps map user interactions as
a low-dimensional latent space, and the decoder decodes this
information back to the high-dimensional vector which is used
to make predictions.
The𝑈𝑣𝑎𝑙 regularization term for BeyondParity [77] can be writ-

ten as:

𝑈val =
1
𝑛

𝑛∑︁
𝑗=1

�� (𝐸𝑔 [𝑦] 𝑗 − 𝐸𝑔 [𝑟 ] 𝑗 ) − (
𝐸¬𝑔 [𝑦] 𝑗 − 𝐸¬𝑔 [𝑟 ] 𝑗

) �� (11)

where 𝐸𝑔 [𝑦] 𝑗 is the average predicted score for the 𝑗-th item
from disadvantaged users, 𝐸¬𝑔 [𝑦] 𝑗 is the average predicted score
for the 𝑗-th item from advantaged users, 𝐸𝑔 [𝑟 ] 𝑗 is the average
rating for the 𝑗-th item from disadvantaged users and 𝐸¬𝑔 [𝑟 ] 𝑗 is the
average rating for the 𝑗-th item from advantaged users. This fairness
objective is optimized alongside the actual learning objective for a
collaborative-based recommendation system. SM-GBiasedMF, is a
fair recommendation model which achieves counterfactual fairness
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by utilizing adversarial learning. They combine recommendation
loss and an adversarial loss and, the trade-off is controlled by 𝜆.

A.3 Dataset Pre-processing
For all of our datasets, we filter out inactive users. A user is con-
sidered inactive if they have less than 5 interactions. Additionally,
we remove any user whose gender is not known. The Yelp dataset
has over 300 categories. We reduce this set of categories to a con-
densed group of 21 broader categories, for better interpretability.
These categories include Active Life & Fitness, Arts & Entertain-
ment, Automotive, Bars & Nightlife, Coffee, Tea & Desserts, Drinks &
Spirits, Education & Learning, Event Services, Family & Kids, Food
& Restaurants, Health & Beauty, Home & Garden, Miscellaneous,

Outdoor Activities, Public Services & Community, Shopping & Fash-
ion, Specialty Food & Groceries, Sports & Recreation, Technology &
Electronics, Travel & Transportation, and Asian.

A.4 Process of generating Figure 1
This plot is generated using the ML-100K dataset. Once the models
are done being trained we identify the users by their gender in the
test set. To ensure a fair comparison we take the number of users
in the smaller group, which was female in our case. We randomly
chose the same number of male users from the test set. Once we
have an equal number of male and female users, precision@10
values are calculated for each user and averaged by gender. To find
the proportions of movies recommended, we generate the top 10
movies for each user. The proportion of each genre is computed
using Equation 1.
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